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Abstract- Segmentation using boundary finding is enhanced 
both by considering the boundary as a whole and by using 
model-based global shape information. Previous boundary find- 
ing methods have either not used global shape or have designed 
individual shape models specific to particular shapes. We apply 
flexible constraints, in the form of a probabilistic deformable 
model, to the problem of segmenting natural 2-D objects whose 
diversity and irregularity of shape make them poorly represented 
in terms of fixed features or form. The parametric model is 
based on the elliptic Fourier decomposition of the boundary. 
Probability distributions on the parameters of the representation 
bias the model to a particular overall shape while allowing for 
deformations. Boundary finding is formulated as an optimization 
problem using a maximum a posteriori objective function. Results 
of the method applied to real and synthetic images are presented, 
including an evaluation of the dependence of the method on prior 
information and image quality. 

Index Terms- Boundary finding, deformable models, Fourier 
descriptors, parametric models, probabilistic models, 2-D repre- 
sentation and recognition. 

I. INTRODUCTION 
POWERFUL property for distinguishing an object from A its surroundings in an image is overall shape. Shape 

can be used to complete the information provided by local 
properties of the image such as gray level, texture, or color. 
A preconception of local shape features, such as curvature, 
can be useful, but these features are not as expressive as 
global shape and, like other local features, are more sensitive 
to poor viewing conditions. Global shape is too varied to 
be adequately described by a single shape attribute such as 
average bending energy or compactness. In order to take full 
advantage of shape, the problem of object identification will 
be approached as a process of boundary finding or delineation 
using a boundary measure and incorporating global shape 
information. 

Segmentation by boundary finding using only local in- 
formation has often been frustrated by poor-contrast bound- 
ary regions due to occluding and occluded objects, adverse 
viewing conditions, and noise. A model-free interpretation 
is doomed by the underconstrained nature of the problem. 
Imperfect image data can be augmented with the extrinsic 
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information that a geometric shape model provides. In order 
to exploit model-based information to the fullest extent, it 
should be incorporated explicitly, specifically, and early in 
the analysis. Some models incorporate generic information 
such as smoothness or low overall curvature. Although this 
is completely appropriate when no better information is avail- 
able, it is better if the shape information used is as specific as 
possible. Applying the model too late allows inconsistencies 
to be created by the low-level processing. In addition, the 
boundary can be profitably considered as a whole because it 
tends to result in a more overall consistent solution. 

This work is aimed at segmenting 2-D objects from 2- 
D images. It is especially focused on natural objects, such 
as those found in biomedical images, whose diversity and 
irregularity of shape make them poorly represented in terms of 
fixed features or form. The objects, such as organs, cells, and 
other biological structures, are expected to have a tendency 
toward some average shape with a continuum of possibilities 
near that average shape. This tendency can be taken advantage 
of by its expression in an appropriately designed shape model. 
An object’s appearance in an image is governed by both its 
shape and by the view of the object. The view determines the 
translation, rotation, and scale of the object. The view of an 
object is likely to be variable unless it is explicitly controlled. 
In this work, the view will be taken as approximately known 
or determined by some preprocessing. Biomedical images 
are an important application because automatic quantitative 
analysis of objects present in these images is needed for both 
research and clinical purposes. These images can have the 
usual problems of noise, occlusions, and poor contrast. In 
addition, they provide a rich domain for the study of shape. 
This model domain lies between the extremes of a completely 
arbitrary object and a fixed template. A complete system 
using model-based optimization for the determination of object 
boundaries has been developed [33]. 

The next section discusses alternate methodologies in bound- 
ary finding. Section I11 discusses parametrization alternatives 
and then develops the Fourier parametrization to model closed 
and open curves. Section IV develops the objective function 
for fitting the boundary model to the image. Section V ex- 
plains the optimization methods and implementations used. 
Section VI describes experiments showing the evaluation of 
this method on real and synthetic images. 

11. RELATED WORK IN BOUNDARY FINDING 

To some, using boundary methods means doing edge de- 
tection, that is, calculating a binary edge image. The problem 
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with edge detectors for boundary finding is that the edges 
found do not necessarily correspond to boundaries of objects. 
With the exception of high-quality images from controlled 
environments, edge detectors produce spurious edges and gaps. 
Thus, although boundary information is undoubtedly useful, 
edge detectors per se are of limited use in general and of no 
use in poor-quality images. The limitations of edge detectors 
are due in part to their complete reliance on computations 
made directly on a local neighborhood of pixels in the raw 
image. This ignores both model-based information and higher 
order organization of the image. The methods most closely 
related to the one presented in this paper are discussed below, 
including grouping, pixel search, Hough methods, and whole- 
boundary methods that are optimized in either a parameter 
space or in the image space. 

Grouping is one way of associating edge elements for the 
purpose of determining boundaries [21], [25]. The association 
is done using similarity relations, perhaps in conjunction with 
model information. Forming a complete boundary is usually 
accomplished by first associating individual edge elements 
into edge segments and then associating the segments into a 
boundary. Grouping methods, although robust to areas of weak 
boundary definition, often resort to arbitrary interpolation in 
order to form a complete boundary. In addition, it is often 
difficult to identify and discount spurious edge segments. 

Pixel search methods attempt to find an optimal path through 
an image based on criteria designed to find boundaries. The 
typical objective function combines boundary strength and low 
overall curvature. Dynamic programming [26] and heuristic 
search [23] have been used to solve the optimization problem. 

An alternative method for boundary analysis is the Hough 
transform (41, [lo]. The Hough approach is similar to the 
current method in that it finds shapes by looking for maxima 
in a parameter space and is based on template matching. How- 
ever, the storage and computational complexity of the Hough 
method are a great disadvantage, especially if deformations 
are envisaged. The advantage of the current technique, as will 
be seen, is that the entire parameter space does not have to 
be constructed due to the use of local search in finding these 
maxima. 

Other investigators have considered whole-boundary meth- 
ods that adjust a tentative boundary in order to find a boundary 
in an image. By considering the boundary as a whole, a struc- 
ture is imposed on the problem that simplifies the task. Gaps 
are easily bridged, and overall consistency is more likely to 
result. The method described in this work is a whole-boundary 
method. One of the first instances of this type of approach 
is that of Widrow [34], who used parametrized templates 
called rubber masks to model objects. The parameters are sizes 
and relationships between subparts. Yuille et al. [36] used a 
parametrized template for an eye consisting of a circle bounded 
by two parabolas. The template was deformed to the image by 
optimizing a cost function based on morphological features. 
They developed a similar template for the mouth. Both of these 
methods have the advantage of describing the overall shape of 
the structure using very few parameters. However, the object 
must have sufficient structure to be represented in terms of 
parts, and a new model must be developed for each new object. 

Work has also been done developing deformable templates 
based on Markov models of 2-D boundaries incorporating 
knowledge of shape from statistical features [SI. These part 
models are related to the representation used by Fischler 
and Elschlager [12], where components of an object are held 
together by spring forces. The current method does not rely on 
a part description and is not specific to a particular object but 
supplies specific global shape information. Schudy [5 ]  used 
a spherical harmonic parametrization for boundary finding. 
This model is fairly general but provides no explicit shape 
information other than smoothness. All of these methods fit 
the model to the image data by searching the parameter space 
for the best fit. 

Although the above whole-boundary methods optimized 
in parameter spaces, the following methods optimize in the 
image space. Gritton and Parrish [15] used a flexible bead 
chain, where the beads are putative boundary points. The 
beads are attracted toward pixels that have a higher gradient 
magnitude. Cooper [9] formulated boundary estimation using 
maximum likelihood. A boundary adjustment scheme similar 
to the bead chain algorithm [15] is presented to perform the 
optimization. Kass et al. [ 181 used energy-minimizing snakes 
that are attracted to image features such as lines and edges, 
whereas internal spline forces impose a smoothness constraint. 
The weights of the smoothness and image force terms in 
the energy functional can be adjusted for different behavior. 
The solution is found using variational methods. The use of 
image space representations for the boundary (as opposed to 
parameter space) makes it difficult to incorporate global shape 
information, and none of these methods do so. These boundary 
finding methods are related to elastic matching methods used 
for the similar problem of registering images [2], [7]. 

All of these whole-boundary approaches take an initial 
estimate of the contour and adjust it to optimize some measure 
of fit. Widrow and Yuille et al. used explicit global shape 
information. Their models are best designed for structures with 
well-defined parts. The other methods described limit their use 
of shape information to overall smoothness properties and the 
implicit shape information provided by the initial placement of 
the contour. Prior information can range from the very general 
(e.g., smoothness constraints) to the very specific (e.g., exact 
templates). The boundary finding method described below is 
aimed at the situation between the extremes, where there is 
some prior information about the global shape of the object, 
but it is not exact. 

111. MODEL 

The objects being modeled have smooth boundaries that 
are continuously deformable with no obvious decomposition. 
Because overall shape is the only reliable salient feature, 
a uniform representation that describes the entire shape is 
needed. The prior information available is a flexible bias 
toward more likely shapes. This sort of model can be achieved 
by using a generic parametrization with probability distribu- 
tions defined on the parameters, that is, the parametrization 
itself will be expressive enough to represent any potential 
shape of a given geometric type (for example, closed curves), 
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but the associated probability distributions will introduce a 
bias toward an expected range of shapes. The spread in the 
distributions is due to variability among instances of the object. 
This kind of parametrization represents a stronger use of 
prior information than methods that use only simple shape 
characteristics. 

This section first discusses general design considerations 
for the parametrization and briefly mentions other possible 
methods. The elliptic Fourier method is then described for both 
closed and open curves, including a derivation of a geometric 
interpretation of the parametrization as a decomposition into 
ellipses. The number of harmonics used is then discussed. 
This section concludes with an explanation of the probability 
distributions that are associated with the parameters of the 
representation. 

A. Parametrization Design Considerations 

Each parametrization has particular properties that suit it for 
different purposes. The class of shapes that a parametrization 
can express is important because it represents a limitation 
of domain. Some restrictions, such as smoothness, can be 
convenient because they build a necessary constraint directly 
into the representation. Other restrictions, such as convexity, 
could represent a design compromise in that the class of 
problems addressed is limited by the representation. For fitting 
purposes, it is important that there is a one-to-one, continuous 
mapping between the shape and its parametrization. This 
allows fitting in the parameter space. In addition, it is desirable 
for the parametrization to be concise because that determines 
the complexity of the optimization process. 

B. Alternative Parametrizations 

Many boundary representations that are potentially useful 
for fitting have been developed [6]. Direct representations 
are an explicit list of the coordinates representing the object, 
which is usually indexed by a spatial parameter. Any curve, 
for example, can be ordered by arclength s and represented as 
x(s) and y(s). It can be advantageous to represent a differ- 
ential property of the curve, using, for example, chain codes 
(discrete tangent), $(s) (continuous tangent) [5], or the ex- 
tended circular image (curvature) [ 171. Differential properties 
allow rotation and scale changes easily. The extended circular 
image is the 2-D analog to the extended Gaussian image, 
but it requires convex curves or curve segments. Interpolating 
splines are piecewise polynomials with specifiable continuity 
properties that interpolate between a set of control points. 
Splines and other piecewise representations are essentially 
direct representations that are restricted to certain desired 
functional forms. Superellipses [3] are an extension of ellipses 
using an exponent that varies the shape continuously from 
elliptical to rectangular. The basic shape can be altered by 
such operations as twisting, bending, and tapering, as can any 
explicit representation. Even with these altering operations, 
superellipses are limited by their symmetric cross section 
and, thus, still only represent a very limited family of shapes 
(without resorting to composition). 

C. Fourier Parametrizations 

Fourier representations are those that express the curve in 
terms of an orthonormal basis. The motivation for a basis 
representation is that it allows us to express any object as 
a weighted sum of a set of known functions. An orthonormal 
set is desirable because it makes the parameters distinct. This 
makes coefficient determination easier and avoids redundancy. 

To express the function X ( t )  on the interval (a, b) in terms 
of the basis $ ~ ( t ) ,  we write 

~ 

k = l  

The coefficients p ,  which are the projections of the function 
onto the IC basis functions, are the parameters of the representa- 
tion. In order to use this representation, however, the sum must 
be truncated. In most such representations, the higher indexed 
basis functions represent higher spatial variation. Therefore, 
if the function to be represented is expected to have limited 
spatial variation, as is the case for most real object boundaries, 
the series can be truncated and still accurately represent the 
function. 

The usual basis functions are the sinusoids [27], although 
others, such as those based on orthogonal polynomials, are 
possible. The sinusoids have the advantage of representing the 
familiar notion of frequency. The use of Fourier representa- 
tions of contours has been limited primarily to classification 
applications such as character recognition [ 141 and airplane 
silhouettes [24]. The various representations of curves usually 
differ in the choice of direct representation on which to 
base the decomposition, such as .(e), $(s), [z(s),y(s)], and 
x(s)+iy(s). The .(e) representation limits the curves to radial 
ones. $(s) is not a good Fourier representation because it 
is differential. Curves reconstructed from a truncated series 
for a closed curve using the $(s) representation may not 
be closed. Using a differential representation also exacerbates 
the problem of comers because they become discontinuities. 
The ( x ( s ) ,  y(s)) and x(s) + iy(s) representations are com- 
pletely expressive and do not have the problems of differential 
representations. 

Fourier parametrizations are the most suitable for this work 
for a number of reasons. They are concise and not limited 
to a particular class of objects. The conversion between the 
parametrization and the shape is easily and directly computable 
due to the fast Fourier transform. By using a truncated series, 
we limit the frequency content of the curve. 

D. Closed Curves 

The standard real Fourier representation is based on (l), 
using the sinusoids or trigonometric functions as the basis 
functions, that is 

These can be used, in conjunction with a direct representation, 
as the basis for parametrizations of closed curves. Closed 
curves are useful for representing organs, cells, and other 
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objects that are delineated by a complete boundary. A closed 
curve can be represented by two periodic functions oft, where 
t varies from 0 to 2?r, z(t) ,  and y ( t ) .  If we then take the Fourier 
decomposition of these two functions using the sinusoidal 
basis and write the resulting equations in matrix form, we 
get the elliptic Fourier representation [13], [19], [20] 

cos kt [ = [ 'I::] + k = l  [ 'I:: k ]  [ s i n k t ]  (3) 

1 

where 

a0 = - 2', l'^ x ( t ) d t  

ak = - i2' z(t )  cos k t  d t  

ck = f 1 y ( t )  cos k t  d t  

The closed curve is thus represented by praw = 

CO = $ 12" y ( t ) d t  

bk 1 - 1'' z( t )  sin kt d t  

dk = y(t) sin k t  d t .  
1 2= 277 

Fig. 1. Contour (dark line) at the left is constructed from three component 
ellipses shown at three different times. 

(ao, cor al, b l ,  c1, d l ,  . . .), which will be referred to as the raw 
parameter vector. This particular version of Fourier boundary 
representation has a number of advantages. A geometric 
interpretation, in terms of ellipses, can be developed from 
this decomposition. The geometric interpretation will allow 
for better visualization of the effect of the parameters and 
invariance to starting point, scale, and 2-D rotation and 
translation. Invariance to rotation, scale, and translation is 
important because these parameters are determined not by the 
object but by the view of the object, which often cannot be 
held constant. 

In (3), the first two coefficients a0 and CO determine the 
overall translation of the shape. Each term in the summation 
is the parametric form for an ellipse. In the degenerate case, 
akdk - bkck  = 0 and the parametric form defines a straight 
line (a degenerate ellipse). In each term, the matrix determines 
the characteristics of the ellipse. The contour can be viewed 
as being decomposed into a sum of rotating phasors, each 
individually defining an ellipse and rotating with a speed 
proportional to their harmonic number I C .  This can be seen 
in Fig. 1, where a contour is shown constructed from three 
component ellipses forming a sort of planetary system. The 
straight lines represent the phasors for each ellipse shown at 
three different times. Thus, the point Cij traces out the ith 
ellipse at time j. Each point is the center of the next higher 
ellipse. CO is the center of the first ellipse. Points C31, C32, 
and C33 are three different points on the final curve. 

It is important that the curve representation that is de- 
composed into Fourier components be both continuous and 
periodic. Discontinuities slow the convergence because of the 
high frequencies inherent in a step jump. In this representation, 
both z(t)  and y ( t )  are periodic because the contour is closed, 
and both z( t )  and y(t) are continuous because the contour is 
continuous. 

In (3), we can make t correspond to arclength by taking 
t ( s )  = 9, where s is arclength along the curve from the 
starting point, and S is the total arclength of the curve. 
However, when a curve is reconstructed from a truncated 

series, the relationship no longer holds. This can be seen by 
noting 

(4) 

This expression is a complicated function of the parameters 
and is only equal to & for circles and for the infinite series 

The geometric properties of each of the component ellipses 
can be derived from the raw elements of each ellipse matrix. 
Each ellipse can be described by four geometric properties: 
semi-major axis length, semi-minor axis length, rotation, and 
phase shift. The rotation is the angle from the z axis to the 
major axis of the ellipse, which is defined from - ~ / 2  to ~ / 2 .  
The phase shift is the difference in phase from the major axis 
to the position of t = 0 (the ellipse starting position), which 
is defined from --K to T.  

These ellipse properties can be derived as follows. First, 
consider the general form for an ellipse, which is the product 
of the raw ellipse matrix and the trigonometric basis function 
vector: 

~ 7 1 .  

( 5 )  

In order to determine the ellipse parameters, consider the 
matrix for an ellipse with its major axis aligned with the z 
axis and with no phase shift: 

where A and B are the major and minor semi-axis lengths, 
respectively. The phasor moves counterclockwise for B posi- 
tive and clockwise for B negative. The ellipse can be rotated 
simply by premultiplying the ellipse matrix by a rotation 
matrix. A phase shift of the ellipse by $0 means replacing 
t by t + $0. This is the same as a premultiplication of the 
basis function vector by a rotation matrix or, equivalently, a 
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postmultiplication of the ellipse matrix. Thus, a rotation of this 
ellipse by 6 and shift by 4 can be written as a premultiplication 
and a postmultiplication by rotation matrices: 

cos0 -sin61 [ A  O ]  [cos$ - s in4  

This represents a general ellipse and is thus equivalent to 
the raw ellipse matrix in (5). Therefore, to find the ellipse 
parameters given the values of these matrix elements, solve 
the following four equations that come from identifying cor- 
responding matrix elements for A, B, 8, and $. 

a = +AcosQcosq5- BsinOsin4 
b = -AcosOsin$ - BsinOcos4 
c = +AsinOcos$+ BcosOsin4 

sin6 cos0 0 B s in4  cos4 

d = -AsinOsin$+ B c o s O c o s ~ .  (8) 

This results in 

Ly + @=-ip 
2 

A2.= 

Ac+ Bb o = tan.-’ ___ 
Aa - B d  
Ba - Ad 4 = tan-’ ~ 

Ac+ Bb 

can thus be removed by subtracting its effects from the other 
harmonics and then setting it to zero, that is 

4;  = $hk - k41 $: = 0. (11) 

The parameters 4; represent the absolute phase shifts with the 
overall phase set to zero. These values can now be converted to 
and from relative values in the same way as for the rotations: 

k 

4; = 4;  - 4 - 1  4; = Ed;. (12) 
1=1 

The parameters 4; represent the relative phase shifts. The 
lengths of the axes can be normalized to the first major axis in 
order to isolate a single parameter that determines the overall 
scale: 

2 

These parameters prel = (ao, CO, A’, , Bi , 6 ; ,  A i ,  B; ,0; , 
q!&,, . . .) express the boundary in terms of the relative ellipse 
properties. The further conversion to relative parameters 
shown in (10H13) is both continuous and unique, except 
that the starting point ambiguity has been removed. We 
have explicit equations for the conversion between the raw 
coefficients of the Fourier expansion and the refined and 
relative ellipse parameters. 

(9) 

E.  Open Curves 

where The elliptical Fourier descriptors can also be used for open 
curves. Open curves are useful for representing objects or parts 
of objects that do not have a complete boundary, such as a = a2 + b2 + c2 + d2, p = ad - bc. 
organs with openings or blood vessels, and are best described 

before by two functions x(t) and y(t), but since the curve 
is open, a straightforward representation of the curve would 

this discontinuity can be avoided by having the parameter t 

other end, and then retrace the curve in the opposite direction 
to create a closed path 

By taking A to be positive and to agree in sign with as curved line segments. The curve can be represented as p, we get a consistent sign conventio?. These parameters 
pref = (ao, CO, AI,  B1,61,q!~1, . . .) represent the shape in terms 

parameters. 

the rotation and shift parameters from absolute quantities to 
values relative to the preceding harmonic and by normalizing 
the lengths of the axes. This conversion to relative quantities 

Of the properties and be referred to as the refined result in a discontinuity. Analogously to Persoon and Fu [27], 

A further conversion can improve this set by converting start at one end of the line, trace along the contour to the 

- 
will allow the isolation of an overall rotation parameter and 
the removal of the overall phase shift $1, which is arbitrary. 
Normalizing the lengths of the axes creates an overall scale 
parameter. 

To convert between relative (6’) and absolute (6)  rotations, 
use 

k 

One parameter e’, now determines the overall rotation of 
the object, and each rotation value 0I, represents the rotation 
relative to the preceding harmonic. The conversion of the 
phase shifts to relative values is done in two parts. The 
overall phase shift is removed, and then, the relative values 
are calculated. A phase shift of $0 applied to the boundary is 
equivalent to replacing t by t + 40. For the lcth ellipse, this 
results in a shift of k40 .  The overall phase shift of the object 

x(t) = ~ ( 2 7 ~  - t ) ,  y ( t )  = y ( 2 ~  - t ) .  (14) 

This results in functions x(t) and y(t) that are even, and thus, 
their Fourier sine terms bk and dk are zero. The converse, 
namely, that any elliptic Fourier expansion with bk  and dk 
equal to zero for all lc results in an even function and thus 
describes an open curve, is also true. We can thus represent 
an arbitrary even function in terms of a sinusoidal basis by 
restricting the basis functions to include only even ones. 

deven = { G, 1 7, cosx -, cos22 - cos3x ,...}. (15) 
lr lr 

This representation can be thought of as decomposing the 
curve into degenerate ellipses (flattened down to two co- 
incident lines). The equations for the corresponding ellipse 
parameters are then just 

A2 = a’ +c2 B2 = 0 6 = tan-’ 4 = 0. (16) 
U 
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The ellipses are all degenerate with a fixed starting point at 
one end, thus forcing both the minor semi-axis length B and 
the starting point q5 to be zero. The relative transformations 
for d k  and Ak of the previous section can also be applied. 

F. Number of Harmonics 

The summation in (3) must, in practice, be truncated. 
This truncation limits the number of parameters and smooths 
the curve but decreases the accuracy of the representation. 
Limiting the number of harmonics limits the representation 
to smooth functions and thus constrains the boundary to 
be smooth by excluding functions with higher frequency 
variation. This is analogous to regularization for ill-posed 
problems [29]. In regularization, a functional is devised that 
incorporates a smoothness constraint. Here, the solution space 
is directly restricted to allow only smooth solutions. Smoothing 
by reconstructing a truncated elliptic Fourier representation 
is, in general, a good method for smoothing curves that 
eliminates the problem of shrinkage [22] caused by direct 
filtering methods. The choice of number of harmonics is a 
tradeoff between desired accuracy, conciseness, and degree 
of smoothing. Many biological forms are relatively smooth 
and unconvoluted and, thus, are well represented by a small 
number of components. However, if enough parameters are 
kept, objects with high-frequency contour features may be 
represented. Unfortunately, there will be a corresponding 
increase in computational cost. 

Giardina and Kuhl [13] derived a bound on the error in 
representing a contour that is inversely proportional to the 
number of harmonics and proportional to the integral of the 
absolute value of the second derivative. Empirically, this 
bound was found to be too conservative on a variety of shapes 
by at least a factor of two [19]. Instead, the appropriate number 
of harmonics to use for the representation can be determined 
directly because of the prior information about the shape. As 
will be discussed in the next section, a sample set of boundaries 
must be obtained. Each boundary is reconstructed varying 
the number of harmonics, and the error from the boundary 
is measured. From this procedure, the number of harmonics 
necessary to reconstruct these curves within a fixed error 
bound is determined. For most of the examples considered, 
between four and six terms of the expansion have been used. 

G. The Parameter Probability Distributions 
The probability distributions associated with the parameters 

are intended to bias the model toward a particular range of 
shapes. This prior knowledge comes from experience with a 
sample of images of the object being delineated when such a 
sample is available. When prior information is not available, 
uniform distributions are used for the prior probabilities of 
the parameters. It will be necessary, however, to supply an 
initial estimate of the boundary for the optimization process. 
The images in a sample will differ due to variability in the 
object shape and the view of the object. Consistency of object 
shape is often a reliable assumption and leads to peaked 
distributions for the governing parameters. Consistency of 
view is not always possible, and thus, the view parameters 

Fig. 2. Example mean curve, shown with curves corresponding to parameters 
plus and minus one standard deviation. 

may have to be determined by some other means. The prior 
probability distributions can then be estimated from the shapes 
determined from the sample by decomposing the boundaries 
into their model parameters and collecting statistics. In order to 
calculate these statistics, the boundaries of the objects must be 
determined either by manual segmentation, or alternatively, 
this method can be run on a set of exemplar images with 
manual initialization and uniform distributions. 

If a particular distribution is known to govern the parame- 
ters, it can be used as the prior probability, although if it is not 
unimodal, it will make the optimization difficult. Otherwise, 
if mean and variance information is known, an independent, 
multivariate Gaussian can be used for the N parameters: 

Here, mi is the mean of p i ,  and g: is the variance. An example 
distribution is shown in Fig. 2. The curve corresponding to the 
mean parameter values is the middle curve shown in Fig. 2. 
The curves corresponding to the mean parameter values plus 
and minus one standard deviation are above and below it. 

The Gaussian is the natural form for a probability den- 
sity, and its use may be understood in terms of information 
theory. Among probability densities with a given variance, 
the Gaussian is the one with the maximum entropy [32]. 
Thus, the Gaussian density follows directly from knowing no 
information other than a mean and a variance. In general, the 
parameters in the model may not be independent. Although 
this effect is not considered in this work, it could easily 
be incorporated by accumulating the appropriate statistics to 
construct the covariance matrix. 

IV. BOUNDARY FINDING OBJECTIVE FUNCTION 

In this work, the model is fit to the image by optimization 
in the parameter space. The feature of interest is shape, and 
thus, the boundary of the object is the goal and focus of 
the analysis. The object is expected to be distinguished from 
the background by some measure of boundary strength (and 
direction, when available) computed from the image. Only the 
boundary of the shape is modeled. The boundary value will be 
modeled as constant along the entire boundary. Focusing on 
the boundary has the advantage of reducing the computation of 
the comparison because it is needed only along the boundary. 
Using a boundary measure has the advantage of improving 
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the contrast between a good fit and a close fit because slightly 
misfit areas fit much better than slightly misfit boundaries. 

In this section, we derive an objective function that is a 
measure of fit based on a maximum a posteriori formulation. 
Next, an expression for the likelihood is derived from a simple 
image noise model. The objective is then simplified for the 
parametric boundary template. Then, we discuss two issues 
related to the derivation of the likelihood expression: the 
independence assumption and the noise. Finally, the boundary 
measures used are discussed. 

A. Bayes Rule 

In order to apply the prior knowledge of shape to the 
problem of boundary determination, we can formulate the 
problem using a maximum a posteriori (or minimum error) 
criterion using Bayes rule. Consider the problem of boundary 
determination as one in which the data is an image b(x,y), 
which could be depicting any one of a set of objects, and 
tp(z,y) is an image template corresponding to a particular 
value of the parameter vector p. The goal is to determine which 
object is depicted. In order to determine this, we should find 
the most probable object based on both the prior information 
and the image information. In terms of probabilities, if we 
want to decide to which template tp and image b correspond, 
we need to evaluate the probability of the template, given the 
image Pr(tplb), and find the maximum over p .  This can be 
expressed using Bayes rule, where 

Here, tmap is the maximum aposteriori solution, Pr(tp) is the 
prior probability of template tp, and Pr(b)tp) is the conditional 
probability, or likelihood, of the image given the template. 
This expression can be simplified by taking the logarithm and 
eliminating Pr(b), which is the prior probability of the image 
data that will be equal for all p. Thus, it suffices to maximize 

M(bl L a p )  = max M(b, tp) 
P 

= max [In Pr(tp) + In Pr(bltp)]. (19) P 
The function M is the general form of the objective function 

that will be optimized to find the maximum a posteriori 
solution. This basic form shows the tradeoff or compromise 
that will be made between prior information Pr(tp) and 
image-derived information Pr(bltp). For a uniform prior, 
this formulation reduces to the maximum likelihood solution. 
The likelihood Pr(b1tp) can be derived from the image, as 
described below. 

B. Likelihood Derivation 

The likelihood of obtaining b given that a particular template 
t p  is present is Pr(b1tp). Consider the image b to be a noise- 
corrupted version of one of these templates with noise that 
is independent and additive: b = tp + n. This assumption 
is discussed in Section IV-D. Then, Pr(bltp) is equivalent 
to Pr(6 = t p  + n) or Pr(n = 6 - tp). The noise at each 
pixel n(z,y) equals b(z,y) - tp(z,y) and is governed by 

the probability density Pr(n). These events are independent 
for each point; therefore, the probability for the noise over the 
entire area A is just the product of the individual probabilities. 
Thus, the conditional probability of obtaining b given that it 
arises from tp is the product of the noise probabilities at each 
pixel, that is 

Pr(bltp) = JJ Pr(n(x, Y)). (20) 
A 

We make the further assumption (see Section IV-E) that the 
noise is Gaussian with zero mean and standard deviation on. 
This gives 

( b (  =, Y 1 - "(2 II )) 

2-2 . (21) 
1 -  

Pr(bltp) = JJ -----e 
A G u n  

Now, by taking the logarithm and substituting this result into 
(19), we can expand the objective function equation to get 

This equation is the maximum a posteriori function for images 
with the assumption of independent Gaussian noise at each 
pixel. The first term is the logarithm of the prior probability. 
The second term is a constant. The third term is a sum 
of squared differences calculation. Because CA b 2 ( z ,  y) iS 
a constant, this is approximately equivalent to a correlation 
if CA t i ( x ,  y) does not vary much. A similar interpretation 
for correlation as likelihood was given by Rosenfeld and Kak 
[31] and others. 

C. Boundary Formulation 

The object template tp(z, y) represents the boundary of 
the object. The templates form a continuum, each having 
a corresponding value of a parameter vector p. The ideal 
boundary is 1-D, but it can be embedded into a 2-D image. 
This is done by making tp(z, y) constant along the boundary 
of the object it represents and zero everywhere else. In order 
to fit this template to the image, consider b(x,y) to be a 
boundary measure applied to the raw image data b(z,y) = 
b(i(z, y)). Thus, both tp and b are 2-D functions that represent 
boundaries. They are summed (or integrated), however, only 
along a contour. 

Because the template has support only along the boundary, 
it is not necessary to sum over the entire image area for terms 
involving the template but only over the curve represented by 
the template. Equation (22) can be rewritten 
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where Cp is the curve defined by the boundary (z@), y(p)) in 
template tp. This can be simplified because tp(z, y) is constant 
over the curve that it defines: 

where k is the magnitude of the template at any point taken to 
be constant and chosen to be the maximum boundary response. 
The function M can be simplified further by removing the 
terms that do not depend on the different possible templates 
since we want the maximum over p. We can also remove the 
k2 term because it is a function only of the length of the curve, 
which we can approximate as a constant because it will not 
vary significantly. 

“n cp 

This equation is the maximum a posteriori objective for 
boundary templates. The first term is the bias due to the 
prior probability. The second term is simply a correlation of 
a boundary template with the boundary strength in the image 
and is thus a kind of matched filter [31]. 

We can also consider the boundary to be a vector-valued 
quantity in which the magnitude of the vector represents the 
strength of the boundary, and the direction of the vector is 
the direction of the tangent to the boundary. This means that 
t i (z ,y)  has a constant magnitude along the boundary of the 
object it represents and a direction equal to the tangent to the 
boundary. The corresponding k is now a function of position 
along the curve: 

L as J 

The boundary measure b is a measure of both boundary 
magnitude and direction. Equation (25) can be interpreted as 
vector valued and rewritten using the dot product. 

The continuous version of (25) is 

This line integral can be written as a regular definite integral: 

If a uniform prior were used, the first term would be a con- 
stant and, thus, inconsequential in the maximization. We can, 
instead, expand the first term using the Gaussian distribution 
shown in (17) to get 

In the vector-valued version of this equation, the integrand is 

Equation (29) is the objective function expressed in terms 
of the parameters that are used for boundary finding. The first 
term of this objective function is the contribution of the prior 
probability of the parameter vector. The influence of this term 
is controlled by the variance of the prior probability. If the 
variance of the prior is greater, the influence of this term is 
smaller. The prior also determines the starting point for the 
optimization process. The second term is the contribution of 
the image information. 

%4P, s), Y@, 3)) . k. 

D. Independence Assumption 

The boundary measure at each pixel is calculated from a 
neighborhood of pixels, and therefore, the values are corre- 
lated. Since the boundary measure is a known function of 
the neighboring pixels, this correlation can be determined 
explicitly. In addition, the original image pixel values are most 
likely correlated, but the correlation is, in general, unknown. 
The problem with including the correlation is that it exces- 
sively increases the complexity of the problem. In order to 
account for the correlation between boundary measure values, 
a covariance matrix for all of the boundary values would have 
to be constructed and inverted. To avoid this complication, 
we invoke an assumption of independence. Cooper [9] made 
the same independence assumption for a maximum likelihood 
approach to boundary finding. He compared the probability of 
error with and without the independence assumption for some 
simple examples and found that the assumption did not alter 
the performance significantly. The independence assumption 
amounts to ignoring information (not assuming additional 
information) by the principle of maximum entropy [32 1. 

E.  Noise 
The noise, as described by the formulation in (21), should 

be thought of as not just the degradation of the signal due 
to the imaging process but also as the combined effect of 
many factors such as other objects, occlusion, and boundary 
measurement. These factors are, in general, impossible to 
model explicitly. Instead, we assume that it can be described 
by a Gaussian density with zero mean. A nonzero mean would 
only change the expression by a constant. For the variance 
of the noise ~ 2 ,  we could estimate it as we did the model 
parameters, that is, measure it on solutions obtained either 
manually or with this method using a uniform prior. Although 
the performance depends on ai,  it is not too sensitive to 
it. As can be seen in (25), U: represents the weight of the 
image information and, thus, the relative importance of the 
prior information and the likelihood. If the noise is greater, 
the prior is more important. 

F. Boundary Measures 

Any measure that indicates a change in some property that 
distinguishes the object from the background could be used as 
a boundary measure. A natural candidate for many images 
is the gray-level gradient. The gray-level gradient can be 
calculated by first smoothing with a Gaussian to reduce the 
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effect of noise and simplify the image followed by a finite 
difference approximation to the partial derivatives in order to 
control smoothing independently. A good local approximation 
to the gradient that has components that are unbiased for the 
same point was described by Horn [16]. It gives the average 
of two finite difference approximations for a point midway 
between pixels. The perpendicular to the gradient is used for 
comparison with the tangent of the curve. 

Measures that respond to line strength are useful when the 
object is delineated by a border of a different gray level. 
The gray level itself works as a line indicator when it is 
relatively high at the boundary. A more general line detector 
is the Laplacian. It works as a line detector by acting as a 
nondirectional template for a line in that it has a low center 
and a high surround. The gray-level Laplacian is calculated 
after smoothing using a 3 x 3 discrete approximation [16]. 

V. BOUNDARY PARAMETER OPTIMIZATION 
The problem to be solved is that of maximizing the objective 

function M(p).  The objective function we are solving is not, 
in general, convex but depends ultimately on the gray-level 
surface shape of the image. However, the prior probability 
term in the objective function is quadratic, and it dominates on 
the tails of the distributions, making distant points in the space 
nonoptimal. The starting point for the optimization will be 
taken to be the maximum of the prior distributions. The global 
optimum probably will be near the starting point, and thus, a 
local optimum is likely to be a global optimum. The degree 
to which this is true depends on the width of the distributions. 
Since a local optimization method is likely to be sufficient, 
although there is still the possibility of converging to a poor 
local maximum, the excessive computation involved in finding 
a global optimum is deemed not necessary. Poor convergence 
can be identified by a corresponding low objective function 
value and verified visually. Smoothing can also be used to 
avoid getting trapped in a local maximum (see Section V-C). 

Most numerical optimization methods require the gradient 
of the objective function because it gives the direction of 
greatest increase in the function value [28]. The gradient 
therefore provides the best direction to move in the space in 
order to maximize the objective function. An analytic form 
for the gradient must be derived in order to make use of these 
methods. A discrete approximation is sensitive to errors due 
to poor choice of step size and is computationally intensive. 
Methods that do not require gradient information have the 

These methods require a known interval in which the maxi- 
mum lies. One end of the interval is X = 0. The other end 
of the interval can be found by taking larger and larger steps 
in the direction that the function increases until the function 
decreases again. Unfortunately, there is no basis for choosing 
the size of the steps taken in order to guarantee remaining in 
the neighborhood of one local maximum. 

For this method, we use the relative parameters prel because 
we are not concerned with the complexity of the gradient. 
In spite of the difficulties of line maximizations, this method 
works well, but the number of function evaluations is large. 
This optimization method was applied to a range of problems 
including those shown in Section VI. On average, execution 
took 30 min of CPU time on a Vaxstation 11. 

B. Continuous Gradient Ascent 

Powell's method is slow to converge because of the lack 
of gradient information and the use of line maximizations. 
Most gradient methods, such as steepest ascent or conjugate 
gradient methods, also use line maximization. The rationale for 
line maximization is to make the most out of each gradient 
computation because of the computational cost. However, 
the gradient direction is only the steepest direction in the 
small neighborhood about the point of evaluation. The cost of 
the many function evaluations required for line maximization 
can outweigh the cost of additional gradient evaluations. In 
addition, there is still the problem of obtaining a local optimum 
using line maximization with a multimodal objective. 

An alternative approach that avoids the use of line max- 
imizations is continuous gradient ascent [28], which takes 
small steps in the direction of the gradient. The method 
always moves in the direction of greatest increase in order to 
save many function evaluations. If the gradient computation 
is comparable with the function computation, the overall 
computation can be greatly reduced. 

The rate of convergence of continuous gradient descent 
has been shown to be comparable with, and potentially much 
better than, steepest descent [33]. The gradient calculation is 
described in Appendix A. We will use only p,,, and pref and 
not prel because of the complexity of the gradient with respect 
to the relative parameters. For a range of problems including 
those in Section VI, this optimization method took an average 
of 2 min of CPU time on a Vaxstation 11. 

C. Smoothing " 
advantage of allowing greater flexibility in formulating the 
objective function and in choosing the parameter space in 
that they free us of the restriction of differentiability. Two 
optimization methods were investigated for the implementa- 
tion: Powell's direction set method [30], which does not use 
gradient information, and continuous gradient ascent [28]. 

In order to further reduce the chance that the optimization 
process will converge to a poor local maximum, smoothing 
is used. The amount of smoothing necessary for an image 
depends on the amount of noise, which is not usually known. 
A certain amount of smoothing is necessary to lessen the 
effect of noise; further smoothing simplifies the image. Scale- - -  - 
space, or continuation, methods solve multimodal optimization 
problems by first optimizing at a coarse scale (high smoothing) 
and then tracking the optimal point to increasingly finer 
scales (less smoothing) [35]. The Gaussian is used as the 
smoothing filter. The Gaussian is the optimally localized 
function that is smooth in both space and frequency. For the 

A. Powell Is Direction Set Method 
Powell's method chooses a set of directions in the parameter 

space to move in and then alters the directions based on the 
progress made. For each direction, a line maximization is 
performed by standard means such as golden-section search. 
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current problem, when the image is smoothed, the objective 
function is smoothed, and the optimization space is simplified. 
A smoother and simpler structure in the optimization space 
makes the optimum easier to find because the local region of 
unimodality grows larger. However, too much smoothing on 
complex scenes is a mistake once the smoothing goes beyond 
simplifying individual objects. In order to avoid the problems 
of too much smoothing while still simplifying the image 
somewhat, we have adopted a simple two-level approach. The 
optimization is first done using an intermediate amount of 
smoothing (a ranging from 2.5 to 5.0). The result of that 
optimization is then used as the initial estimate for a second 
optimization, which is done on a slightly smoothed version 
(a = l .O),  in order to accurately localize the boundary. 

VI. EXPERIMENTS 

The boundary finding system was evaluated by testing on 
real and synthetic images. In particular, the dependence of 
its accuracy on prior information and image quality was 
investigated. 

A. Evaluation 
For synthetic images, the true boundary is known, and 

thus, a quantitative measure of error can be devised. For 
real images, we must rely on qualitative evaluation. A natural 
quantitative measure of error is one that is equal to zero for 
a perfect match and gets larger as the boundaries become 
further apart in terms of Euclidean distance. Quantitative 
evaluation is a relatively rare and often neglected component 
of computer vision. Edge detector performance, which is a 
somewhat different problem, has been addressed by Abdou 
and Pratt [l]. The measure they developed was based on 
the distance between the detected edge and the actual edge 
but was limited to straight edges. Cooper [9] used a similar 
measure that was limited to perturbations of straight lines. All 
of these approaches simplify the problem by reducing it to 
1-D, although the problem is inherently 2-D. 

In order to evaluate the error while retaining the two dimen- 
sionality of the problem, we need to establish a correspondence 
between the points on the two curves. The appropriate error 
measure is then the average distance between the correspond- 
ing points on the two curves. The correspondence can be 
determined by finding the offset between the curves that 
produces the minimum average error. In discrete form, the 
curves must first be made commensurable by resampling them 
to an equal number of equally spaced points using simple 
linear interpolation. The error E between the two curves is 
then defined by 

where v is the true curve, v’ is the measured boundary, and 
t o  is the offset. The average error has to be evaluated at 
all possible offsets in order to determine the minimum. The 
computational burden is not important, however, since this is 
only done for evaluation purposes and not in actual use. 

Fig. 3. Synthetic image example. Top left synthetic image (96 x 96). Top 
right: gray-level gradient magnitude (a = 3.0). Bottom left initial contour 
(four harmonics). Bottom right: final contour on target shape. 

Fig. 4. Synthetic image open curve example. Top left: synthetic image 
(64 x 64). Top right: gray-level gradient magnitude (a = 3.0). Bottom left 
initial contour (12 harmonics). Bottom right: final contour on target shape. 

B. Synthetic 
The image shown in Fig. 3 is a simple synthetic Mondrian 

image where the target object (the brightest) is partially 
occluded by one object on the right and overlaps another. The 
extraneous objects are potential sources of choice or confusion 
because alternate boundaries are plausible, especially at the 
right side of the target and at the center of the top boundary. 
The probability distributions for the parameter .vector p were 
derived from a set of manually traced contours. The initial 
curve superimposed is defined by the mean parameter vector. 
The starting boundary only roughly agrees with the target 
in terms of shape and location. The final curve accurately 
delineates the target with approximately one half pixel av- 
erage error. The curve correctly avoids both the overlapped 
and the occluding object both because of the limit on the 
number of harmonics (four) and the bias due to the probability 
distributions on the parameters. 

Another synthetic image is shown in Fig. 4. The target 
i s  the s-shaped portion of the boundary of the large object. 
This structure is described by an open curve model. The other 
objects in the image are potential sources of confusion, as in 
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Fig. 5. Noise experiment images. Left, top to bottom: image from Fig. 3 
with Gaussian noise added with SNR of 5.0, 2.5, 1.0, and 0.5. Each shown 
with final contour. Right, top to bottom: corresponding gray-level gradient 
magnitude (U = 3.0). 

the previous example. The final curve accurately describes the 
target and avoids the other objects. 

C. Varying Noise 

The effect of noise on the performance of the system can 
be investigated by adding different amounts of noise to a 
synthetic image and comparing the resulting boundaries to the 
true boundary. The synthetic image shown in Fig. 3 was altered 
by the addition of Gaussian noise of zero mean and varying 
standard deviation. Examples of the noisy images are shown in 
Fig. 5. The accuracy of the results of running the optimization 
on the noisy images, using the same distributions for each, is 
shown in Fig. 6. Signal-to-noise ratio (SNR) is defined here as 
the ratio of gray-level contrast between object and background 
to the standard deviation of Gaussian noise. The error shown 
is from the boundary from which the image was constructed. 
The accuracy of the resulting contours is good (- 0.5 pixels) 
for SNR > 1 and steadily worsens as the noise increases. Most 
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Fig. 6. Sensitivity to noise experiment. 

Fig. 7. Parameter sensitivity experiment parameters. Top left image from 
Fig. 3 with Gaussian noise added (SNR = 2.5) shown with initial curves for 
range of vertical translation tested. Top right: Image with initial curves for 
range of scale tested. Bottom: image with initial curves for range of rotation 
tested. 

of the error seems to be due to confusion with the overlapping 
object on the right. 

D. Varying Initial Parameters 

The effect of the initial values of the parameters on the 
performance can be investigated by examining the results of 
running the same problem from different starting points. Here, 
we used the same synthetic image with SNR = 2.5 constructed 
as above. The parameters varied were vertical translation, 
scale, and rotation. The other parameters were held constant, 
whereas each of the above three parameters were varied 
individually. The range of initial curves for the parameters 
tested are shown in Fig. 7 with the image used. This image, 
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Fig. 8. Sensitivity to initial parameters experiment. 

although it is synthetic, has a reasonable amount of noise 
and complication. The accuracy of the resulting optimized 
boundaries using these different starting points is shown in Fig. 
8. Each parameter has a range within which the solution can 
be found to be reliable. Once the parameters are varied beyond 
that range, the result will converge to false local minima 
corresponding to nearby features. This region of success or 
capture about the true boundary depends on the quality of the 
image, the degree of smoothing, and the particular problem. 
False minima can be distinguished, however, both visually and 
by the relative value of the objective function. 

E. Varying Bias 

This experiment is designed to show different results from 
two different prior probability distributions applied to the 
same image. To show that the difference is due to the prior 
probability term in the objective function and not simply the 
starting point, the distributions will have the same mean value 
but different variances. A synthetic Mondrian image, which is 
shown in Fig. 9, was designed containing two similar objects. 
The light object corresponds to a rotation of the mean prior 
curve. The dark object underneath it is a scaled version of 
the mean curve. The prior distribution can be biased toward 

Fig. 9. Bias experiment. Top left: synthetic image (64 x 64). Top right: 
gray-level gradient magnitude (a = 1.5). Middle: initial contour (six har- 
monics). Bottom left final contour, biased to scaled target shape. Bottom 
right: final contour, biased to rotated target shape. 

finding the light object by having a wide distribution on the 
rotation parameter and narrow distributions on the others. 
Conversely, a wide distribution on the scale parameter and 
narrow distributions on the others will bias the optimization 
to the dark object. These two different prior distributions were 
applied to the image, and the results are shown in Fig. 9. 

F. Real Images 

The deformable object boundary finding method has been 
applied to a variety of objects from real images with an 
emphasis on heart and brain images using primarily magnetic 
resonance images. The results of the method applied to the 
problem of delineating the corpus callosum in the human 
brain from magnetic resonance images are shown in Fig. 10. 
In these images, the corpus callosum is separated from the 
rest of the brain by a dark line. In this case, we used the 
positive magnitude of the Laplacian of the Gaussian as a line 
detector. The final contour succeeds in delineating the structure 
properly. 

Magnetic resonance is becoming increasingly important for 
cardiac imaging as acquisition rates increase into the range 
required for imaging the moving heart. In Fig. 11, a transaxial 
cardiac image shows a section through the left ventricular wall. 
Here, the endocardial (inner) and epicardial (outer) walls of the 
left ventricle are objects to be delineated. The results of the 
two separate optimizations are shown. 

In Fig. 12, we show a simple but effective approach 
to temporal sequence analysis applied to a cardiac motion 
sequence from magnetic resonance. By delineating an object in 
successive temporal frames, the motion of its boundary can be 
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Fig. 10. Magnetic resonance midbrain sagittal image example. Top left: 
magnetic resonance image (146 x 106). Top right: positive magnitude of 
the Laplacian of the Gaussian (U = 2.2). Bottom left: initial contour (six 
harmonics). Bottom right: final contour on the corpus callosum of the brain. 

Fig. 12. Magnetic resonance oblique sagittal cardiac image motion example. 
Top: magnetic resonance image (256 x 256) with initial contour (four 
harmonics). Middle left final contour on the endocardium of the left ventricle 
(frame 1). Middle right: final contour (frame 2). Bottom left: final contour 
(frame 3). Bottom right: final contour (frame 4). 

Fig. 11. Magnetic resonance transaxial cardiac image example. Top left: 
Magnetic resonance image (256 x 156). Top right: gray-level gradient 
magnitude (U = 4.0). Middle left: initial contour on endocardium (four 
harmonics). Bottom left: final contour on endocardium of the left ventricle. 
Middle right: initial contour on the epicardium (four harmonics). Bottom right: 
final contour on the epicardium of the left ventricle. 

inferred. The delineation problem is first solved on the initial 
frame of the sequence. Then, the solution is used as the initial 
boundary for the next frame since the boundary in each frame 
should be close to each preceding frame. 

VII. CONCLUSION 
This work presents a general boundary finding system for 

images of simple natural objects. The goal of this work was 
to incorporate model-based information about global shape 
into boundary finding for continuously deformable objects 
by augmenting a shape parametrization with probabilistic 

information. It was found to perform well at delineating 
structures from testing on real and synthetic images and to 
be relatively insensitive to the problems of broken boundaries 
and spurious edges from nearby objects. The flexibility of 
the model, both in terms of its probabilistic nature and the 
parametric representation, make this an attractive method for 
boundary finding. 

There are, of course, areas of potential improvement for 
this work. Further analysis of the correlation between the 
values of the calculated boundary measure would help to better 
understand the correlation’s effect on the objective function. 
The calculation of the gradient of the objective function with 
respect to the relative parameters could be attempted in spite of 
the complexity. Since one of the main benefits of the relative 
parameters is the isolation of the view parameters (translation, 
rotation, and scale), perhaps a simpler transformation that 
isolates the view parameters could be devised. Because the 
initial estimates of the view parameters may not be very good, 
an additional process to determine them could be added. This 
could involve an initial exhaustive coarse search over just 
those parameters. If this were done at a low resolution, the 
computation might not be excessive. Additional information, 
such as other low-level features or constraints between objects, 
might also help to guide the initial placement. 

Future directions include incorporating constraints and ex- 
tending the parametrization to curves and surfaces in 3-D. 
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Initial work in this direction has been described [33]. The 
framework presented here could also, perhaps, be used with 
other shape parametrizations better suited to man-made objects 
with straight sides and comers. The method could also be 
extended to object recognition where an image is fit to each 
of the models for different objects in a database. The correct 
model will result in the best fit because it will be the closest 
in the parameter space. The boundary finder and some of the 
ideas from this work have also been applied to the problem of 
contour-based deformable object motion [ 111. 

If we use the refined ellipse parameters pref (excluding the 
relative transformation), we get 

dX(t)  = 1 - 

- = 0 
"0 

ax(t)  - cos ek cos(+k + k t )  
aAk 

- = - sin 8k sin(q5k + k t )  

aa0 

axc(t> 

ax(t> 
aBk 

a numerical approximation based directly on the objective 
function calculation. First, differentiate (28) to get 

d In Pr@) 
ap 

OM@) = 

-= ay(t)  Ak COS 8k cos(bk + k t )  - B k  Sin 8k Sin($k + k t )  
In the above equation, we have used the simplifying ap- d8k 

proximation that ds is not a function of p. For Gaussian prior 
distributions, as in (17), the first term is 

ay ( t )  
-= a ~ k  

-Ak Sin 8k Sin(4k + k t )  + B k  COS 8k cos(4k + k t ) .  

(36) 
dlnPr(p) pi  - mi Differentiation with respect to the relative parameters prel 

will result in a much more complex expression because the 
interdeDendencies between the parameters greatly increase. 

-~ - - (32) 2 4  . aP 

ne 
divided difference approximation. we get 

calculated by noting that 

of b, which is the boundary image, with The vector valued version of the objective function can be 

respect to x and y can be calculated using a central discrete differentiated similarly to the scalar One. From (28) and (26), 

The partials of x@, s) and y@, s) with respect to p can be VM@) = 

+-- 
as ax 

-- ax Y) , ay 
Y)] 

ds 
(33) 

ax@, - ax:(p, t ( s ) )  
aP aP 

[ Z T  as a y  
(37) and that 

where b, and by are the x and y components of b, and we 
have dropped the explicit notation of the dependence of x and 
y on p and s. Here, we have also approximated by ignoring the 
terms a/ap(ax/as) and d/dp(dy/ds). The above expression 
requires the calculation of ax:/& and ay:/&. These, along 

calculated using a discrete divided difference approximation. 
The other terms are calculated as above. 

To numerically integrate, we use the x, y points generated 
by the template-making procedure along with the associated 
lengths and t ( s )  values. The lengths are the weight for each 
term in the integration. The template is relatively computation- 
ally expensive to generate, but it only has to be computed once 
for each gradient calculation. In fact, the function value and 

(34) 
(k+l - k ) ( s  - S i )  t ( s )  = ti + 

S i + l  - si 

Then, from the Fourier relation in (3), we can calculate the 
partials Of and with respect to the raw parameters Praw: with the partials of b, and by with respect to and y, can be 

a 4 t )  - 1 = coskt a = sinkt aao 
W t )  - 0 W t )  - 0 &J 
aco ack 

aY(t) - 0 p = 0  p = 0  
aao 

aco 
(35) = sinkt. a& = coskt aY(t) - 1 
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the gradient can be calculated from one template generation. 

computation and practical to use. 

[26] U. Montanan, “On the optimal detection of curves in noisy pictures,” 
Commun. ACM, vol. 14, no. 5, pp. 335-345, May 1971. 

IEEE Trans. Putt. Anal. Machine Intell.. vol. PAMI-8, no. 3, up. 

0vera117 the gradient is ‘Omparable with Objective [27] E, persoon and K. Fu, “Shape discrimination using Fourier descriptors,” 
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