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Abstract 
We confront the theoretical and practical difficulties 

of computing a representation for two-dimensional shape, 
based on shocks or singularities that arise as the shape’s 
boundary is deformed. First, we develop subpixel local 
detectors for finding and classifying shocks. Second, we 
show that shock patterns are not arbitrary but obey the 
rules of a grammar, and in addition satisfy specific topo- 
logical and geometric constraints. Shock hypotheses that 
violate the grammar or are topologically or geometrically 
invalid are pruned to enforce global consistency. Sur- 
vivors are organized into a hierarchical graph of shock 
groups computed in the reaction-diffusion space, where 
diffusion plays a role of regularization to determine the 
significance of each shock group. The shock groups can 
be functionally related to the object’s parts, protrusions 
and bends, and the representation is suited to recogni- 
tion: several examples illustrate its stability with rota- 
tions, scale changes, occlusion and movement of parts, 
even at very low resolutions. 

1 Introduction 
What does it mean to recognize an object from its 

shape? Informally, this implies an identification of the 
shape with a familiar category or class of objects, Fig- 
ure 1. This notion of categorization is crucial to many 
vision tasks, such as searching a database of shapes 
rapidly, reasoning about the attributes of new or un- 
familiar shapes, etc. Curiously, whereas this ability to 
categorize appears to come naturally and effortlessly to 
humans, it has been extremely difficult to formalize for 
computers. In this paper, we address the computational 
aspects of this problem; specifically, we investigate the 
description of generic shape classes from the mathemat- 
ical perspective of curve evolution. 

Figure 1: These birds are effortlessly grouped into two cate- 
gories, based on similarity in “form”. 

Existing proposals for shape representation emphasize 
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properties of its region, e.g., symmetry and thickness [l], 
or of its boundary, e.g., curvature extrema I:20] and in- 
flection points, or of both [2]. An alternate classification 
is according to those where shape is viewed statically as 
a combination of primitives, e.g. , generalized cylinders, 
versus those where shape is explained developmentally 
via a set of processes acting on a simpler shape [14]. 
Returning to the region-based symmetrac axis transform 
(SAT) [l], this view has spawned a vast literature on the 
theoretical and computational aspects of skeletons. How- 
ever, it is unfortunate that Blum’s key insig;ht that the 
SAT provides for qualitative shape descriptions in terms 
of “shape morphemes”, e.g., disc, worm, wedge, flare, 
etc., is usually forgotten. Curiously, an evolutionary a p  
proach to shape description supports and complements 
this view, and gives it a sound mathematical founda- 
tion [8, 101. To elaborate, Kimia et al. explore deforma- 
tions of the shape’s boundary, a special case of which is 
deformation by a linear function of curvature K :  

(1) 
= (Po - PI@ 1 { & O )  = C*(s). 1 

Here C is the boundary vector of coordinates, N” is the 
outward normal, s is the path parameter, t is the time 
duration (magnitude) of the deformation, and PO, are 
constants. The space of all such deformations is spanned 
by the ratio /30//3I and time t ,  constituting the two axes 
of the reaction-diffusion space. Underlying the represen- 
tation of shape in this space are a set of shocks [ll], 
or entropy-satisfying singularities, which develop during 
the evolution and are classified into four types, Figure 2 
(left): 1) A FIRST-ORDER SHOCK is a discontinuity in ori- 
entation of the shape’s boundary; 2) A SECOND-ORDER 
SHOCK is formed when two distinct non-neighboring 
boundary points collide, but none of their immediate 
neighbors collapse together; 3) A THIRD-OFLDER SHOCK 
is formed when two distinct non-neighboring boundary 
points collide, such that the neighboring boundary points 
also collapse together’ ; and 4) A FOURTH-ORDER SHOCK 
is formed when a closed boundary collapses onto a single 

Whereas third-order shocks are not generic they merit a dis- 
tinct classification because of their psychophysical relevance [9] and 
the abundance of biological and man-made objects with “bend- 
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Figure 2: LEFT: The four shock types. 
& 

RIGHT: The sides 
of the shape triangle represent continua of shapes; the ex- 
tremes correspond to the “parts”, “bends” and “protmsions” 
nodes [9]. 

point. While these definitions are intuitive, they do not 
easily lend themselves to  algorithms for shock detection. 
A key idea of this paper is that  shock computations can 
be made robust by relying not only on better (subpixel) 
local detectors and classifiers, but also on global inter- 
actions between shocks, through a shock grammar. In 
related work, Leymarie and Levine have simulated the 
grassfire transform using active contours [13]; Scott et 
al. have suggested the use of wave propagation to  obtain 
the full symmetry set [21]; Kelly and Levine have demon- 
strated the use of annular operators in obtaining coarse 
object descriptions from real imagery [7]; and Pizer et 
al. have proposed a computational model for object r e p  
resentation via “cores”, or regions of high medialness in 
intensity images [2]. Our work extends the above ap- 
proaches in a number of ways, which are perhaps best un- 
derstood in the context of the distinction between shocks 
and skeletons. 

The set of shocks which form along the reaction axis 
reduces to  the traditional skeleton when information re- 
garding type,  group, and salience is discarded [23]. How- 
ever, first, the notion of type is essential to  capture qual- 
itative aspects of shape, leading t o  generic perceptual 
shape classes’ and algorithms for obtaining them, Sec- 
tion 2. Second, the grouping of shocks depends not only 
on their type but also on sequential, geometric and topo- 
logical constraints obtained from a history of shocks, Sec- 
tion 3. This results in a hierarchical representation of 
shape by shock groups, as illustrated by numerous ex- 
amples, Section 4. Third, the notion of salience connects 
“nearby” shapes, e.g., Figure 19, providing a foundation 
for a topology over shape for recognition. In conclusion, 
we suggest how the shock-based framework might be ex- 
tended to apply directly to images, Section 6. 

like” components, e.g., fingers, limbs, legs of a table, etc .  Also, 
they are simultaneously the limit of first-order shocks travelling 
with infinite speed, but in opposite directions. 

‘First-order shock groups describe “protrusions”, second-order 
shocks occur a t  “necks”, third-order shock groups describe 
“bends”, and viewing the evolution in reverse, fourth-order shocks 
are seeds from which the shape is grown (91. 

ourth Order Flrst Order Thlrd Ordcr Sscond Order \Fourth Order First Order 

a b 5 d D f 

Figure 3: A classification of shock types based on the tan- 
gents and the local neighborhood of the two shock generating 
boundary points. The curvature disparity is the sum of the 
two (signed) curvatures. 

2 Shock Classification and Detection: 
Local Operators  

In the design of shock detection operators we face two 
primary challenges: that  of arriving at a complete shock 
classification scheme which leads to a computational al- 
gorithm for detection, and that  of obtaining accurate ge- 
ometric estimates without blurring across singularities. 
We discuss shock classification and detection in turn. 

2.1 Classification of Shocks 
An intuitive approach is to  classify a shock based on 

properties of the boundary points which collide at it,  
Figure 3 .  Whereas this classification provides insight it 
is difficult to  implement directly, e.g., the mapping of 
a shock to its associated bi-tangent points can become 
intractable in the presence of multiple nearby topolog- 
ical splits. Alternatively, one may rely on the differ- 
ential properties of an embeddang surface, an approach 
which proves to  be computationally efficient and robust. 
For theoretical as well as numerical reasons, the original 
curve flow is embedded in the level set evolution of an 
evolving surface [3, 171, z = $(z, y ,  t ) :  

with the correspondence that  the evolving shape is repre- 
sented at  all times by its zero level set $(z, y ,  t )  = 0 .  For 
convenience we take the initial surface $0 to be the signed 
distance function to the shape’s boundary (although any 
Lipshitz continuous function will suffice [3]). The clas- 
sification of shocks based on differential properties of 4 
is summarized in Figure 4 and Table 1. A first-order 
shock correspon+ to  a discontinuity in the orientation 
of the tangent T to  the level curve, computed from 4 
as arctan( *). Since the colliding boundary points 
have normals pointing in opposite directions, lV$i = 0 at 
second-,third- and fourth-order shocks. These shocks 
can be distinguished from one another by the Gaussian 
curvature, Table 1. Note that  this classification is invari- 
ant to the choice of the embedding surface and that  all 
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Figure 4: Shock classification based on properties of an em- 
bedding surface. TOP LEFT: First-order shocks occur at cor- 
ners, corresponding to creases on the surface with 1041 > 0. 
TOP RIGHT: A second-order shock corresponds to a hyper- 
bolic point with l041 = 0. BOTTOM LEFT: Third-order 
shocks correspond to parabolic points with 1041 = 0. BOT- 
TOM RIGHT: A fourth-order shock corresponds to an elliptic 
point with lV&l = 0.  

Shock Type 
First 

Second 
Third 
Fourth 

Orientation Curvature 

~ ~ 6 2  < 0 
t i 1 6 2  = 0 
ti1 ~2 > 0 

non-vanishing Vq5 high ti 

isolated vanishing V4 
non-isolated vanishing Vd 

isolated vanishing T'& 

the level set curvature K ,  and the principal curvatures 
~ 1 ,  K Z  of the surface 

the necessary quantities can be computed locally3. 
2.2 Subpixel Shock Detection 

We develop a subpixel implementation of the above 
ideas in order to obtain accurate geometric estimates in 
the vicinity of discontinuities and to localize shocks. Note 
that whereas the level set formulation supports subpixel 
curve evolution an algorithm that only attempts to lo- 
cate shocks at grid points will suffer from discretization 
artifacts. 

A class of techniques called essentially non-oscillatory 
(ENO) schemes have recently been introduced in the nu- 
merical analysis literature to address the problem of inac- 
curate differential estimates in the vicinity of discontinu- 
ities [SI. The basic idea is to select between two contigu- 
ous sets of data  points for interpolation the one which 
gives the lower variation, such that at regions neighbor- 
ing a discontinuity the smoothing is always from the side 
not containing it. By replacing polynomials with geo- 
metric interpolants: lines, circular arcs, etc., these ideas 
have been adapted to the 2D problem of locating level 
curves of an embedding surface while preserving and 
explicitly placing orientation discontinuities (first-order 
shocks) [24]. The method provides a subpixel contour 
tracer (for open and closed curves) which can be used 
to recover the shape's contour from the evolving embed- 

4,,4,,-m:: , 

31v4i = (4: + 4 ; Y ;  n l n 2  = GTZT@ 
nl + n2 = ( l + ~ ~ ) m y y - 2 m i m y ~ r y + ( l + ~ ~ ) m = r  

( 1  + R  t 4 ; Y  

Figure 5: CLOCKWISE FROM TOP LEFT: The geometric EN0 
interpolation technique [24] preserves discontinuities in the 
vicinity of first- , second-, third-, and fourth-order shocks; 
gridlines are overlayed and detected corners are marked. 

, -, 
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Figure 6: LEFT: The zero crossing contours of (1041 - c) 
demarcate regions around the putative shock points. RIGHT: 
Zero-crossing curves of rP2 and dY intersect at exactly three 
points, two of which are fourth-order shocks, and one of which 
is a second-order shock, as determined from the sign of ~ 1 ~ 2 .  

ding surface, Figure 5 ,  and can be extendlad to higher 
order shock detection as follows. Recall that 1041 = 0 at 
higher order shocks. Therefore, the geometric interpola- 
tion method may be used to find E crossings of IO$/, Fig- 
ure 6 (left). However, this approximation always yields 
2D regzons surrounding the putative shock points. As a 
solution, since 0, and dY must each go to zero zndepen- 
dently for 1041 to go to zero, the problem can be reduced 
to two 1D problems by considering zero-crossing curves of 
4, and qby4, and finding overlaps, Figure 6 (right). This 
suggests the algorithm for higher order shock detection 
outlined in Figure 7; further details appear in [23]. 

3 Shock Grouping: Global Interactions 
The fact that  the set of shocks formed under pure 

reaction (PI = 0) provides the SAT [23] implies that  geo- 
metric and topological properties that  hold for skeletons, 
e.g., those studied in [4, 221, must hold for shocks as 
well. We examine three types of constraints on shock 
formation in Figure 8: sequential, geometrzc and topolog- 

4Care must. be taken to avoid regions where either & or $,, is 
identically zero over a neighborhood of grid points. Fortunately, 
6, and 4Y cannot both be identically zero over the same regions, 
since that would imply a 2D region of third-ordershocks, which is 
an impossibility. 
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Figure 7: Higher order shock detection based on overlaps 
of 4z = 0 and 4, = 0 within a cell. The four neighboring 
grid points are marked with filled circles. LEFT: When the 
two curves pass through the same cell and are not parallel, a 
second-order or fourth-order shock is placed at the point of 
intersection (provided that it lies within the cell), based on the 
sign of the Gaussian curvature. RIGHT: When the two curves 
pass through the same cell and are close to parallel (their 
slopes are within 10 degrees), a set of third-order shocks is 
interpolated as a line drawn through the averaged endpoints. 

ical; the first type pertains to allowed sequences of shocks 
in a group; the latter two relate to  properties of one or 
more shock groups (smoothness, connectivity, etc) . The 
constraints suggest a course of actions to  be taken in 
order to prune impossible shock configurations and or- 
ganize survivors into more global structures, Figure 10. 
Further, the sequential constraints can be concisely de- 
scribed via a shock grammar. Formally, a grammar G 
is a language generating device, which is defined by a 
quadruple ( V , C ,  R , S )  [12]. Here V is an alphabet di- 
vided into two parts, the set of terminal symbols C C V 
and the set of non-terminal symbols V - C. S, the start 
symbol, is an element of V - C and R, the set of rules, 
is a finite subset of V*(V - C)V*  x V’ The grammar 
operates by beginning with a start symbol and then con- 
structing a string via repeated applications of the rules, 
i.e., by identifying a substring in the current string which 
appears on the left hand side of one of the rules, and re- 
placing it with the string that  appears on the right hand 
side of that  rule. We introduce a shock grammar, SG,  
as follows: 

The  symbols SI, Sz, Sq represent first-, second-, and 
fourth-order shocks. 5’1 is a start symbol, ST is a ter- 
minal, and since third-order shocks never appear in isc- 
lation, a group of third-order shocks is an element of 
the alphabet, denoted by S,. E represents the end of 
a growing shock sequence and is used to enforce the re- 
quirement that  shocks be added only to  that  end, mak- 
ing the grammar context dependent. Figure 9 illustrates 
the application of the grammar. Note that whereas the 
grammar suffices to  describe the composition of a shock 
group, it does not reflect the geometric and topologi- 
cal constraints; this may be possible by embedding the 
grammar in a graph. 

P1. First order shocks flow with finite speed, except for a 
set of isolated points (e.g., initial first-order shocks flowing 
outwards from a second-order shock). 
P2. First and third-order shock directions change continu- 
ously, Le., these shock branches cannot have any corners. 
P3. Second-order shocks are initial and are isolated from 
other second-order, third-order, and fourth-order shocks. 
R1. Once formed, a second-order shock must give rise to 
two first-order shocks that flow out of it. The speed of each 
fist-order shock is infinite. 
P4. A first-order shock branch can either merge with an- 
other first-order shock branch, terminate in a third-order 
shock branch, or terminate in a fourth-order shock. 
P5. Two third-order shock branches cannot intersect. 
P6. A first-order branch can flow into or out of a third-order 
branch’s endpoints, but never into or out of a point that lies 
in the interior of a third-order branch. 
R2. A single first-order branch that flows into or out of a 
third-order branch’s endpoints, should maintain continuity 
of orientation. 
P7. Fourth-order shocks are terminal. 
P8. A circle is the only shape described by an isolated 
(fourth-order) shock. Non-circular shapes cannot have any 
isolated shocks. 
R3. For non-circular shapes, each fourth-order shock must 
have at least one fist-order shock branch flowing into it. 

Figure 8: Proofs and explanations of propositions P1-P8 
and remarks R1-R3 appear in [23] .  An initial shock is one 
which may give rise to other shocks, but can have no shocks 
flowing into it; a terminal shock has no shocks flowing out of 
it, but may have shocks flowing into it. 

I 

I I 

I 

Figure 9: The examples illustrate the construction of differ- 
ent shock groups by repeated application of the rules of the 
shock grammar. 

4 Examples 
We illustrate the robustness of our two-stage nu- 

merical algorithm for shock detection and classification 
with several examples. The reconstructions are simu- 
lations of the “growth” of each shape from its shock- 
based representation, with linear interpolation of the 
radius function between successive shocks on the same 
branch5. Figure 11 depicts the evolution of shocks for a 

5The initial distance transform is blurred very slightly to com- 
bat  discretization effects, hence the reconstructions have slightly 
rounded corners. 
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1 Al .  A first-order shock should be appended to the end of an 
existing first-order shock group so long as it: 1) maintains 
continuity in position as well as direction of flow with the 

I last shock added to the group, and 2) has finite speed. Oth- 
1 erwise, a new first-order shock branch should be initiated. 
A2. A second-order shock hypothesis should be discarded 
if it is not initial, or if it does not subsequently give rise to 
two outward flowing first-order shock branches. Otherwise 
it should be kept and identified as the parent of the two first- 
order shock branches. 
A3. A single first-order shock branch that intersects a third- 
order branch, or that terminates or emanates from a third- 
order shock branch’s endpoints without maintaining conti- 
nuity in orientation, should be discarded. 
A4. Two third-order shock hypotheses should be grouped 
together if they are neighbors, and if their orientations are 
consistent (the shock group has to be smooth). Distinct 
groups of third-order shocks should not intersect, and any 
third-order shock that remains isolated should be interpreted 
as a fourth-order shock. 
A5. A fourth-order shock hypothesis that is not isolated 
from other second-, third-, or fourth-order hypotheses should 
be discarded. A fourth-order shock that is isolated should 
be interpreted as a circle, otherwise it should be identified as 
the point of annihilation of the merging first-order branches. 

Figure 10: Actions Al-A5 are used to prune impossible 
shock configurations and organize surviving shocks. 

dumbbell shape, leading to  its description as two “seed- 
based” parts (fourth-order shocks) connected at a “neck” 
(second-order shock), with each part having three pro- 
trusions (first-order shock branches). Figure 12 illus- 
trates the robustness of shock detection under rotation 
and stretching: the structural description of each triangle 
as a %eed with three protrusions merging onto it” and of 
each rectangle as a “bend with two protrusions a t  each 
end”, is preserved. Next, the description of the shape 
in Figure 13 (top) as a hierarchical collection of protru- 
sions converging onto a single seed is intuitive and can 
be used for recognition. The representation of the tool in 
Figure 13 (bottom) is suited to  recognition: a different 
pair of pliers would match the structural description of 
“two large bends, attached at one end” (the handles) con- 
nected to  “two smaller protrusions, attached at the other 
end” (the head); the same pair of pliers would have to  
match relative shock locations, formation times and ve- 
locities as well. Figure 14 illustrates the robustness of the 
representation in the face of occlusion, movement, and 
bending of parts: regions remote to  the deformations are 
not affected and a qualitative description as a collection 
of bends attached to  a hierarchy of protrusions emerges 
throughout. Finally, Figure 15 depicts the shock-based 
description of two handwritten letters (left) and the com- 
putation of shock speed and acceleration (right). In all 
the examples the shock branches are smooth and the r e p  
resentation allows for precise reconstruction and accurate 
metric measurements, as well as for qualitative percep- 
tual shape classes. The latter are crucial for the identi- 

Figure 11: TOP: The evolution of shocks under inward re- 
action for a rotated dumbbell shape; the arrows depict the 
velocity of the last shock added to each branch. BOTTOM: 
The growth of the dumbbell from its shock-basedl description. 

Figure 12: The shock branches remain smooth (and no spuri- 
ous branches are added under rotation or stretching. Further, 
the structural description of each triangle as “ithree protru- 
sions converging onto a single seed” and of each rectangle as 
a “bend with two protrusions at each end” is preserved. 

fication of two different shapes as instances of the same 
category. 

5 Structural Diffusion 
A variety of approaches have been proposed to  deal 

with the sensitivity of the SAT to  boundary details, e.g., 
blurring to  create a multiresolution SAT [19], the use 
of residual functions [16], and non-linear diflusion of the 
shape’s angle function [18]. Following the theoretical de- 
velopment of [SI, the approach we suggest i:; to  use cur- 
vature deformation ( P I )  as a smoothing process to  assign 
a significance to  each shock group6 : 

Remark 1 (Significance) The signzficance of a shock 
group is proportional to its survival with ancreasing 
amounts of curvature deformation. 

6This choice enforces a number of desirable properties, e.g., in 
the case of Ox /Oo --+ M, any embedded curve will evolve to a round 
point without developing self-intersections or singularities (51, and 
the number of extrema and inflection points is non-increasing, im- 
plying that no new shock branches can form. 
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Figure 13: The shock-based description and growth of a 
shape composed of trapezoids (TOP), and of an industrial 
shape (BOTTOM). The originals shapes are on the left, and 
the reconstructions on the right. 

1,- , i 

Figure 14: Shock detection under occlusion, and move- 
ment/bending of parts. LEFT: The original shapes. MD- 
DLE: The shock-based description. RIGHT: The reconstruc- 
tion from shocks. 

We consider the effect of diffusion on each shock type; 
the detection of shocks with diffusion is coarse (not sub- 
pixel), and i s  only intended to provide a measure of sig- 
nificance for shocks obtained under pure reaction. When 
81 # 0 we interpret a first-order shock as a maxima of 
(sufficiently high) positive curvature. The survival of a 
first-order shock group with increasing diffusion reflects 
the "scale" of the corresponding protrusion, Figure 16 

I 1 

Figure 15: LEFT: The shock-based description of two hand- 
written letters. RIGHT: First-order shock speed and accel- 
eration. The shock occurs at point B,  and after one time 
step has moved to point C. With AB = ~ - ' s Z n ( 8 / 2 ) ,  the 
speed of the shock is obtained as: s = AB' = P , / s i n ( 8 / 2 ) .  
The acceleration is obtained by differentiating the speed as: 
a = s(p,2 - s')./po. 

Figure 16: LEFT TO RIGHT: BO = -0.2, PI = 0.0,0.25,0.5. 
Each column depicts the shock groups that have been de- 
tected up until the present time, with the evolved shape over- 
laid. Observe that branches are annihilated in order of the 
scale of the protrusion they represent. 

7 ;  the survival of a second-order shock with diffusion re- 
flects how narrow the corresponding neck is, Figure 17; 
diffusion regularizes bend-like shapes with boundary per- 
turbations [23]; and the survival of a fourth-order shock 
with diffusion reflects the degree to  which it represents a 
local center of mass for a shape, e.g., compare the right- 
most and leftmost fourth-order shocks in Figure 17. 

The above notion of significance induces a hierarchi- 
cal ordering of shock branches from fine to  coarse, i.e., 
branches obtained under pure reaction are removed in 
the order that  they annihilate under diffusion, and the 
structures that  they represent are literally broken off, 
Figure 16. This brings out the coarse level similarity be- 
tween shapes belonging to  the same category, Figure 19, 
an essential requirement for recognition. 

6 Shocks from Images 
In conclusion, we suggest that  the shock-based repre- 

sentation can be extended to  apply to  fragmented shapes 
as they typically arise in real imagery by allowing local 
edge hypotheses to  interact via the evolution of a local 
embedding surface; recall that  any Lipshitz continuous 
surface can be used. Such a surface can be constructed 
using the output of an edge operator, i.e., by first plac- 
ing oriented receptive fields at each edge, Figure 20 (top), 

'In analogy to  the  lifetime of a grey-level blob in scale space 1151, 
when two protrusions are nearby the  shock branches may merge. 
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Figure 17: LEFT TO RIGHT: Po = -0.2, 131 = 0.0,1.0,1.5. 
Each column depicts shocks that have been detected up until 
the present time, with the evolved shape overlayed; for PI # 0 
we focus on the higher-order shocks: of the two necks, the 
weaker one on the left is the first to annihilate with increased 
diffusion. 

Figure 18: The significance hierarchy induced by the compu- 
tation in Figure 16; in the reconstructions protrusion branches 
have been removed in the order that they are annihilated with 
increased diffusion. 

0, , 

8 
8 
8 

Figure 19: COLUMN ONE: The original pear shapes, taken 
from [20]. COLUMN Two: The shock-based description under 
pure reaction. COLUMN THREE: The reconstruction based on 
the pure reaction description (column two). COLUMN FOUR: 
Those branches of the pure reaction description (column two) 
that survive under diffusion. COLUMN FIVE: The reconstruc- 
tion based on the description in the fourth column brings out 
the coarse level similarity between the shapes. 

and then taking the union of all such receptive fields, Fig- 
ure 20 (bottom left). By construction, the covering sur- 
face has the property that its zero-crossings pass through 
the original edge locations. Therefore, the evolution of 

Figure 20: Shocks are obtained from a grey level image by 
placing oriented receptive fields at edge operator outputs to 
construct a covering surface (BOTTOM LEFT), and then apply- 
ing shock detection to t,he evolving surface (BOTTOM RIGHT). 

the covering surface can allow for the detectilon, classifi- 
cation and grouping of shocks prior to obtaining a seg- 
mentation of the shape itself, Figure 20 (bott80m right). 
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