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Part I

Currents for modeling curves
and surfaces





Chapter 1

Curves and surfaces embedded in
a metric space
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In this chapter, we present mathematical objects called “currents”, which are used as a
model for general geometrical objects. In particular, we show that any sets of curves or
surfaces may be embedded in the space of currents. This gives a non-parametric represen-
tation of such geometrical objects. These objects inherit from the metric defined in the
space of currents: a geometric similarity measure between objects is provided, which does
not assume any kind of point-correspondence between structures. The space of currents
is a vector space: any set of geometrical structures may be decomposed into the union of
several parts and each part may be weighted separately. This allows us to compare two
sets of anatomical structures while adjusting the level of correspondence: correspondence
between clusters of curves or between individual curves, for instance. This allows us to
use any anatomical knowledge as prior without introducing arbitrary correspondences. The
space of currents is also topologically complete and therefore allows us to process in the
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same framework both discrete geometrical structures and continuous objects seen as the
limit of sampled structures. This guarantees the robustness of the framework with respect
to different sampling of the data.

Note: The first two sections may be read independently of the rest of the chapter. If you
are not interested in the mathematical details of the modeling, you can switch to Chapter 2
after reading Section 1.2.

1.1 The giants on whose shoulders we stand

The idea of currents is deeply rooted into the theory of distributions, as set up by L.
Schwartz in the 1940’s [Schwartz 1966]. The distributions generalize the concept of function
and measure on an open sub-space of Rd. A distribution is characterized by its action on
any infinitely differentiable (i.e. smooth) functions with compact support. A function f for
instance, is completely determined by the collection of the integrals

∫
fφ for any smooth

functions φ with compact support. Similarly, a measure µ is determined by the collection of∫
φdµ. More generally, a distribution is a continuous linear operator on the “test space” of

the smooth functions with compact support. This idea of seeing an object (a distribution)
via its action on a test space allowed to extend the concept of differentiability to non
differentiable functions. In particular, this enables to state rigorously that the derivative of
the Heaviside function is the Dirac delta distribution defined by δx(φ) = φ(x). The theory
of distributions plays therefore a crucial role in the theory of partial differential equations
and in Fourier analysis.

Distributions extend the concept of scalar functions. Currents is a similar construction
but which extends the concept of differential forms on an open subset of Rd or on a smooth
manifold. The theory of homological currents was developed by de Rham, as outlined in
[Cartan 1970] and reported by Raoul Bott:

“When I met de Rham in 1949 at the Institute in Princeton he was lecturing
on the Hodge theory in the context of his “currents”. These are the natural
extensions to manifolds of the distributions which had been introduced a few years
earlier by Laurent Schwartz and of course it is only in this extended setting that
both the de Rham theorem and the Hodge theory become especially complete.”

He named these objects “currents” by analogy with electromagnetism. For instance
the Faraday’s law of induction states that the intensity within a wire loop C induced by
variations of a magnetic field B is proportional to the variations of the flux of this magnetic
field through the surface S delimited by the wire (i.e. the boundary of S is C): Φ(B) =∫
S
Btndλ (where n is the normal of the surface). This means that if we measure the

intensity of the current within the wire (via the flux Φ(B)) for every possible variations
of the magnetic field (created by a moving magnet for instance), then we can retrieve the
geometry of the wire. On the contrary, we can fix the magnetic field and move the wire C
in the space. We can retrieve the value of the magnetic field by measuring the intensity of
the Eddy currents in the wire for every possible motions of the wire. In this case, the wire
is used to probe the magnetic field. In the first case, the magnetic field was used to probe
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the geometry of the wire. These two examples show that the current C and the vector field
B are two “dual” objects.

Initially, de Rham developed currents in order to find algebraic characterization of topo-
logical invariants on manifolds, which leads to his famous cohomology groups. However,
currents quickly spread far beyond the field of algebraic and differential topology. In partic-
ular, they played a key role in the emergence of the “Geometric Measure Theory”, pioneered
by H. Federer [Federer 1969, Morgan 1987]. This theory tries to extend the measure theory
(which leads to the integration theory of Lebesgue) to sub-manifolds, which are usually de-
scribed by some parameterization (parametric curve or surface for instance). As explained
by H. Federer, this should lead to a parameterization-free characterization of sub-manifolds:

“(...) one must abandon the idea of describing all the competing surfaces by con-
tinuous maps from a single predetermined parameter space. One should rather
think of surfaces as m-dimensional mass distributions, with tangent m-vectors
attached.”

This seminal vision leads to many theoretical developments and applications in various
fields such as image processing and computational geometry. For instance, Wintgen and
Zähle [Wintgen 1982] introduced particular currents called “Normal cycles” which generalize
for singular objects the unit normal bundle of a smooth manifold. This tool was used to
define curvature measures on a large class of geometric objects. Recent results of J.-M.
Morvan and D. Cohen-Steiner [Cohen-Steiner 2003a, Cohen-Steiner 2003b] give an upper-
bound of the error between the curvature measures of a polyhedron “close to” a sub-manifold
and the curvature measures of the sub-manifold itself.

In 2005, J. Glaunès and M. Vaillant introduced the concept of currents in the field
of Computational Anatomy [Glaunès 2005, Vaillant 2005]. Their purpose was to give a
dissimilarity measure between meshes or polygonal curves which does not assume point-
correspondence between structures, a key feature for comparing anatomical structures seg-
mented automatically fromMagnetic Resonance Images. They used this dissimilarity metric
to drive the deformation of a source object (a set of curves or surfaces) to a target object.
They proposed also to use the framework of reproducible kernel Hilbert space (RKHS) to
give tractable formula of the metric as well as its derivatives.

In this chapter, we present the currents in the perspective of J. Glaunès’ work with an
emphasis on these two seminal ideas of currents: (1) currents model geometrical objects
via their action on a test space of vector fields and (2) the modeling based on currents
consider objects as a mass distribution without any kind of parameterization which would
give a particular label to each point. Moreover, the topological properties of the space of
currents enable to embed in a single framework smooth geometrical objects (on which the
usual metric properties are naturally defined) and their discrete representation (the only
objects to be accessible from a computational point of view).

1.2 An overview of currents in Computational Anatomy

The purpose of this section is to give a concise introductions of the currents without
going into too much mathematical details. We introduce the concept of currents and the
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main properties which are useful in the context of Computational Anatomy. The rigorous
definitions and the proofs of the claimed properties will be given in the next section (see
Section 1.3).

1.2.1 Currents: an object which integrates vector fields

Curves and surfaces tested on vector fields

As emphasized in the previous section, the main idea of currents is to probe shapes by
vector fields. The word “shape” here is a generic word, which denotes a set of piecewise
smooth curves or piecewise smooth surfaces (which will be modeled as rectifiable subsets
of R2 and R3 in Section 1.3). As a consequence, a shape can be represented by an infinite
set of oriented points: the set of all normals of the surfaces (resp. tangents of the curves).
Such oriented points are called “momenta” in the sequel. In the discrete setting, shapes are
given as meshes (resp. polygonal lines): the direction of the normals (resp. tangents) is
constant over each mesh cell (reps. each segment).

Given ω a square integrable 3D vector field (a mapping from R3 to R3), any set of
piecewise smooth surfaces S integrates ω thanks to the flux equation:

S(ω) =

∫
S

ω(x)tn(x)dλ(x), (1.2.1)

where n(x) is the unit normal of the surface at point x and dλ the Lebesgue measure on
the surface. This equation computes the flux of the vector field ω through the surface S.

Similarly, any set of piecewise smooth curves L integrates a vector field ω thanks to the
path-integral:

L(ω) =

∫
L

ω(x)tτ(x)dλ(x), (1.2.2)

where τ is the tangent of the curve at point x and dλ the Lebesgue measure on the curve.
This equation computes the flux of the field of tangents through the equipotential surfaces
of ω.

L(ω) =
∑

i=1...4

∫
Li

ω(x)tτ(x)dλ(x) S(ω) =

∫
S

ω(x)tn(x)dλ(x)

Figure 1.1: In the framework of currents, curves and surfaces are tested on vector fields
via the path-integral of the vector field along the curves (left) or via the flux-integral of
the vector field through the surface (right). When we know the result of this operation for
every vector fields possible, we get a characterization of the geometrical object.
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The idea of currents is to characterize a shape by the collection of the real numbers
S(ω) or L(ω) (given in Eq. (1.2.1) and (1.2.2) respectively) for all possible vector fields ω.
For this purpose, we need to make precise the idea of ‘all possible vector fields’ by defining
a proper test space of vector field: W .

Remark 1.1. We distinguish here between the case of curves and the case of surfaces. In
Section 1.3, we will define a unifying framework for modeling curves, surfaces, unconnected
point sets and volumes. In this framework, vector fields are replaced by differential forms.
As shown in Appendix A, it appears that differential forms can be identified to vector
fields when modeling curves in 2D or 3D and surfaces in 3D, thus leading to Eq. (1.2.1)
and (1.2.2). These two particular cases are the one of most interest for the applications in
Computational Anatomy. �

Test space of vector fields

We choose for the test spaceW the set of the convolutions between any square integrable
vector fields and a smoothing kernel. Formally, W is defined as a Reproducing Kernel
Hilbert Space (see Appendix B). The kernel plays the role of the transfer function of a
low-pass filter. It enables to map every square integrable vector field to a smooth one. As
a consequence, W cannot contain vector fields with too high spatial frequencies. In our
applications, we will use a Gaussian kernel: KW (x, y) = exp(− |x− y|2 /λ2

W )Id for any
points (x, y), where Id stands for the identity map. In this case, the standard deviation λW
is the typical scale at which the vector fields ω in W may vary spatially. As we shall see
below, this kernel will allow us to control the metric on the space of currents and hence the
measure of the distance between shapes.

In contrast to the usual space of square integrable vector fields (L2), the RKHS of vector
fields W have two important properties:

• W is the closed span of the vector fields of the form ω(x) = KW (x, y)β for any fixed
points y and vectors β (i.e. momentum (y, β)), meaning that any vector field ω can
be written as an infinite linear combination of the basis elements KW (x, y)β

• W is provided with an inner product which is defined on these basis vectors by〈
KW (., x)α,KW (., y)β

〉
W

= αtKW (x, y)β (1.2.3)

If we denote ω the vector field KW (., y)β in Eq. (1.2.3), this equation can be written as:〈
KW (., x)α, ω

〉
W

= αtω(x) . (1.2.4)

Since the set of vector field of the formKW (., y)β is dense in the RKHSW , this equation still
holds for any vector fields ω inW (see Appendix B for details). It is called the “reproducing
property”.

The space of currents

The space of currents, denoted W ∗, is the space of the continuous linear mappings from
W to R. Equations (1.2.1) and (1.2.2) show two examples of such mappings, thus making
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any set of curves or surfaces a particular cases of currents. This means that shapes can
be embedded into the space of currents. Each test space W defines a different embedding
space W ∗. As we shall see in the sequel, the parameter of the kernel λW will allow us to
tune the metric properties of the embedding space of currents.

As a space of mappings, the space of currents is a vector space. Let T and T ′ be two
surfaces (or two curves). The flux through the sum of the two currents T+T ′ is equal to the
sum of the flux through each surface: (T + T ′)(ω) = T (ω) + T ′(ω). The sum in the space
of currents is equivalent to the union of geometrical data. The opposite surface −T in the
space of current is the same surface but with opposite orientation (since the flux through
the surface has then the opposite sign). A surface T may be weighted by a coefficient λ:
((λT )(ω) = λ(T (ω)). This allows us to give a relative weight to different pieces of surfaces,
or to different surfaces within a set of surfaces.

Representation of currents in terms of vector fields

As a consequence of this definition, the Riesz representation theorem ensures that there
is a linear mapping between the space of vector fields W and its dual space W ∗, the space
of currents (see Appendix B and Section 1.5 for more details). We denote this mapping
LW : W −→W ∗. It is defined by:

LW (ω)(ω′) = 〈ω, ω′〉W (1.2.5)

for all vector fields (ω, ω′) ∈W (for ω ∈W , LW (ω) is a current, i.e. a mapping from W to
R). We call LW (ω) the dual representation of the vector field ω.

The dual representation of the basis vectors KW (x, .)α are called the Dirac delta cur-
rents: δαx = LW (KW (x, .)α) (where the couple (x, α) is called a momentum). This shows
that KW is the Green function of the differential operator1 LW . Combining Eq. (1.2.4)
and Eq. (1.2.5), we get:

δαx (ω) =
〈
KW (x, .)α, ω

〉
W

= αtω(x) . (1.2.6)

Decomposition of sub-manifolds as discrete currents

The previous equation shows that δαx (ω) = αtω(x), which is the term within integrals
in Eq. (1.2.1) and Eq. (1.2.2). A Dirac delta current may be interpreted therefore as an
infinitesimal segment (or normal) α entirely concentrated at point x. Since W is a closed
span of the vector fields KW (x, .)α, the space of currents is a closed span of the Dirac
delta currents δαx . This means that any currents may be decomposed into an infinite set of
Dirac currents, like any piecewise smooth curves or surfaces is decomposed into the set of
its tangents or normals.

In the discrete setting, the tangents of polygonal lines or normals of meshes are constant
over the segments or the mesh cells. Therefore, one can approximate the set of tangents
(resp. normals of a given segment (resp. mesh cell) by a single Dirac delta current δαx

1An equivalent construction would consist of fixing a differential operator LW and to denote KW its
Green function. However, we prefer here to have a closed form for the kernel instead of the differential
operator. See Appendix B for more details.
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where the momenta (x, α) is located at the center of mass the segment (resp. mesh cell)
and the magnitude of the coefficient α encodes the length of the segment (resp. the are of
the mesh cell). As a consequence the whole set of polygonal lines (resp. the meshes) may
be approximated by a finite sum:

T ∼
∑
k

δαkxk . (1.2.7)

Here we see again that the addition in the space of currents plays the role of the union of
shapes: a surface mesh is seen as the union of its cells, each cells being approximated by a
single Dirac delta current. We will prove in Section 1.3 that this approximation converges in
the space of currents when the sampling of the discrete shapes becomes finer and finer. This
shows that this modeling of curves and surfaces is weakly sensitive to the sampling of the
geometrical objects. Moreover, the description in terms of the collection of momenta (i.e.
oriented points) accounts only for local properties of the shapes. It makes the framework
based on currents fully robust to topology changes or the change of connectivity between
structures (like curves interruption or reconnection for instance). See illustrative example
in Fig. 1.2.

The dual representation of this approximation in terms of vector field is given by (ap-
plying the linear map L−1

W to Eq. (1.2.7) and combining with Eq. (1.2.5)):

L−1
W (T )(x) ∼

∑
k

KW (x, xk)αk,

for any point x ∈ R3. This representation in terms of vector field is simply given by the
convolution of every momentum (x, α) by the smoothing kernel KW .

Thanks to this approximation, the integrals in Eq. (1.2.1) and Eq. (1.2.2) are replaced
by their Riemann sums:

S(ω) =

∫
S

ω(x)tn(x)dλ(x) ∼
∑
k

ω(xk)tnk

L(ω) =

∫
L

ω(x)tτ(x)dλ(x) ∼
∑
k

ω(xk)tτk

Figure 1.2: Both continuous and discrete shapes are handled
in the same space of currents. In the continuous form, smooth
curves are decomposed into the infinite set of their tangents.
If curves are sampled, they can be approximated by a finite
set of oriented points (called momenta) encoding each segment.
The integral of a vector field ω on the smooth curve (i.e. a
continuous current) is given as L(ω) =

∫
L
ω(x)tτ(x)dx. For

the discrete approximation, this integral becomes a finite sum
L(ω) =

∑
k ω(xk)tτk. The discrete current converges to the

continuous one as the sampling of the curves becomes finer and
finer.
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1.2.2 Correspondence-less distance between curves or surfaces

In this section, we introduce the metric on the space of currents. It will allow us to define
a measure of the dissimilarity between two shapes without assuming point correspondences
between structures.

The test space of vector field W is provided with an inner-product which satisfies
Eq. (1.2.4). We can carry this inner-product to the space of current W ∗ via the lin-
ear map LW . The inner-product between two currents T and T ′ is then given as:
〈T, T ′〉W∗ =

〈
L−1
W (T ),L−1

W (T ′)
〉
W

where L−1
W (T ) denotes the vector field associated to T (if

T is a discrete curve, L−1
W (T ) is the convolution of its tangents by the kernel). This makes

LW an isometric map between the space of vector field W and the space of currents W ∗.
In W , the basis elements are the vector fields of the form KW (., x)α. In W ∗, the cor-

responding basis elements are the Dirac delta currents: δαx = L−1
W (KW (., x)α). Therefore,

the this inner-product between Dirac delta currents is given (thanks to Eq. (1.2.3)):〈
δαx , δ

β
y

〉
W∗

= 〈K(., x)α,K(., y)β〉W
= αtKW (x, y)β .

(1.2.8)

By linearity, the inner product between two finite sets of Dirac currents T =
∑
i δ
αi
xi and

T ′ =
∑
j δ

βj
yj (which may model two discrete surfaces or two discrete curves) is given by:

〈T, T ′〉W∗ =
∑
i

∑
j

αtiK
W (xi, yj)βj . (1.2.9)

This equation gives explicit and easily tractable formula to compute the inner product
between two discrete shapes. For continuous curves or surfaces, the sums in Eq. (1.2.9) are
replaced by integrals.

We define now the distance between two shapes modeled as currents as the norm of
their difference:

d(T, T ′) = ‖T − T ′‖W∗ =
√
〈T − T ′, T − T ′〉W∗ . (1.2.10)

Combining with the definition of the map LW in Eq. (1.2.5), we get:

‖T − T ′‖2W∗ = (T − T ′)(L−1
W (T − T ′)). (1.2.11)

In this equation, T − T ′ is a current, namely an object which integrates vector fields,
which is applied here to the vector field L−1

W (T − T ′). Let us denote this vector field
∆(x) = L−1

W (T − T ′)(x). If T and T ′ are two curves whose tangents are denoted τ(x) and
τ ′(x) respectively, then:

‖T − T ′‖2W∗ =

∫
T

∆(x)tτ(x)dx−
∫
T ′

∆(x)tτ ′(x)dx, (1.2.12)

as illustrated in Fig. 1.3. If T and T ′ are discretized as finite sets of momenta ((xp, αp) and
(yq, βq) respectively), then this squared norm becomes:

‖T − T ′‖2W∗ =
∑
p

∆(xp)
tαp −

∑
q

∆(yq)
tβq. (1.2.13)
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Figure 1.3: Distance between two curves L
and L′. One builds the current L− L′ by in-
verting the orientation of L′ and building the
union of the tangents of both curves. The as-
sociated vector field ∆(x) = L−1

W (L − L′)(x)

is shown in red (i.e. the convolution of all the
momenta of the L and −L′). The distance be-
tween both curves is given by the integration
of this vector field along the curve L and the
curve −L′: ‖L− L′‖2 =

∫
L

∆(x)tτ(x)dx −∫
L′

∆(x)tτ ′(x)dx. If the polygonal lines are
approximated with a finite number of mo-
menta, these integrals become finite sums over
the segments of the lines.

The dense vector field ∆(x) is the vector field associated to the current T − T ′. In
case T and T ′ are given by the set of momenta (xp, αp)p=1...N and (yq, βq)q=1...N ′ , then
the current −T ′ is given by the momenta (yq,−βq) (i.e. the orientation of the curve or
the surface is changed) and eventually the current T − T ′ is given by the union of all the
momenta: {(xp, αp)p=1...N , (yq,−βq)q=1...N ′}. Its associated vector field is given by the
convolution of these momenta by the kernel KW , namely:

∆(x) = L−1
W (T − T ′)(x) =

N∑
p=1

KW (x, xp)αp −
N ′∑
q=1

KW (x, yq)βq (1.2.14)

Combining this last equation with Eq. (1.2.13) leads to:

‖T − T ′‖2W∗ =
N∑
p=1

N∑
q=1

αtpK
W (xp, xq)αq−2

N∑
p=1

N ′∑
q=1

αtpK
W (xp, yq)βq+

N ′∑
p=1

N ′∑
q=1

βtpK
W (yp, yq)βq

(1.2.15)
This gives a closed form of the distance between two discrete curves or two discrete surfaces,
which implies the kernel and every momenta representing the segments or the mesh cells of
the shapes. Using Eq. (1.2.9), this last equation can be written as:

‖T − T ′‖2W∗ = ‖T‖2W∗ − 2 〈T, T ′〉W∗ + ‖T ′‖2W∗ (1.2.16)

which is the usual formula for computing the norm form inner-products.
We could have derived the closed form for the norm in Eq. (1.2.15) using only the

usual identity in Eq. (1.2.16) and Eq. (1.2.9). However, we prefer to compute the distance
‖T − T ′‖W∗ by introducing the vector field ∆(x), since this vector field has a geometrical
interpretation. Indeed, we will show in Section 1.3 that this vector field is the one which
achieves the supremum:

sup
‖ω‖W 6=0

|T (ω)− T ′(ω)| / ‖ω‖W . (1.2.17)
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This means that if T and T ′ are two curves, the vector field ∆(x) = L−1
W (T − T ′)(x) is

the one which maximizes the difference between the integral T (ω) =
∫
T
ω(x)tτ(x)dx and

the integral T ′(ω) =
∫
T ′
ω(x)tτ ′(x)dx over all the possible vector fields ω in the test space

W . In some sense, this vector field is the one in W which best separates the two curves.
Of course, if one changes the test space W , one changes this maximizing vector field and
hence the measured distance between the curves. As illustrated in Fig 1.4, the highest
the spatial frequencies of the vector fields in W , the more differences between both curves
the maximizing vector field captures, the further the curves in the space of currents. The
bandwidth of the vector fields in W is determined by the kernel (by the standard deviation
λW for Gaussian kernel). This parameter can be tuned to set of “scale of noise” of shapes
under which the geometrical details of shapes will be neglected, as illustrated in Fig. 1.5.
Fig. 3.15 and 3.16 in Chapter 3 will also illustrate of the impact of the kernel on the distance
between shapes.

λW = 5 λW = 10 λW = 20

Figure 1.4: Impact of the kernel on the distance between two curves L and L′ in blue. As in
Fig. 1.3, the vector field associated to the current L−L′ is shown in red. This is the vector
in the test space W which best separates the two curves. The result is shown for 3 different
W : RKHS with Gaussian kernel and standard deviation: λW = 5, 10 and 20. For small λW ,
the vector field can vary fast enough, so that it can follows almost every small details of the
curves and therefore almost perfectly interpolates between the directions of the curves: the

two curves are almost orthogonal in the space of currents (arccos

(
|〈L1,L2〉W∗ |
‖L1‖W∗‖L2‖W∗

)
= 85◦

for λW = 5). For large λW , the highest spatial frequencies are excluded fromW : the vector
field cannot adapt to the small-scale variations of the curves: the two curves become more

and more aligned in the space of currents (arccos

(
|〈L1,L2〉W∗ |
‖L1‖W∗‖L2‖W∗

)
= 65◦ for λW = 10 and

38◦ for λW = 20).
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Figure 1.5: The choice of the kernel enables to adjust the metric on the space of currents.
In particular, the rate of decay of the kernel (λW ) determines the scale under which shape
variations are considered as noise. On the left hand side, the bump is smoothed by the
kernel and both lines are considered similar as currents. On the right-hand side the metric
detects the bump as a shape dissimilarity. More precise discussion about the ability of the
metric on currents to capture shape dissimilarity can be found in Section 3.5.2

1.2.3 Diffeomorphic deformations of currents

To include registration into the analysis of variability of anatomical structures, we need
to define the deformation of currents in a way which is compatible with the usual geometric
deformation of shapes.

Let φ be a diffeomorphism (a smooth deformation of the underlying 3D space, with
smooth inverse) and S a surface. As a surface, S may be deformed by φ into φ(S) (the
geometrical transportation of the points of S which still draw a surface). If we model
S as a current, we define the push-forward current φ∗S such that the flux of any vector
field ω through φ∗S is equal to the flux of ω through the transported surface φ(S). A
change of variable within integrals of Eq. (1.2.1) and Eq. (1.2.2) leads to the definition:
φ∗S(ω) = S(φ∗ω) where the pull-back vector field φ∗ω is equal to |dxφ| (dxφ)−1ω(φ(x))

for surfaces and dxφtω(φ(x)) for curves (dxφ denotes the Jacobian matrix of φ and |dxφ|
its determinant). This action replaces for curves and surfaces the usual action on images:
(φ∗I)(x) = I(φ−1(x)). This is here slightly more complex since we do not transport points
but tangents or normals (differential 1 and 2-forms, as will be explained in Section 1.3).

In practice, the push-forward action on the basis vectors is simply given by:

φ∗δ
α
x = δ

dxφ(α)
φ(x) , (1.2.18)

in case α is a tangent of a curve. And

φ∗δ
u×v
x = δ

dxφ(u)×dxφ(v)
φ(x) , (1.2.19)

in case u× v is the normal of a surface. One notices that by definition of the cross product,
for any vector w, we have:

(dxφ(u)× dxφ(v))tw = det(dxφ(u), dxφ(v), w)

= |dxφ|det(u, v, dxφ
−1(w))

= |dxφ| (u× v)tdxφ
−1(w) =

(
|dxφ| dxφ−t(u× v)

)t
w,

(1.2.20)

where A−t stands for (A−1)t. Therefore, we have: dxφ(u) × dxφ(v) = |dxφ| dxφ−t(u × v).
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And the deformation of an infinitesimal normal α is given by:

φ∗δ
α
x = δ

|dxφ|dxφ−tα
φ(x) . (1.2.21)

1.2.4 Currents: a solution to the (point)-correspondence issue

As emphasized in the introduction, this framework of currents has been chosen to mea-
sure dissimilarities between anatomical data. The anatomical structures extracted from
MRI consist mostly of set of points which draw polygonal lines or surface meshes, as shown
in Figure 1.6. These data may be seen as a hierarchical structure: points build curves or
surfaces, individual curves or surfaces are gathered into clusters, a set of cluster builds com-
plex multi-objects structures. At a certain level, these structures are labeled as anatomical
structures, which have been proved to be stable features across the population. In the con-
text of brain imaging for instance, some sulcal lines such as the Sylvian fissure can be found
in almost every subject, whereas the individual points of the delineated Sylvian fissure are
determined by the segmentation process and are not a stable anatomical feature.

It is crucial to account for this anatomical knowledge when comparing two sets of
anatomical structure: the distance between these two sets should put into correspondence
the clusters of points only at the anatomically relevant level. Comparing the data at a higher
level leads to a less constrained distance, which will be less able to capture fine geometrical
differences. It will also compare parts of the data which have different anatomical roles.
Comparing the data at a lower level introduces correspondence without any anatomical
reason. Such arbitrary constraints introduce bias in the analysis of the variability.

In the example of the fiber tracts of Fig. 1.6 (which will be explained with more details
in Chapter 7), individual fibers extracted from diffusion images have never been shown to
be a representation of some biological structures and have never been shown to be a stable
feature across subjects. By contrast, clusters of these fibers draw fiber tracts which are
considered as a representation, up to a certain precision, of the underlying white matter
fiber bundles which connect two different functional areas of the cortex. In this example,
we must compare pairs of fiber tracts and not pair of individual fibers.

The structure of vector space of the currents enables precisely to adjust the level of
correspondence according to the anatomical knowledge. To compare the anatomical data
of two subjects, one decomposes the data of each subject into the set of every tangent or
normal. Let T =

∑
i δ
αi
xi and U =

∑
j δ

βj
yj be the set of such oriented points for each subject.

Then, we divide this set into clusters Ck according to the anatomical labels. Note that the
number of points in a cluster may be very different for both subjects. By contrast, every
subject is supposed to share the same anatomical description and, in particular, to have
the same number of clusters. A cluster may be reduced to one single point if this point
is considered as anatomically relevant, such as the anterior or the posterior commissure of
the brain for instance. Then, a metric between the two data sets which account for the
anatomical prior without introducing arbitrary correspondences can be written as:

‖T − U‖2W∗ =
∑
Ck

λk

∥∥∥∥∥∥
(∑
i∈Ck

δαixi

)
−

∑
j∈Ck

δβjyj

∥∥∥∥∥∥
2

W∗

. (1.2.22)
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The two extreme cases are: (1) in absence of any anatomical knowledge, we com-
pare the whole data-set as a single cluster

(
‖T − U‖W∗ =

∥∥∥∑i δ
αi
xi −

∑βj
yj

∥∥∥
W∗

)
and (2)

each point has an anatomical label and we can assume correspondence between every
pair of points (which requires that all the subjects have the same number of points)(
‖T − U‖2W∗ =

∑
k λk

∥∥δαixi − δβiyi ∥∥2

W∗

)
. The parameters λk enable to weight one anatomi-

cal structure with respect to the others. They can be used to normalize the total length or
area of each anatomical structure for instance.

We remark that each cluster is considered as a global feature: a collection of infinitesimal
tangents or normals. The topology of the shape is not taken into account. This makes the
framework robust to curve interruption or reconnection for instance, a key feature for the
comparison of fiber bundles as emphasized in Chapter 7. The distance on currents is also
blind to the number of connected components of a mesh for instance.

points points points
sulcal lines meshes individual fibers
set of sulci set of meshes fiber bundles

– – all fibers

Figure 1.6: Three examples of anatomical data-sets. Left: a set of sulcal lines. Each line is
labeled (Sylvian fissure, central sulcus, etc.) and is supposed to be present in every subject
in a normal population. Middle: set of 5 internal structures of the brain for each hemi-
sphere. These structures are labeled (hippocampus, amygdala, etc..), whereas no point on
this surface has been proved to play a particular anatomical role. Right: 5 white matter
fiber bundles. Each bundle (set of thousands of curves) is labeled (corpus callosum, arcuate
fasciculi, etc.) but not individual curves, whose number within a bundle may vary a lot
across subjects. Only labeled structures are stable features across the population. Each
of these structures must be compared as a global feature, without introducing arbitrary
correspondence at a lower level (such as the individual curve level or point level, for in-
stance). The framework based on currents allows us precisely to adjust the right level of
correspondence according to the anatomical knowledge.
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1.3 The mathematical construction of currents

In this section, we give the rigorous definitions of the concepts introduced in the previous
one, prove the claimed properties and discuss the relevance of this model for anatomical
data.

1.3.1 A unified model of geometrical data

The framework of currents has been presented in [Vaillant 2005] for modeling surfaces
and in [Glaunès 2008] for modeling curves. A global framework for curves and surfaces
has been introduced in [Glaunès 2005], along with objects called “measures” which model
unstructured point-sets. In this thesis, we adopt a slightly different point of view and
present a unified framework for modeling unstructured point sets, curves, surfaces, volumes
and more generally any sub-manifold of dimension m in Rd. This framework allows us also
to account for possible scalar attributes on the geometrical structures. This feature could
be used for image matching purposes for instance.

The key tool of the theory is the differential m-forms (see Appendix A). These objects
generalize the concept of vector field (to a field of normals for instance, since the normal
is the cross-product between two vectors). Therefore, they enable to embed in the same
framework all kind of geometrical data.

The general definition of currents is given as a continuous linear map from a space of
differential m-forms to R, namely a linear form on differentiable m-forms. The parameter
m determines the dimension of the sub-manifold which can be seen as a current. If m = 0

(differential 0-forms are scalar fields), a current is simply a distribution of Schwartz. For
m = 1 and m = 2 we retrieve the case of curves and surfaces introduced in the previous
section.

Definition 1.2 (currents). The space of m-currents is the dual space of the space of dif-
ferential m-forms C0(Rd, (ΛmRd)∗) (as in Definition A.6). The topological dual is meant in
the same sense as for the Schwartz distributions [Schwartz 1966].

Therefore, a m-current T maps every m-differential form ω to a real T (ω) such that:

T (ω) ≤ CT ‖ω‖∞ , (1.3.1)

for a fixed constant CT (‖.‖∞ denotes the supremum norm on C0(Rd, (ΛmRd)∗) as in Def-
inition A.6).

As a space of linear mappings, the space of m-currents is a vector space. For all currents
T and T ′ and real λ, the map (T +λT ′)(ω) = T (ω)+λT ′(ω) defines a m-current. Moreover,
the space of current is provided with the following operator norm:

Definition 1.3 (mass-norm on currents). Let T be a m-current. The mass-norm of T is
defined as the operator norm:

M(T ) = sup
‖ω‖∞≤1

|T (ω)| . (1.3.2)
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The main interest of currents is that sub-manifolds in Rd can be seen as currents. The
following proposition shows that this is achieved via the integration of differential m-forms
on sub-manifolds as introduced in Appendix A. In this proposition, we account for a possible
image I which is drawn on the sub-manifold.

Proposition 1.4. Let T be an oriented rectifiable sub-manifold of dimension m in Rd and
I a scalar function on T , such that

∫
T
|I(x)| dλ(x) <∞.

Then, for any m-differential form ω in C0(Rd, (ΛmRd)∗) the mapping:

TI(ω) =

∫
T

Iω, (1.3.3)

defines a m-current (the integral having the sense given in Definition A.7).

Proof. The mapping TI defined in Eq. (1.3.3) is obviously linear with respect to ω. To
make TI a current, we must verify that this mapping is continuous. Using the notations of
Definition A.7, we have:

|TI(ω)| ≤
∫
T

|I(x)|
∣∣∣∣ω(x)

(
u1(x) ∧ . . . ∧ um(x)

|u1(x) ∧ . . . ∧ um(x)|

)∣∣∣∣ dλ(x)

≤ sup
x∈Rd

sup
|v1∧...∧vm|≤1

|ω(x)(v1 ∧ . . . ∧ vm)|
∫
T

|I(x)| dλ(x)

≤ ‖ω‖∞ λ(TI),

(1.3.4)

where λ(TI) =
∫
T
|I(x)| dλ(x) is the measure of the colored manifold T (if I = 1, λ(T ) is

the length, area or volume of T according to the dimension m). This proves the continuity
of the mapping. �

Remark 1.5. In Proposition 1.4, the definition of the current T depends on the orientation
of the sub-manifold. If we change the orientation of the sub-manifold T , then the integral
has the opposite sign. Therefore the sub-manifold with the opposite orientation corresponds
to the current −T . In other words, the sign of a current encodes an orientation. A sub-
manifold vanishes in the space of currents if it is added to itself with opposite orientation.
�

Now, we can show that the mass-norm introduced in Definition 1.3 is the generalization
of the volume of a m-dimensional sub-manifold.

Proposition 1.6. Let T be a bounded oriented rectifiable sub-manifold of dimension m in
Rd and I a bounded non-negative scalar function on T . Proposition 1.4 makes the couple
(T, I) a current denoted TI . Then,

M(TI) = λ(TI), (1.3.5)

where M(TI) is the mass-norm of the current TI (see Definition 1.3) and λ(TI) =∫
T
I(x)dλ(x) the Lebesgue measure of the colored sub-manifold.

Proof. Equation (1.3.4) shows precisely that for all ω ∈ C0(Rd, (ΛmRd)∗):

|TI(ω)| ≤ ‖ω‖∞ λ(TI) (1.3.6)
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This shows that M(TI) ≤ λ(TI). To show the equality, we construct a differential m-form
ω which achieves the supremum in Equation (1.3.4).

Let x ∈ T and (u1(x), . . . , um(x)) a positively oriented orthonormal basis of the tangent
space of T at point x, defined almost everywhere. Then, we define the m-form ω(x) such
that ω(x)(u1(x)∧. . .∧um(x)) = 1 and ω(x)(η) = 0 in every direction η orthogonal to u1(x)∧
. . .∧ um(x) in ΛmRd. Such a ω is build such that TI(ω) =

∫
T
I(x)dλ(x). This collection of

m-forms ω(x) (for x ∈ T ) is therefore a good candidate to achieve the supremum. However,
we still need to prove that it can be extended to continuous differential m-form defined on
the whole space Rd.

Since the sub-manifold is rectifiable, we can choose the orthonormal basis vectors ui(x)

on each tangent space such that the map x → ui(x) is continuous almost everywhere
(we recall that the m-mutivector u1(x)∧...∧um(x)

|u1(x)∧...∧um(x)| is invariant under a change of positively
oriented basis in the tangent space of T at point x). This makes the mapping x → ω(x)

continuous almost everywhere on T . If T is continuously differentiable, then x → ω(x) is
continuous on T and it can be extended to a continuous differential m-form from Rd to
ΛmRd which tends to zero at infinity. This constructed ω achieves the supremum. If T
is only piecewise smooth, x → ω is piecewise continuous. It can be approximated by a
continuous differential m-form at any precision. This leads to the same supremum. �

Remark 1.7. In this proof, we supposed that the bounded scalar function I is non-negative.
This is not a strong limitation, since we can always shift this bounded function so that it
is non-negative. In any case we have M(TI) ≤ λ(TI). If I is the linear, surface or volume
mass density of the sub-manifold T , then M(TI) is the total mass of the manifold. This
function I can also be used to give a weight to different parts of the shape T , for comparison
purpose for instance. I can be also a gray-level image drawn on the manifold.

If I = 1 and if T is bounded (i.e. λ(T ) <∞), then

M(T ) = λ(T ). (1.3.7)

In this case the mass of T is equal to the length, the area or the volume of the sub-manifold.
If the sub-manifold is of dimension 0, the mass of T equals the number of points of T . �

1.3.2 Discretization in the space of currents

In this section, we show how polygonal lines, surface or volume meshes can be discretized
in the space of currents: each face of the mesh can be approximated by a single Dirac delta
current which represents an infinitesimal tangent or normal. Then, the approximation
converges when the sampling of the meshes tend to zero, namely when the discrete mesh
converges to a continuous curve or surface.

Before introducing the Dirac delta currents, we define general m-meshes in 3D. A 0-
mesh is a finite set of points, a 1-mesh is set of segments, a 2-mesh is a set of triangles and
a 3-mesh is a set of tetrahedrons.

Definition 1.8 (m-mesh). We define an oriented m-mesh in R3 as a finite collection of
oriented m-dimensional simplexes (0 ≤ m ≤ 3). Each simplex is called the face or the cell
of the m-mesh. It is denoted fi for i = 1, . . . , N and N the total number of mesh cells. For
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each cell i, we denote vi1, . . . , vim+1 its vertices and ci = 1
m+1

∑m+1
k=1 vik its center of mass.

We define also uik = (vik+1 − vi0)/(m!)1/m, m vectors parallel to the edges of the simplex i
(for k = 1 . . .m). We suppose that the order of the vertices have been chosen so that the
basis (uik)k=1...m has the same orientation as the mesh cell. Therefore, the m-multivector
(see Appendix A) ui1∧ . . .∧uim has the same sign as the orientation of the mesh cell and its
norm equals the m-volume of the mesh cell (here m-volume denotes length, area or volume
according to the dimension m).

In this definition, we limit the mesh cells to be simplexes, so that surface mesh cells
must be triangles and volume mesh cells tetrahedrons. However, it is possible to extend this
definition of arbitrary polyhedrons. In this case, we must define carefully a basis of vector
space spanned by each polyhedron so that the m-multivector has the same orientation as
the mesh cell and whose norm is equal to the m-volume of the cell. We also limit the
definition of m-mesh to the 3D case. The definition could also be extended for arbitrary
dimension, like the 4D dimension for modeling moving surfaces for instance.

Definition 1.9 (Dirac delta current). We denote by δu1∧...∧um
x the linear form defined by:

∀ω ∈ C0(Rd, (ΛmRd)∗), δu1∧...∧um
x (ω) = ω(x)(u1 ∧ . . . ∧ um) . (1.3.8)

This mapping is obviously continuous and defines therefore a m-current.

Remark 1.10 (computing with Dirac delta currents). We notice that this definition leads
to the following rule:

aδαx + δβx = δaαx + δβx = δaα+β
x , (1.3.9)

for any scalar a, m-multivectors α, β and point x ∈ Rd. As a consequence, we will write
linear combination of Dirac delta currents as

∑
i δ
αi
xi where the upper-scripts include the

weighting coefficients. In such sums, each point xi are supposed to be distinct. �

According to Proposition 1.4, any bounded m-mesh with scalar attributes I is a current.
In this setting, the mesh is considered as a piecewise C1 sub-manifold. However, from a
computational point of view, a mesh is a discrete structure with a finite number of faces.
In the following proposition, we show how a m-mesh can be approximated by a finite set
of Dirac delta currents. The idea is simply to replace each cell of the mesh by a Dirac
delta current: the entire m-volume of the cell is concentrated at its center of mass. This
proposition shows also that currents can handle continuous and discrete structures in the
same framework.

Proposition 1.11. Let T be a m-mesh in the sense of Definition 1.8 and I a bounded
scalar function defined on T . Thanks to Proposition 1.4, TI is a current.

We assume that the differential m-forms ω ∈ C0(Rd, (ΛmRd)∗) are C1 and verify
‖∇xω‖∞ ≤ C∞ ‖ω‖∞ for a fixed constant C∞.

With the notations of Definition 1.8, let Ii = 1
Vi

∫
fi
I(x)dλ(x) be the mean intensity of

I over each face fi of T , where Vi =
∣∣ui1 ∧ . . . ∧ uim∣∣ is the m-volume of the face fi. We

define the current
T̃Ĩ =

∑
i

Iiδ
ui1∧...∧u

i
m

ci . (1.3.10)
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Then, the dissimilarity between T and T̃ in the space of currents is such that:

M(TI − T̃Ĩ) ≤ C∞ ‖I‖∞M(T ) max
i

diam(fi), (1.3.11)

where diam(fi) denotes the diameter of the face fi.
Therefore, when the sampling of the mesh becomes finer (maxi diam(fi) −→ 0), the

current T̃Ĩ converges to TI .

Proof. Let ω ∈ C0(Rd, (ΛmRd)∗). By definition of the Dirac delta currents, we have:

T̃Ĩ(ω) =
∑
i

Iiω(ci)(u
i
1 ∧ . . . ∧ uim) =

∑
i

∫
fi

I(x)ω(ci)

(
ui1 ∧ . . . ∧ uim∣∣ui1 ∧ . . . ∧ uim∣∣

)
dλ(x) .

Thanks to Eq. (1.3.3), we have for TI :

TI(ω) =
∑
fi

∫
fi

ω(x)

(
u1(x) ∧ . . . ∧ um(x)

|u1(x) ∧ . . . ∧ um(x)|

)
I(x)dλ(x),

where u1(x), . . . um(x) denotes a positively oriented basis of the tangent plane of T at point
x, this integral being independent of the choice of the positively oriented basis. One notices
now that every point on the flat face fi shares the same tangent space, so that one can
choose the same basis ui1, . . . , uim at every point on the face. We have therefore:

∣∣∣TI(ω)− T̃Ĩ(ω)
∣∣∣ ≤∑

i

∫
fi

|I(x)|

∣∣∣∣∣ω(x)

(
ui1 ∧ . . . ∧ uim∣∣ui1 ∧ . . . ∧ uim∣∣

)
− ω(ci)

(
ui1 ∧ . . . ∧ uim∣∣ui1 ∧ . . . ∧ uim∣∣

)∣∣∣∣∣
≤ ‖I‖∞

∑
i

∫
fi

sup
|v1∧...∧vm|=1

|(ω(x)− ω(ci))(v1 ∧ . . . ∧ vm)|︸ ︷︷ ︸
|ω(x)−ω(ci)|(ΛmRd)∗

dλ(x)

≤ ‖I‖∞ ‖∇xω‖∞
∑
i

∫
fi

|x− ci| dλ(x)

≤ ‖I‖∞ C∞ ‖ω‖∞ (max
i

diam(fi))

∫
T

dλ(x) .

(1.3.12)

According to Proposition 1.6, λ(T ) = M(T ). This leads to:

sup
‖ω‖∞≤1

∣∣∣TI(ω)− T̃Ĩ(ω)
∣∣∣ ≤ C∞M(T ) ‖I‖∞max

i
diam(fi).

�

The following proposition shows that the discretization of a mesh in the space of currents
preserves the mass-norm of the mesh.

Proposition 1.12. Let T be a current of the form:

T =
N∑
i=1

δηixi , (1.3.13)

for N distinct points xi and N m-multivectors ηi.
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Then the mass-norm of T is given as:

M(T ) =
N∑
i=1

|ηi| . (1.3.14)

Proof. For any m-differential form ω, we have:

T (ω) =
N∑
i=1

ω(xi)(ηi) . (1.3.15)

Therefore, we have that T (ω) ≤
N∑
i=1

sup
|u|≤1

|ω(xi)(u)| |ηi| ≤ ‖ω‖∞
N∑
i=1

|ηi|. This implies that

M(T ) ≤
∑N
i=1 |ηi|.

To show the equality, we build a particular differential m-form ω which achieves the
supremum in the previous equation (similarly as in the proof of Proposition 1.6). We
choose a m-form ω(xi) for every point xi so that ω(xi)(ηi/ |ηi|) = 1 in the direction of
ηi and ω(xi)(η

⊥
i ) = 0 in the directions η⊥i orthogonal to ηi in ΛmRd. Since, every points

are distinct, we can interpolate between the points xi so that the interpolated m-form is
continuous and tends to 0 at infinity. For such a ω, T (ω) =

∑N
i=1 |ηi|. �

Corollary 1.13. Let T be a m-mesh and I a non-negative bounded map on T . Let
T̃I =

∑
fi
Iiδ

ui1∧...∧u
i
m

ci be the discrete current which approximate TI in the sense of Propo-
sition 1.11. Then TI and T̃I have the same mass-norm:

M(TI) = M(T̃I) . (1.3.16)

Proof. By application of Proposition 1.6, the mass-norm of TI is equal to:

M(TI) =

∫
T

I(x)dλ(x) =
∑
fi

∫
fi

I(x)dλ(x) =
∑
fi

ViIi =
∑
fi

Ii
∣∣ui1 ∧ . . . ∧ uim∣∣ . (1.3.17)

This last expression is precisely the mass-norm of T̃I by application of Proposition 1.12. �

Remark 1.14 (Geometry and attributes: ambiguities?). This discretization of colored cur-
rents in terms of Dirac delta currents may lead to some ambiguities. Indeed, let Iiδ

uim∧...∧u
i
m

xi

be an element of the discretization of a m-mesh. Due to the properties of the Dirac delta
currents (see Eq. (1.3.9)), for any scalar a, we have:

Iiδ
uim∧...∧u

i
m

xi =
Ii
a
δ
auim∧...∧u

i
m

xi . (1.3.18)

This means that a change of attribute (Ii becomes Ii/a) may balance a scaling of the
mesh cell. In other words, the discretization of two meshes with different size of mesh
cells could be undistinguishable if the change of size is overcome by a change of attributes.
However, such meshes, seen as continuous currents, are distinct. This is a bad effect of the
discretization.

In this thesis, we will not use scalar attributes. As a consequence, the magnitude of the
momenta of the discrete approximation of a m-mesh encodes the area of the mesh cells.

The possible ambiguity between geometry and scalar attributes may be a problem for
using currents to match grey-level images. During registration of discretized images with
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currents, the algorithm may tend to change the size of the voxel to accommodate to the
change of intensity. Although we believe that image registration can be performed in this
framework, one must design specific solution to this problem. A re-meshing of the image
during registration could be investigated, for instance. �

1.3.3 Action of the group of diffeomorphism on the space of cur-
rents

In this section, we define the deformation of a general current T so that, when T is
the current associated to a sub-manifold, the deformation of the current (denoted φ∗T )
corresponds to the deformed sub-manifold φ(T ).

If T is an oriented rectifiable sub-manifold of dimensionm in Rd and φ is diffeomorphism
of Rd, then φ(T ) remains an oriented rectifiable sub-manifold (with the same regularity as
T ). If I is a scalar map on the sub-manifold T , then I ◦φ−1 is a map on φ(T ): the attribute
of φ(T ) at point φ(x) is the same as the attribute of T at point x: attributes are not affected
by the deformation. Therefore, Proposition 1.4 makes the couple (φ(T ), I ◦ φ−1) a colored
current. We denote this current φ∗TI◦φ−1 . This current maps every differential m-forms
ω ∈ C0(Rd, (ΛmRd)) to φ∗TI◦φ−1(ω) =

∫
φ(T )

(I ◦ φ−1)ω. We can now apply the change of
variable formula as in Eq. (A.3.8) to this integral. This gives:

φ∗TI◦φ−1(ω) =

∫
φ(T )

I ◦ φ−1ω =

∫
T

Iφ∗ω = TI(φ
∗ω) , (1.3.19)

where TI in the last term is the colored current associated to the sub-manifold T and the
map I. φ∗ denotes the pullback action on differential m-forms as in Definition A.11. The
equality: φ∗TI◦φ−1(ω) = TI(φ

∗ω) still makes sense even if TI is not the current associ-
ated to a sub-manifold but a more general current. This allows us to define the action a
diffeomorphism φ on any current T as follows:

Definition 1.15 (push-forward action on currents). Let T be a m-current in Rd and φ

a diffeomorphism of Rd such that sup
x∈Rd

|dxφ| < ∞. The push-forward action of φ on T is

defined by:
φ∗T (ω) = T (φ∗ω) (1.3.20)

for all differential m-forms ω ∈ C0(Rd, (ΛmRd)∗).

We can easily check that this defines an action of the group of diffeomorphism on the
space of currents: (φ ◦ ψ)∗T = φ∗(ψ∗T ), since the pullback is also an action as mentioned
in Appendix A. Moreover, the action is linear:

φ∗(T + λT ′) = φ∗T + λφ∗T
′, (1.3.21)

for any currents T and T ′ and any real numbers λ.

Proposition 1.16. If T is a sub-manifold of Rd and I a map on T such that∫
T
|I(x)| dλ(x) <∞, then the sub-manifold φ(T ) associated to the map I ◦φ−1 is a current.

This current is equal to φ∗(TI◦φ−1).
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Proof. This is exactly what we proved in Eq. (1.3.19). �

Now, we can apply Definition 1.15 on Dirac delta currents:

Proposition 1.17. Let φ be a diffeomorphism of Rd. The deformation of a m-Dirac delta
current is given by:

φ∗ (δu1∧...∧um
x ) = δ

(dxφ(u1))∧...∧(dxφ(um))
φ(x) . (1.3.22)

Proof. For any differential m-form ω, we have by definition of the push-forward action on
currents:

φ∗ (δu1∧...∧um
x ) (ω) = δu1∧...∧um

x (φ∗ω)

= φ∗ω(x) (u1 ∧ . . . ∧ um)

= ω(φ(x)) (dxφ(u1) ∧ . . . ∧ dxφ(um))

= δ
dxφ(u1)∧...∧dxφ(um)
φ(x) (ω)

(1.3.23)

which gives the expected result. �

1.4 Particular cases of practical interest

In the applications, we are mainly interested in modeling unstructured point-sets in 2D
or 3D (m = 0, d = 2, 3), curves in 2D or 3D (m = 1, d = 2, 3), surfaces in 3D (m = 2,
d = 3) and volumes in 3D (m = 3, d = 3). These cases, all of great practical interest, fall
into one of these 4 categories: they are of dimension 0 (m = 0), co-dimension 0 (d−m = 0),
dimension 1 (m = 1) or co-dimension 1 (d −m = 1). In these cases, the m-forms can be
represented by scalar fields (dimension or co-dimension 0) or vector fields (dimension or
co-dimension 1), as shown in Appendix A.

In this section, we apply the construction of the previous section to these particular
cases. We retrieve then the properties claimed in Section 1.2.

1.4.1 Unstructured point sets

The 0-forms are constant mappings and differential 0-forms map every point x ∈ Rd to
a scalar ω(x). A differential 0-form is therefore a scalar field.

Let A be a discrete set of points {xi} associated to some scalar Ii such that∫
A
I(x)dλ(x) =

∑
i∈A Ii <∞. We recall that for sub-manifold of dimension 0, the measure

dλ =
∑
x∈A δx counts the number of elements in A. Therefore, A may be modeled as the

0-current via :
AI(ω) =

∫
A

I(x)ω(x)dλ(x) =
∑
i

Iiω(xi). (1.4.1)

This shows that the sub-manifolds of dimension 0 are directly given as a sum of Dirac
delta currents:

A =
∑
i

δIixi (1.4.2)

Let φ be a diffeomorphism of Rd. The push-forward action of φ on the 0-current A is
given as:

φ∗A = δIiφ(xi)
. (1.4.3)
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In these equations, we notice that the diffeomorphism φ just moves the point of A while
keeping unchanged the attributes Ii. These coefficients are seen as intrinsic weights of each
points, or probabilities if

∑
i Ii = 1.

1.4.2 Curves in any dimension

A 1-form is a linear form on Rd (i.e. linear mapping from Rd to R). Thanks to the
Riesz theorem, any linear form may be represented by the inner product: ω(u) = ωtu for
a constant vector ω ∈ Rd. A differential m-form may be represented therefore by a vector
field ω(x) such that for all points x ∈ Rd and all vectors u ∈ Rd, ω(x)(u) = ω(x)tu. In the
sequel, we denote ω both the 1-form ω(x) and the vector field ω(x).

Let L be a set of piecewise continuous curves and I(x) an integrable scalar map on these
curves. L may be seen as a 1-current via:

LI(ω) =

∫
L

I(x)ω(x)tτ(x)dλ(x) (1.4.4)

for every vector field ω, where τ(x) is the unit tangent vector of the curves L at point x.
We recall that dλ denotes the Lebesgue measure on the curves, so that

∫
L
dλ(x) equals the

total length of the curves.
If the curves L are polygonal lines (whose segments are denoted si), they can be ap-

proximated as
L̃I =

∑
si

δIiτici , (1.4.5)

where τi is the oriented segment si and Ii = 1
|τi|
∫
si
I(x)dλ(x) the mean attribute over the

segment si. Its action on a vector field ω is given by: L̃I(ω) =
∑
i Iiω(ci)

tτi.
If φ is a diffeomorphism of Rd, then the deformed current φ∗LI◦φ−1 is given by

φ∗LI◦φ−1(ω) = LI(φ
∗ω) =

∫
L

I(x)ω(φ(x))t(dxφ)τ(x)dλ(x)

=

∫
L

I(x)
(
dxφ

tω(φ(x))
)t
τ(x)dλ(x) .

(1.4.6)

In the discrete case, we have:

φ∗

(∑
i

Iiδ
αi
ci

)
=
∑
i

Iiδ
dciφ(αi)
ci . (1.4.7)

In this equation, we remark that the density I(x) remains unchanged during the deforma-
tion and that the tangents of the curves are deformed according to the Jacobian of the
deformation φ.

1.4.3 Surfaces in 3D

As shown in Appendix A, the space of 2-forms in dimension 3 is of dimension 3. Each
2-form ω is associated isometrically to a 3D-vector ω, such that ω(u, v) = det(u, v, ω) =

ωt(u × v) for all vectors (u, v), where × denotes the cross-product in R3. Therefore, a
differential 2-form may be represented by a vector field ω(x): ω(x)(u, v) = ω(x)t (u× v).
In the sequel, ω(x) denotes both the differential 2-form and its associated vector field.
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Let S be a set of piecewise continuous surfaces and I an integrable scalar map on S. S
may be seen as a 2-current via:

SI(ω) =

∫
S

I(x)ω(x)t (u(x)× v(x)) dλ(x) =

∫
S

I(x)ω(x)tn(x)dλ(x) (1.4.8)

for every vector field ω, where n(x) = u(x)× v(x) is the unit normal vector of the surfaces
S at point x ((u(x), v(x)) being an orthonormal basis of the tangent plane of the surface S
at point x).

If the surfaces S are surface meshes (whose mesh cells are denoted fi), they can be
approximated as

S̃I =
∑
fi

δIinici , (1.4.9)

where ni = ui1 × ui2 (in the sense of Definition 1.8) is the oriented normal of face fi whose
norm is equal to the surface of fi, Ii = 1

|ni|
∫
fi
I(x)dλ(x) the mean attribute over the face

fi and ci the center of mass of the face fi. Its action on a vector field ω is given by:
S̃I(ω) =

∑
i Iiω(ci)

tni. Note that in this equation we write δu∧vx for the 2-multivector u∧ v
in 3D as δu×vx where u × v is the 3D-vector which characterizes u ∧ v (see Appendix A).
This notation, however, may be misleading since the dimension of the current (m = 2) is
no more visible in this expression (see Remark 1.18).

If φ is a diffeomorphism of Rd, then the deformed current φ∗SI◦φ−1 is given by

φ∗SI◦φ−1(ω) = SI(φ
∗ω) =

∫
S

I(x)ω(φ(x))t (dxφu(x)× dxφv(x)) dλ(x)

=

∫
S

I(x)
(
|dxφ| dxφ−1ω(φ(x))

)t
n(x)dλ(x).

(1.4.10)

In the discrete case, we have:

φ∗

(∑
i

Iiδ
ni
ci

)
=
∑
i

Iiδ
|dciφ|dciφ−tni
ci . (1.4.11)

1.4.4 Volumes in any dimension

As shown in Appendix A, all d-forms in dimension d are proportional to the determinant.
This means that every d-form in Rd has the form: ω(u1∧. . .∧ud) = ω det(u1, . . . , ud), where
ω is a scalar which characterizes the d-form ω. As a consequence, a differential d-form in
Rd is characterized by a scalar field ω(x) such that ω(x)(u, v, w) = ω(x) det(u, v, w). In the
sequel, ω(x) denotes both the differential d-form and its associated scalar field.

Let V be a set of continuous volumes and I an integrable scalar map on V . V may be
seen as a 3-current via:

VI(ω) =

∫
V

I(x)ω(x) det(u1(x), . . . , ud(x))dλ(x) =

∫
V

ω(x)dλ(x) (1.4.12)

for every scalar field ω, where u1(x), . . . , ud(x) is a positively oriented orthonormal basis of
Rd and as such det(u1(x), . . . , ud(x)) = 1.

If the volumes V are volume meshes in 3D (whose mesh cells are denoted fi), they can
be approximated as

ṼI =
∑
fi

δIivici (1.4.13)
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where ci denotes the center of the polyhedron fi, vi the volume of the polyhedron fi and
Ii = 1

vi

∫
fi
I(x)dλ(x) the mean intensity in the volume fi. The action of this 3-current on

a vector field ω is given by: ṼI(ω) =
∑
i Iiviω(ci).

If φ is a diffeomorphism of Rd, then the deformed current φ∗VI◦φ−1 is given by

φ∗VI◦φ−1(ω) = VI(φ
∗ω) =

∫
V

I(x)ω(φ(x)) det(dxφu1(x), . . . , dxφud(x))dλ(x)

=

∫
V

I(x)ω(φ(x)) |dxφ| dλ(x) .

(1.4.14)

We notice in particular that this action is different from the one on the scalar field associated
to a 0-current due to the Jacobian |dxφ|.

In the discrete case, we have:

φ∗

(∑
i

Iiδ
vi
xi

)
=
∑
i

Iiδ
|dciφ|vi
xi . (1.4.15)

Note that, like the 0-currents, 3-currents are build on scalar fields. But for 3-currents,
the action of a diffeomorphism takes into account the deformation of the geometry of the
volumes. The volume vi is changed according to the determinant of the Jacobian of the
deformation.

Remark 1.18 (On the notations). The notation of Dirac Delta current δαx in this context
is misleading since it may denote 0-,1-,2- and 3-currents. Indeed α may be a scalar, a
vector, the vector associated to a 2-multivector or the scalar associated to a 3-multivector.
In particular, the reader has to keep in mind that the upper-script in this notation has a
unit! For the 0-current δαx , α is a pure scalar (without any unit) and it is not affected by the
deformation. On the contrary, if δαx denotes a 3-current, then the scalar α is the measure of
a volume which is mutliplied by the Jacobian of the deformation when the current moves
in space. Similarly, a vector α in the notation δαx has the unit of a length for a 1-current
and the unit of a surface for a 2-current. It is deformed by a diffeomorphism according to
its dimension. �

Remark 1.19 (Take care of the dimension!). In this section, we introduced m-currents
for modeling sub-manifolds of dimension m in R3. However, it is possible to consider a
manifold of dimension m as a collection of manifolds of lower dimension. For instance,
curves, surfaces or volumes can be all considered as continuous point sets. Similarly, a
surface may be described as dense collection of curves (a moving curve which sweeps the
surface). In this example, the surface may be modeled as a single 2-current or as a sum
of 1-currents. One must be aware that these two currents are not equivalent. They do
not have the same geometrical properties. This is particularly visible when considering the
deformation of the currents. The action of a diffeomorphism on the collection of curves
deforms the surface in the direction of the curves only, whereas the action on the 2-current
affects also the surface in the direction orthogonal to the curves.

Similarly, let C be a polygonal line {x1, . . . , xn}. Modeled as a 1-current this curve
is represented by C1 =

∑n−1
i=1 δ

xi+1−xi
xi . Modeled as a collection of points, the curve is

represented by the 0-current: C0 =
∑n
i=0 δxi . Let φ be a diffeomorphism of the space.
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The deformed 1-current is given by: φ∗C1 =
∑n−1
i=1 δ

dxiφ(xi+1−xi)
φ(xi)

, whereas the deformed 0

current is written as: φ∗C0 =
∑n
i=1 δφ(xi). Only the first current φ∗C1 is the discretization

of the deformed curve φ(C) (in particular the mass-norm of φ∗C1 is equal to the length of
φ(C)). By contrast, φ∗C0 does not take the tangential information into account. C and the
set of points on C are two different objects: the one is of dimension 1, the other of dimension
0. As a conclusion, any current is associated to a particular dimension m. And there is no
simple way to describe a m-current as a collection of (m− 1)-currents while preserving the
same geometrical properties.

In practice, the segmentation of an anatomical surfaces or volumes may be given as
an unstructured point-set. In absence of surface or volume mesh, one has no other choice
than modeling this set of points as a 0-current. One must be aware, however, that building
a surface or a volume mesh from this point set would reconstruct the geometry of the
anatomical structure and lead eventually to different measures of similarity, which would
account for this richer geometrical information. �

Remark 1.20 (Why using m-forms instead of scalar/vector fields?). There are some cases
of practical interest which are not modeled with differential m-forms of dimension or co-
dimension 0 or 1. For instance, one may be interested in the temporal evolution of a curve
in 3D. This can be seen as a tubular surface (m = 2) in a 4D space (d = 4). In this
case, the representation in terms of vector field is no more possible, whereas the framework
based on currents still applies. However, from a computational point of view, the algorithms
presented in this thesis take advantage of the representation in terms of vector/scalar fields.
Dealing with other cases would require to develop new algorithms. �

1.5 The space of currents as a RKHS

1.5.1 Why the mass-norm is not adapted to measure shape dis-
similarity

In the previous section, we introduced the mass-norm of a current. However, the fol-
lowing proposition shows that this norm cannot be used in practice for measuring shape
dissimilarities. Indeed, this measure is insensitive to the relative distance between two
sub-manifolds, as long as they do not intersect.

Proposition 1.21. Let T and T ′ be two smooth compact sub-manifolds with disjoint sup-
ports. Then

M(T − T ′) = M(T ) +M(T ′) . (1.5.1)

Let T and T ′ be two finite sums of Dirac delta currents located at different points. Then,

M(T − T ′) = M(T ) +M(T ′) . (1.5.2)

Proof. The proof is a generalization of the proofs of Proposition 1.6 and Proposi-
tion 1.12 and relies on the same idea. The triangle inequality states that M(T − T ′) =

sup‖ω‖∞≤1 |T (ω)− T ′(ω)| ≤M(T )+M(T ′) in both cases. To show the equality, one finds a
particular ω which enables to achieve the supremum. We focus on the case of sub-manifolds
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since the case of Dirac currents is direct consequence of Proposition 1.12. For any x in T and
T ′, we choose the m-form ω(x) such that ω(x)(u1(x)∧ . . .∧ um(x)) = |u1(x) ∧ . . . ∧ um(x)|
and 0 in the directions orthogonal to u1(x)∧ . . .∧um(x) in ΛmRd, where ui(x) denotes a ba-
sis of the tangent plane of T at point x. Since the sub-manifolds are smooth, we can choose
basis vectors ui(x) which varies continuously on each sub-manifold, thus making ω(x) con-
tinuous on T and T ′. Now, since T and T ′ are disjoint, we can interpolate continuously
the values of ω(x) in-between T and T ′. Since the sub-manifolds are compact, we can also
make ω(x) tend to 0 at infinity. Therefore, this constructed ω belongs to C0(Rd, (ΛmRd)∗)
and achieves the supremum in the definition of the norm. �

Remark 1.22. There is no contradiction between this proposition and Proposition 1.11
since the support of the discretized current T̃ is included into the support of the original
current T . �

Remark 1.23 (support of a current). This Proposition can be expressed in a more general
form for any currents T and T ′ with disjoint supports. However, for the sake of simplicity, we
do not define the support of a current and focus on two particular cases: sub-manifolds and
Dirac delta currents. However, the definition of the support of a distribution [Schwartz 1966]
extends straightforwardly to currents. �

Let us take two Dirac currents δαx and δαy which model two small mesh cells (infinitesimal
surface for instance) with the same orientation but located at two distinct points x and y.
The dissimilarity between these two currents is equal to M(δαx − δαy ) = 2 |α|, thus meaning
that the distance between both structures is constant as long as x 6= y. But once x = y,
then M(δαx − δαy ) = 0. This shows that the metric M is blind to shape dissimilarities until
the two shapes are perfectly aligned! As a consequence, it is not possible to use this metric
to drive the registration of one shape onto another. Moreover, the discontinuous behavior
of the metric with respect to the positions x and y prevents us from using the mass-norm
from a numerical point of view.

The main problem is that the mass-norm is the dual norm for the supremum norm for
continuous differential m-form. The key argument in the proofs of Propositions 1.6, 1.12
and 1.21 is that we can always find a differential m-form ω which continuously interpolates
between ω(x) = α and ω(y) = −α for two distinct points x and y. If we impose some
constraints on the variations of ω, then it may not be possible to interpolate with bounded
variations between arbitrary points x and y. Then the norm M(T − T ′) would start to
decrease smoothly to zero as T is approaching T ′. This point is illustrated in Fig. 1.4.

This analysis justifies to change the test space of differential m-forms for a test space
in which the differential m-forms are more regular (i.e. whose variations are bounded).
Until now we have considered the space of continuous differential forms which tend to zero
at infinity (i.e. such that ‖ω‖∞ < ∞). We would like to consider now differential forms
which are differentiable and such that the derivatives are controlled: ‖ω‖∞+ ‖∇ω‖∞ <∞.
This leads naturally to define our test space as Sobolev spaces. Most of these spaces are
Reproducible Kernel Hilbert Space (RKHS) as shown in Appendix B. LetW denote this new
test space of differential forms. The associated space of currents is denoted W ∗: the space
of continuous mapping from W to R. Then the mass-norm (M(T ) = sup‖ω‖∞≤1 |T (ω)|) is
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replaced by the dual norm: ‖T‖W∗ = sup‖ω‖W≤1 |T (ω)|. The kernel of the RKHS acts as
a low-pass filter on the space of square integrable differential forms: this excludes from W

the differential forms with too high frequencies (i.e. whose variations are not bounded).
Using RKHS as test space of differentialm-forms have compelling advantages. First, the

choice of the kernel determines how smooth the differential forms are. In particular, we can
set a scale parameter which determines the rate of decay of the RKHS norm (‖T − T ′‖W∗)
to zero when T is “converging” to T ′. See Figure 3.16 for instance. If this scale tends to zero,
then the RKHS norm tends to the mass-norm. For a larger parameter, shape dissimilarities
are captured up to this scale. Second, in the framework of RKHS, the space of currents
is provided with an inner-product and the norm, which is defined by a supremum, has a
closed form. This makes the overall framework particularly well suited from a computational
point of view. Third, the RKHS norm in the space of currents allows us to define random
Gaussian variables. This will allow us to define statistical models of currents to measure
the variability of shapes.

Remark 1.24 (Flat norm). To workaround the bad behavior of the mass-norm, one intro-
duces often the flat-norm defined as:

F (T ) = sup
‖ω‖∞≤1,‖dω‖∞≤1

|T (ω)| , (1.5.3)

where dω denotes the exterior derivative of the differential m-form ω (see [Federer 1969,
Cohen-Steiner 2003a], for instance). This norm introduces explicitly a control on the vari-
ations of the differential forms. However, by contrast to RKHS norm, this norm does not
derive from an inner-product and has no closed form. This norm is therefore difficult to
use from a computational point of view. �

1.5.2 The space of currents as the dual space of a RKHS

In this section, we adapt the construction of currents in Section 1.3 to a test space of
differential forms which is a RKHS. We will show also how this framework enables to have
a norm which derives from an inner-product and for which we have a closed-form.

For the sake of simplicity, we suppose, from now on, that we deal only with the practical
cases of Section 1.4: sub-manifolds of dimension 0, 1, 2 and 3 in R3 and sub-manifold of
dimension 0, 1 and 2 in R2. In all these cases, the differential m-forms can be seen as a
scalar or vector field: a continuous mapping from Rd (d = 2 or d = 3) to Rp (p = 0 or
p = d). The case p = 0 is for the scalar fields, the case p = d is for the vector fields.

Note that the following construction could be made also for general differential m-forms
(see Remark 1.28). However, this would involve more sophisticated notations without any
benefits for the targeted applications.

1.5.2.1 A new space of currents

Let W be a Hilbert space of vector fields in which the vector fields are continuous and
verifies:

‖ω‖∞ ≤ CW ‖ω‖W (1.5.4)
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As shown in Appendix B, this condition makes W a RKHS (see Proposition B.4). From a
numerical point of view, this condition implies that numerical error measured in the space
W are numerically small.

We denote W ∗ the dual space of W , now our space of currents. The following proposi-
tion shows that the previous space of currents (i.e. the dual space of C0(Rd, (ΛmRd)∗)) is
continuously embedded into W ∗.

Proposition 1.25. If T is a continuous linear form on C0(Rd, (ΛmRd)∗) then it is a con-
tinuous linear form on W and

‖T‖W∗ ≤ CWM(T ). (1.5.5)

Proof. By definition of a continuous linear map, we have that there is a constant CT such
that:

|T (ω)| ≤ CT ‖ω‖∞ , (1.5.6)

which leads according to Eq. (1.5.4)

|T (ω)| ≤ CTCW ‖ω‖W . (1.5.7)

This shows that the T can be considered as current in W ∗.
Moreover, we have:

‖T‖W∗ = sup
‖ω‖W≤1

|T (ω)| = sup
‖ω‖W 6=0

∣∣∣∣T ( ω

‖ω‖W

)∣∣∣∣
≤ CW sup

‖ω‖W 6=0

∣∣∣∣T ( ω

‖ω‖∞

)∣∣∣∣
≤ CW sup

‖ω‖∞ 6=0

∣∣∣∣T ( ω

‖ω‖∞

)∣∣∣∣ = CWM(T )

(1.5.8)

�

This proposition shows that the RKHS norm on the space of currents is more precise
than the mass-norm. It shows also that the currents introduced in the previous sections can
be considered as currents in W ∗. In particular, the Dirac delta currents as introduced in
Definition 1.9 are currents in W ∗. Proposition 1.4 which shows that a sub-manifold of Rd

defines a current is still valid in this framework: under the same conditions sub-manifolds
define a current in W ∗. Indeed the inequality in Eq. (1.5.5) shows that a linear form on
W which is continuous with respect to the ‖.‖∞ norm is also continuous with respect to
the W -norm. Proposition 1.11, which enables to approximate m-meshes T with finite sum
of Dirac delta currents T̃ , is also valid in W ∗. Indeed, the proof relies on the inequality:∣∣∣T (ω)− T̃ (ω)

∣∣∣ ≤ ε ‖ω‖∞ for all ω ∈ C0(Rd, (ΛmRd)∗). This implies that for all ω ∈ W ,∣∣∣T (ω)− T̃ (ω)
∣∣∣ ≤ εCW ‖ω‖W and therefore that

∥∥∥T − T̃∥∥∥
W∗
≤ εCW which tends to zero

under the same conditions as in Proposition 1.11.
Eventually, the pull-back action on continuous differential m-forms (Definition A.11)

extends straightforwardly to differential m-form in W under the same condition as in
Definition A.11. Indeed, if φ is a diffeomorphism such that sup

x∈Rd
|dxφ| < ∞, then
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|φ∗ω(x)| ≤ ‖ω‖∞ ‖dxφ‖∞ ≤ Cx,φ ‖ω‖W which proves that the pullback vector field φ∗ω

belong to W . Therefore, we can define the push-forward action on currents as in Defini-
tion 1.15, which is now an action on the space of currents W ∗.

1.5.2.2 Norm and inner-product in the RKHS

It is shown in Appendix B that there is an isometric mapping between the test space
of vector/scalar field W and the space of current W ∗. This mapping is denoted LW and
the kernel of the RKHS W is denoted KW . This provides the space of currents W ∗ with a
Hilbert structure. In this section, we show how this inner-product allows us to give a closed
form to the norm ‖.‖W∗ in practical cases.

Proposition B.9 shows that the map LW is isometric. Therefore the norm of a current
T ∈W ∗ satisfies:

‖T‖W∗ = sup
‖ω‖W≤1

|T (ω)| =
∥∥L−1

W (T )
∥∥
W
, (1.5.9)

and that the supremum is achieved for the vector field ω = L−1
W (T ), which implies that

‖T‖2W∗ = T (L−1
W (T )).

Now, we will show how to compute L−1
W (T ) and the norm of T when T is a sub-manifold

or a finite set of Dirac delta currents. Assume first that T is a sub-manifold of R3 which can
be seen as a current under the assumptions of Proposition 1.4 (assuming that the attribute
map I = 1). We focus on the vectorial case (T is dimension 1 or 2) but the computations
can be very easily adapted in the scalar case (T of dimension 0 or 3). Let ω ∈ W be a
vector field, then by definition of T (ω) in Prop. 1.4 and thanks to the reproducing property
in W (see Eq. (B.2.5)), we have:

T (ω) =

∫
T

ω(x)tα(x)dλ(x)

=

∫
T

〈
ω,KW (x, .)α(x)

〉
W
dλ(x)

=

〈∫
T

KW (x, .)α(x)dλ(x), ω

〉
W

(1.5.10)

where α(x) denotes the unit tangent of T at x if T is of dimension 1 or the unit normal of
T at x if T is of dimension 2.

In section B.3 (Eq. (B.3.5)), it is shown that:

T (ω) = 〈T,LW (ω)〉W∗ (1.5.11)

The combination of this equation with Eq. (1.5.10) shows that the mapping L−1
W can be

computed explicitly in this case as:

L−1
W (T )(x) =

∫
T

KW (x, y)α(y)dλ(y) (1.5.12)

The representation of the sub-manifold in the space of vector fields W is given as the
convolution between the kernel KW and the dense field of its tangents or normals.
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The application of the isometric mapping LW (see Eq. (1.5.9)) leads to the norm of T
as:

‖T‖2W∗ =
〈
L−1
W (T ),L−1

W (T )
〉
W

=

〈∫
T

KW (x, .)α(x)dλ(x),

∫
T

KW (x, .)α(x)dλ(x)

〉
W

=

∫
T

∫
T

〈
KW (x, .)α(x),KW (y, .)α(y)

〉
W
dλ(x)dλ(y)

=

∫
T

∫
T

α(x)tKW (x, y)α(y)dλ(x)dλ(y),

(1.5.13)

by linearity of the integration and thanks to the reproducing property of the kernel (see
Eq (B.2.5)).

Therefore, the Hilbert norm of the sub-manifold seen as a current is given by the double
integration of the kernel on the manifold. Similar computations show that the inner-product
between two sub-manifolds of the same dimension, T and T ′, is given by:

〈T, T ′〉W∗ =

∫
T

∫
T ′
α′(y)tKW (y, x)α(x)dλ(y)dλ(x), (1.5.14)

where α(x) (resp. α′(x)) denotes the tangent or normal of T (resp. T ′) at point x.
If the sub-manifold T is given as a m-mesh, it can be approximated, in the sense of

Proposition 1.11 by a finite set of Dirac Delta currents: T =
∑n
i=1 δ

αi
xi . In this case, using

Eq. (B.3.9), we have also explicit formulation for the representation of the current as a
vector field:

L−1
W (T )(x) =

n∑
i=1

L−1
W (δαixi )(x) =

n∑
i=1

KW (x, xi)αi, (1.5.15)

also for the norm of this current:

‖T‖2W∗ = T (L−1
W (T )) =

n∑
j=1

δαjxj (L−1
W (T )) =

n∑
i=1

n∑
j=1

αtjK
W (xj , xi)αi (1.5.16)

and the inner-product between T and T ′ =
∑m
j=1 δ

βj
yj

〈T, T ′〉W∗ =
n∑
i=1

m∑
j=1

βtjK
W (yj , xi)αi. (1.5.17)

The comparison of these last two equations with Equations (1.5.13) and (1.5.14) shows
that the approximation of Proposition 1.11 consists in replacing the continuous integrals
by their Riemann sums. In other words, the continuous current T is decomposed into
its infinite set of tangents or normals, whereas its discretization in the space of currents
consists in sampling this field of tangents/normals. When the sampling becomes finer, the
approximation converges in the space of currents. This shows that using RKHS enables to
compare continuous objects with their discrete representation. This is a direct consequence
of the construction of the RKHS as the completion of a pre-Hilbert space in the proof
of Theorem B.6. This guarantees that the metric on currents is weakly sensitive to the
sampling of the geometrical data, since each sampling is an approximation of the same
continuous quantity. This ensures the robustness and numerical stability of this metric
used in practical algorithms.

Table 1.2 summarizes these operations on currents for any m-currents in 3D.
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Remark 1.26. In this section we omit the scalar function I which can model attributes
attached on the sub-manifold T . Taking into account such map induces only very slight
changes in Eqs. (1.5.10) to (1.5.17). �

Remark 1.27 (Computational cost of the distance between currents). In practice, we
need mainly to compute the distance ‖T − T ′‖W∗ between two set of Dirac Delta currents:

T =
∑N
i=1 δ

αi
xi (with N terms) and T ′ =

∑N ′

j=1 δ
α′j
x′j

(with N ′ terms). For this purpose, one

can use the equality: ‖T − T ′‖2W∗ = ‖T‖2W∗ + ‖T ′‖2W∗ − 2 〈T, T ′〉W∗ . Or one can form the
current S =

∑N+N ′

i=1 δβiyi where (yi = xi, βi = αi) if i = 1 . . . N and (yi = x′i, βi = −α′i) if
i = N+1, . . . , N+N ′ (i.e. the concatenation of the list of points (x,x’) and the list of vectors
(α,−α′)) and compute directly ‖S‖W∗ . The first solution requires to sum N2 +(N ′)2 +NN ′

terms, whereas the second solution requires to sum (N + N ′)2 = N2 + (N ′)2 + 2NN ′

terms. The first solution is computationally less expensive than the second one. However,
in chapter 2 we will present a computational framework which enables to compute these
double sums at almost a constant cost, independently of the number of terms. This will
make eventually the second solution about 3 times faster than the first one (3 double sums
to be computed versus 1). �

1.5.2.3 Three norms on the space of currents

We can define 3 norms in the space of currents W ∗. We introduced previously the
mass-norm:

M(T ) = sup
‖ω‖∞≤1

|T (ω)| (1.5.18)

and the W ∗-norm:
‖T‖W∗ = sup

‖ω‖W≤1

|T (ω)| , (1.5.19)

where T denotes a generic current in W ∗ and ω a generic scalar/vector field in W .
We saw that the mass norm generalizes the notion of volume of a m-dimensional sub-

manifold and that this norm is not adapted to measure shape dissimilarity. The W ∗-norm
is a regularized version of the mass-norm which will allow us to drive the registration of
shapes and define statistical models on shapes. Moreover, this norm is easily computable
in practical cases.

In addition to these two norms, we can define the L∞-norm of currents as:

‖T‖∞ =
∥∥L−1

W (T )
∥∥
∞ , (1.5.20)

where the norm on the right-hand side is the supremum norm of the scalar/vector field
associated to the current T (this scalar/vector field belongs toW and therefore is continuous
and tend to zero at infinity).

This last norm raises naturally when one considers the current T via the inner-products
〈T, δεkx 〉W∗ for any points x ∈ Rd (εk denotes the canonical basis of R3 for vector fields and
R for scalar field). Since 〈T, δαx 〉W∗ = L−1

W (T )(x)tα, we have the following property:

‖T‖∞ = sup
|α|=1,x∈Rd

|〈T, δαx 〉W∗ | (1.5.21)
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Norm on
vector fields

Norm on currents Comments

‖ω‖∞ = sup
x∈R3

|ω(x)| M(T ) = sup
‖ω‖∞≤1

|T (ω)| If T is a submanifold, M(T ) is
the length, area, volume of T

‖ω‖W (regularized
L2-metric)

‖T‖W∗ = sup
‖ω‖W≤1

|T (ω)| derives from an
inner-product

‖T‖∞ =
∥∥L−1

W (T )
∥∥
∞

= sup
|α|=1

x∈R3

|〈T, δαx 〉W∗ |
corresponds to the

weak-topology on W ∗

Relations between norms: ‖ω‖∞ ≤ CW ‖ω‖W
‖T‖W∗ ≤ CWM(T )

‖T‖∞ ≤
(

sup
x∈R3

∣∣KW (x, x)
∣∣) ‖T‖W∗

Table 1.1: The norms on currents and vector fields

Since the span of the Dirac delta currents is dense in W ∗, this equation shows that
a sequence of currents Tn converges to 0 with respect to the L∞-norm (‖Tn‖∞ → 0) if
and only if 〈Tn, T ′〉W∗ → 0 for every currents T ′ ∈ W ∗. This shows that the L∞-norm is
associated to the weak topology of the RKHS.

As a consequence, we can control the L∞- by the W ∗-norm. Indeed, we have:

|〈T, δαx 〉W∗ | ≤ ‖T‖W∗ ‖δ
α
x ‖W∗ . (1.5.22)

Moreover, ‖δαx ‖
2
W∗ = αtKW (x, x)α ≤ sup

x∈R3

∣∣KW (x, x)
∣∣ |α|2 where

∣∣KW (x, x)
∣∣ de-

notes the spectral norm of the matrix KW (x, x). Therefore, sup|α|=1 |〈T, δαx 〉W∗ | ≤
sup
x∈R3

∣∣KW (x, x)
∣∣1/2 ‖T‖W∗ , which leads to:

‖T‖∞ ≤
(

sup
x∈R3

∣∣KW (x, x)
∣∣1/2) ‖T‖W∗ (1.5.23)

Both L∞- and W ∗-norm will be used in the next chapters, for instance to control the
convergence of the matching pursuit in Chapter 3.

Remark 1.28 (RKHS of differential forms). In this section, we provide the space of cur-
rents with a norm in the case of currents which can be represented by scalar or vector
fields. This has been done for the sake of simplicity. We could have built also a RKHS
of differential m-forms. The reproducing property would have been: ω(x)(u1, . . . , um) =

〈ω,K(x, .)(u1, . . . , um)〉W and the kernelK would have been a m-covariant, m-contravariant
tensor. The construction would have been very similar to the one presented here. �

Remark 1.29 (Units). The physical objects defined in this chapter (differential form,
vector fields, currents, etc.) have dimension and therefore their measure depends on the
choice of the unit of the ambient Euclidean space R2 or R3. The action of a m-form on a set
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of m vectors leads to a real number which has no dimension and which is invariant under a
change of coordinate. Since the vectors have the dimension of a length, denoted here L, a
m-form is of dimension L−m. A current integrates a m forms to give an adimensional real
number: it is of dimension Lm. Therefore, it has the same dimension that the geometric
object, which it models. The norm of the current ‖T‖W∗ = supω 6=0 |T (ω)| ‖ω‖ has the
dimension Lm, namely the dimension of a length for a 1-current and the dimension of a
area for a 2-current. The map LW from W to W ∗ depends also on the choice of units: it
is of dimension Lm/L−m = L2m. The inverse map is implemented by the matrix KW (x, y)

whose elements is of dimension L−2m.
In Section 1.2 and 1.5 as well as in Appendix A, we identify differential 1-forms and vec-

tor fields, whereas the former is of dimension L−1 and the later of dimension L. Therefore,
this identification depends on the choice of the units in the ambient Euclidean space: if
the units change, the vector field associated to the 1-form also changes. This is well-known
in differential geometry: the form is a covariant tensor, the vector field a contravariant
tensor. One transforms the former into the later by applying the metric tensor, which is of
dimension L2. Therefore, these kind of identification can be made only once the units are
fixed. In our applications, units are given by the imaging device. �

1.5.3 Random Gaussian Currents

Defining the test space W as a RKHS has another advantage: it allows us to define ran-
dom Gaussian currents. Indeed, there is a standard way to define random Gaussian variables
in infinite-dimensional Hibert spaces, so that their projection on any finite-dimensional sub-
space is a usual multi-variate Gaussian variable. In this setting, the kernel of a RKHS gives
the covariance of the random variables. In this section, we show how such variables can
be defined. In Section 2.3.3, we will show that the projection of the Gaussian currents on
finite-dimensional spaces are usual Gaussian vectors.

First, we will show how the finite-dimensional case can be generalized to define infinite-
dimensional random variables. Let Γ be a zero-mean Gaussian vector in Rn with covariance
K. By definition, for any n-dimensional vector ω, ωtΓ is a zero-mean Gaussian real variable
with variance ωtKω. This shows that the covariance matrix K can be seen as a metric
on Rn. Actually, one can consider that the Gaussian variable Γ maps every eigenvectors
(ei)i=1,...,n of K to an independent Gaussian real variables γi with variance given by the

eigenvalues λ2
i . Therefore, any vector ω is mapped into ωtΓ =

n∑
i=1

ωteiγi. This shows that

a given metric K determines a Gaussian vector Γ. This idea of mapping each eigenvector
of the metric to an independent Gaussian variable can be generalized in infinite-dimension
as follows.

A current T is a linear mapping from a test space of vector field W (with metric KW )
to the space of real numbers R. A random Gaussian current is a linear mapping from the
test space W to a Gauss space G2. This means that a random Gaussian current maps

2a Gauss space is a set of random Gaussian variables. The typical example of a Gauss space is the linear
span of N independent Gaussian variables.
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every vector field ω to a real random Gaussian variable X∗(ω), whereas a deterministic
current maps the test vector field ω to a real number T (ω). We define this mapping such
that the random current X∗ tested on two orthogonal vector fields ω and ω′ leads to two
independent Gaussian variables. X∗ can be seen as the Gaussian variable associated to the
RKHS W with kernel KW . However, since it is infinite-dimensional, it has no probability
density function.

To give a precise definition, we assume that the test space W is separable. As such,
W can be provided with an orthogonal basis wn. We define the linear mapping X∗

from W to G via its value on the orthogonal basis (wn)n=0,...,∞: we set X∗(wn) = γn,
where γn is an infinite sequence of independent normal variables (zero mean and unit
variance). Since every vector field ω can be decomposed into ω =

∑∞
n=0 〈ω,wn〉W wn

such that ‖ω‖2W =
∑∞
n=0 |〈ω,wn〉W |

2
< ∞, we have by linearity of the mapping X∗:

X∗(ω) =
∑∞
n=0 〈ω,wn〉W γn. Therefore for all ω ∈W :

E (X∗(ω)) = 0

E
(
X∗(ω)2

)
=
∞∑
n=0

|〈ω,wn〉W |
2

= ‖ω‖2W
(1.5.24)

Moreover, given two vector fields ω and ω′, we have:

E (X∗(ω)X∗(ω′)) = E

(( ∞∑
n=0

〈ω,wn〉W γn

)( ∞∑
m=0

〈ω,wm〉W γm

))

=
∞∑
n=0

〈ω,wn〉W 〈ω
′, wn〉W = 〈ω, ω′〉W .

(1.5.25)

These intrinsic definitions of the variance and covariance of real variables X∗(ω) in
Equations (1.5.24) and (1.5.25) shows that the definition of the random Gaussian current
does not depend on the choice of the basis on W . This leads to the following definition:

Definition 1.30. Let W be a separable Hilbert space of vector fields and G a Gaussian
space. Let X∗ be the isometric mapping between W and G:

X∗ : W −→ G
ω X∗(ω)

(1.5.26)

such that for all ω, ω′ ∈W :

E (X∗(ω)) = 0

E (X∗(ω)X∗(ω′)) = 〈ω, ω′〉W
(1.5.27)

If the test space W is a RKHS, then we can test the Gaussian current on the basis
vector KW (x, .)α. This leads to:

E
(
X∗
(
KW (x, .)

)
X∗
(
KW (y, .)β )) = αtKW (x, y)β. (1.5.28)

This shows that the kernel determines the covariance of the random Gaussian currents. If
the kernel is diagonal, in the sense K(x, y) = 0 if x 6= y, then the vectors K(x, .)α build an
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orthogonal basis of the RKHS W . This is not the case in general but we can always build
an orthogonal basis from these vectors via the Gram-Schmidt process.

This definition constructs theoretically a random Gaussian current with zero mean and
a covariance structure determined by the kernel. However, in absence of probability func-
tion, there is no simple way to simulate some instances of this random current. In the next
chapter, we will introduce finite-dimensional spaces to approximate the space of currents.
The projections of this random current on these subspaces have a probability density func-
tion (pdf) as we will show in Section 2.3.3 and can be simulated numerically as we shall
show and discuss in Section 3.5.

1.6 Conclusion

In this chapter, we gave a rather general presentation of currents. We discussed the
ability of this framework to model a large range of geometrical objects, some with local
orientation such as curves or surfaces, other without local orientation like point sets or
volumes, some defined in the continuous domain, other defined as discrete structures, pos-
sibly provided with scalar attributes. Eventually, we provided the space of currents with a
RKHS norm and inner-product. This offers a way to adapt the metric on currents to every
particular anatomical data.

However, dealing with discrete currents, such as the ones resulting from the approxima-
tion in Proposition 1.11, may be computationally expensive, especially when the number
of mesh cells increases, as mentioned in Remark 1.27. The following chapters are precisely
dedicated to the design of an efficient numerical framework for currents.

From now on, we focus on the cases of curves and surfaces modeled as 1- and 2-currents,
as the most interesting cases for our applications. For the sake of simplicity, we will use also
0-currents in some synthetic examples. We will use the scalar attributes to weight different
parts of the currents as in Chapter 7, but we will not use such attributes for modeling
non-geometrical properties of the shapes, according to Remark 1.14.
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