#### **Registration - I** Shashidhar Reddy Puchakayala (Shashi)

Apr 15, 2010



- What is registration?
- Why registration ?



#### Formulation of problem

Find feasible transformations  $\varphi$ ,

$$\varphi \in \prod_{1}^{d} (\mathbb{R}^{d})$$
, such that  $D[\varphi] = min$ 

 $D[R,T;\varphi] = D[R,To\varphi]$ 

#### **Distance Measures?**

- Uni Modality
  - Intensity based.
  - Correlation



- Multi Modality
  - Mutual Information and joint Entropy
  - Maximum Likelihood
  - Kullback-Leibler Divergence



#### **Intensity Based**

Minimisation of squared differences

$$D^{SSD}[R,T] \coloneqq \frac{1}{2} ||T - R||_{L_2}^2$$
$$\frac{1}{2} \int_{\mathbb{R}^d} (T(x) - R(x))^2 dx$$

 $D^{SSD}[R,T;\varphi] = D^{SSD}[R,To\varphi]$ 

### Results







### **Mutual Information**





### 2-D Histogram

• How does a 2-D histogram of two same images look like ?

#### Image 1



Image 2



sagittal slices 256 x 256 x 9 1.2 x 1.2 x 4mm

# Registration compensates for different head position at acquisition.

unregistered





registered

Histogram

Difference image

#### **Histogram dispersion**

2-D histogram

MR

intensity



Registered



Not registered

### **Registration criterion**



the statistical dependence of corresponding voxel intensities is maximal at registration

# Maximization ofMaximization ofmutual information of A and B, respectively $H_A(\alpha), H_B(\alpha)$ marginal entropy of A and B, respectively $H_{AB}(\alpha)$ joint entropy of A and B $I_{AB}(\alpha)$ mutual information of A and B

$$I_{AB}(\alpha) = H_A(\alpha) + H_B(\alpha) - H_{AB}(\alpha)$$

"Find as much of the complexity in the separate datatests (maximizing  $H_A$  and  $H_B$ ) such that at the same time they explain each other well (minimizing  $H_{AB}$ )."

$$I_{AB}(\alpha) = H_A(\alpha) - H_{A|B}(\alpha)$$

"Find as much of the complexity in datatet A (maximizing  $H_A$ ) while minimizing the residual complexity of A knowing B (minimizing  $H_{A|B}$ )."

# Maximization of mutual information



$$I(A, B) = \sum_{a,b} p_{AB}(a, b) \log_2 \frac{p_{AB}(a, b)}{p_A(a) \cdot p_B(b)}$$

$$\boldsymbol{\alpha}^* = \arg \max_{\boldsymbol{\alpha}} I(A,B)$$

#### Application Radiotherapy treatment planning of the prostate from CT and MR images (Oyen et al.)





## Groups





