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Abstract
We present a unified computational framework which

properly implements the smoothness constraint to gen-
erate descriptions in terms of surfaces, regions, curves,
and labelled junctions, from sparse, noisy, binary data
in 2-D or 3-D. Each input site can be a point, a point
with an associated tangent direction, a point with an
associated normal direction, or any combination of the
above. The methodology is grounded on two elements:
tensor calculus for representation, and linear voting for
communication: each input site communicates its infor-
mation (a tensor) to its neighborhood through a pre-
defined (tensor) field, and therefore casts a (tensor)
vote. Each site collects all the votes cast at its location
and encodes them into a new tensor. A local, parallel
marching process then simultaneously detects features.
The proposed approach is very different from traditional
variational approaches, as it is non-iterative. Further-
more, the only free parameter is the size of the neigh-
borhood, related to the scale. We have developed
several algorithms based on the proposed methodology
to address a number of early vision problems, including
perceptual grouping in 2-D and 3-D, shape from stereo,
and motion grouping and segmentation, and the results
are very encouraging.

1 Introduction
In computer vision, we often face the problem of

identifying salient and structured information in a noisy
data set. From greyscale images, edges are extracted by
first detecting subtle local changes in intensity and then
linking locations based on the noisy signal responses.
From binocular images, surfaces are inferred by first
obtaining depth hypotheses for points and/or edges
using local correlation measures, and then selecting and
interpolating appropriate values for all points in the
images. Similarly, in image sequence analysis, the esti-
mation of motion and shape starts with local measure-
ments of feature correspondences which give noisy data
for the subsequent computation of scene information.
Hence, for a salient structure estimator to be useful in
computer vision, it has to be able to handle the presence
of multiple structures, and the interaction between them,
in noisy, irregularly clustered data sets. In this paper, we

present a novel and unified methodology for the robust
inference of features from noisy data. The organization
of this paper is as follows: Section 2 gives an overview
of previous work. Section 3 describes our overall tensor
voting formalism. In Section 4 we present examples on
feature inference from noisy 2-D and 3-D data. Then, in
Section 5, we extend the basic formalism to solve early
vision problems, such as shape from stereo, and motion
grouping and segmentation, and also visualization prob-
lems such as flow visualization. Finally, we conclude in
Section 6.

2 Previous Work
Based on the type of input, we can broadly classify

previous work on the inference of curves, regions, and
surfaces into 3 areas, namely, dot clustering in 2-D,
curve and contour inference in 2-D, and surface recon-
struction in 3-D.

In 2-D, Zucker and Hummel [33] address the prob-
lem of region inference from dot clusters using iterative
relaxation labeling technique. Recently, Shi and Malik
[24] propose to treat region inference as a graph parti-
tioning problem, and present a recursive algorithm that
uses the normalized cut as the global criterion to seg-
ment tokens into regions. Later, Parent and Zucker [20]
use a relaxation labeling scheme that imposes co-circu-
larity and constancy of curvature. Dolan and Weiss [4]
demonstrate a hierarchical approach to grouping relying
on compatibility measures such as proximity and good
continuation. Sha’ashua and Ullman [23] propose the
use of a saliency measure to guide the grouping process,
and to eliminate erroneous features in the image. The
scheme prefers long curves with low total curvature by
using an incremental optimization scheme (similar to
dynamic programming).

In 3-D, the problem is to fit sufaces to a cloud of
possibly noisy points. Successful approaches include
the physics-based approaches [29], in which the initial
pattern deforms iteratively to the desired shape, subject
to an objective function. Poggio and Girosi’s [21] net-
work learning approach can be used when we know in
advance the pattern consists of a single surface. Fua and
Sander [6] propose a local algorithm to describe sur-
faces from a set of points. Szeliski et al. [25] propose
the use of a physically-based dynamic local process

Gérard Medioni Chi-Keung Tang Mi-Suen Lee

Institute for Robotics & Intelligent Systems Computer Science Department Philips Research

USC, Los Angeles, CA 90089 HKUST, Hong Kong Briarcliff Manor, NY 10510

medioni@iris.usc.edu chitang@iris.usc.edu misuen.lee@philabs.philips.com



evolving from each data point (particle), and subject to
various forces. They are able to handle objects of unre-
stricted topology, but assume a single connected object.
Hoppe et al. [13] and Boissonnat [3] use computational
geometry to address the problem by treating the data as
vertices of a graph and constructing edges based on
local properties. Another approach, alpha-shapes [5],
has also attracted much attention in the computational
geometry community. Recently, a new approach, known
as the level-set approach [32], has produced very good
results, and attracted significant attention. It allows
changes in topology. Other methodologies employ the
perceptual saliency approach, such as the works by
Thornber and Williams [31], and by Sarkar and Boyer
[22], Sha’ashua and Ullman [23]. Among all the meth-
ods, Guy and Medioni’s work is one of the non-iterative
approaches that is able to handle both curve inference in
2-D [9] and surface inference in 3-D from point, curve
element, or surface patch element inputs [10], although
individually. Unlike other methods mentioned here,
their method is robust to a considerable amount of
noise,  has no limitation on the surface topology, detects
orientation discontinuity, and is non-iterative.

3 The tensor voting formalism
An overall illustration of our method, summarizing

its different components, is shown in Figure 1, which

shows the 3-D version. The methodology is grounded
on two elements: tensor calculus for data representa-
tion, and linear tensor voting for data communication.
Each input site propagates its information in a neighbor-
hood. The information is encoded in a tensor, and is
determined by a predefined voting field. Each site col-
lects the information cast there and analyzes it, building
a saliency map for each feature type. Salient features are
located at local extrema of these saliency maps, which
can be extracted by non-maximal suppression. 

Each input token is first encoded into a second
order symmetric tensor. For instance, if the input token
has only position information, it is transformed into an
isotropic tensor (a ball) of unit radius.

In a first voting stage, tokens communicate their
information with each other in a neighborhood, and
refine the information they carry. After this process,
each token is now a generic second order symmetric
tensor, which encodes confidence of this knowledge
(given by the tensor size), curve and surface orientation
information (given by the tensor orientations).

In a second stage, these generic tensor tokens prop-
agate their information in their neighborhood, leading to
a dense tensor map which encodes feature saliency at
every point in the domain. In practice, the domain space
is digitized into a uniform array of cells. In each cell the
tensor can be decomposed into elementary components
which express different aspects of the information cap-
tured.

The resulting dense tensor map is then decom-
posed. Surface, curve, and junction features are then
obtained by extracting, with subvoxel precision, local
extrema of the corresponding saliency values along a
direction. The final output is the aggregate of the out-
puts for each of the components.

3.1   Representation

Our goal is to extract geometric structures such as
regions, curves, surfaces, and the intersection between
them. These are well defined mathematical entities with
the well known properties. 

Points can simply be represented by their coordi-
nates. A first order local description of a curve is given
by the point coordinates, and its associated tangent or
normal. A second order description would also include
the associated curvature.

A first order local description of a surface patch is
given by the point coordinates, and its associated nor-
mal. A second order description would also include the
principal curvatures and their directions.

Here, however, we do not know in advance what
type of entity (point, curve, surface) a token may belong
to. Furthermore, because features may overlap, a loca-
tion may actually correspond to both a point and a
curve, or even to a surface, a curve and a point at the
same time. An example of such a case occurs at the
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intersection between 2 smooth curves: the intersection
should be a point, that is, it represents a junction with no
associated tangent information, but also represents 2
curve elements, as the curves do not stop there.

3.2  Second order symmetric tensor 

To capture first order differential geometry infor-
mation and its singularities, a second order symmetric
tensor is used. It captures both the orientation informa-
tion and its confidence, or saliency. Such a tensor can be
visualized as an ellipse in 2-D, or an ellipsoid in 3-D.
Intuitively, the shape of the tensor defines the type of
information captured (point, curve, or surface element),
and the associated size represents the saliency. For
instance, in 2-D, a very salient curve element is repre-
sented by a thin ellipse, whose major axis represents the
estimated tangent direction, and whose length reflects
the saliency of the estimation.

To express a second order symmetric tensor S,
graphically depicted by an ellipse in 2-D, and an ellip-
soid in 3-D, we choose to take the associated quadratic
form, and to diagonalize it, leading to a representation
based on the eigenvalues λ1, λ2,λ3 and the eigenvectors
ê1, ê2, ê3. In a more compact form, S =
λ1ê1ê1

T+λ2ê2ê2
T+λ3ê3ê3

T, where λ1≥λ2≥λ3≥0 are the
eigenvalues, and ê1, ê2, ê3 are the eigenvectors corre-
sponding to λ1, λ2, λ3 respectively. Note that, because S
is a second order symmetric tensor, the eigenvalues are
real and positive (or zero), and the eigenvectors form an
orthonormal basis.

 The eigenvectors correspond to the principal direc-
tions of the ellipsoid/ellipse and the eigenvalues encode
the size and shape of the ellipsoid/ellipse, as shown in
Figure 2. S is a linear combination of outer product ten-
sors and, therefore a tensor.

3.3  Tensor decomposition

All the tensors used so far are somewhat singular,
in the sense that the associated ellipsoid has the shape of
either a stick, a plate, or a ball. As a result of the voting
procedure (to be described later), we produce arbitrary
second-order, symmetric tensors, therefore we need to
handle any generic tensor.

The spectrum theorem [8] states that any tensor can
be expressed as a linear combination of these 3 cases,
i.e., S=(λ1-λ2)ê1ê1

T+(λ2-

λ3)(ê1ê1
T+ê2ê2

T)+λ3(ê1ê1
T+ê2ê2

T+ê3ê3
T), where ê1ê1

T

describes a stick, (ê1ê1
T+ê2ê2

T) describes a plate, and
(ê1ê1

T+ê2ê2
T+ê3ê3

T) describes a ball. Figure 3 shows

the decomposition of a general saliency tensor into the
stick, plate, and ball components. 

At each location, the estimate of each of the 3 types
of information, and their associated saliency, is there-
fore captured as follows:

point-ness: no orientation, saliency is λ3

curve-ness: orientation is ê3, saliency is  λ2 -λ3

surface-ness: orientation is ê1, saliency is λ1-λ2

In 2-D, there is no surface-ness, and curve-ness is
expressed by ê1 for the tangent orientation, and by λ1-λ2
for  curve saliency.

We have now explained the information encoded in
a second order symmetric tensor, which consists of three
independent elements, and a measure of feature
saliency.

3.4  Tensor communication

We now turn to our communication and computa-
tion scheme, which allows a site to exchange informa-
tion with its neighbors, and infer new information.

Token refinement and dense extrapolation. The input
tokens are first encoded as perfect  tensors. In 3-D, a
point token is encoded as a 3-D ball. A point associated
with tangent direction is encoded as a 3-D plate. A point
associated with normal direction is encoded as 3-D
stick. These initial tensors communicate with each other
in order to

• derive the most preferred orientation information, or 
refine the initial orientation if given, for each of the 
input tokens (token refinement), and
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Figure 2.  An ellipsoid and its eigensystem
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• extrapolate the above inferred information at every 
location in the domain for the purpose of  coherent 
feature extraction (dense extrapolation).

In the token refinement case, each token collects all
the tensor values cast at its location by all the other
tokens. The resulting tensor value is the tensor sum of
all the tensor votes cast at the token location. 

In the dense extrapolation case, each token is first
decomposed into its independent elements, and broad-
casts this information, using an appropriate tensor field,
which also defines a neighborhood, and puts the corre-
sponding tensor value at every location. In practice, val-
ues are entered at discrete cell locations. The tensor
value at any given location in the domain is the tensor
sum of all the tensor votes cast at this location. A some-
what subtle difference occurs in this second case, as ball
tensors define isolated features, which therefore do not
need to propagate their information, and thus do not
vote.

While they may be implemented differently for
efficiency, these 2 operations are equivalent to a voting
process, and can be regarded as tensor convolution with
voting kernels, and produces tensors in turn. This tensor
convolution is in fact a simple alignment process,
involving a translation followed by a rotation. 

Therefore, in 3-D, it remains to describe the deriva-
tion of the 3-D voting kernels.

All voting kernels can be derived from the funda-
mental 2-D stick kernel, by rotation and integration.
Figure 4 shows this 2-D stick kernel. In [18], we explain
in mathematical terms that this voting kernel in fact
encodes the proximity and the smoothness constraints.
Note that a direction can be defined by either the tan-
gent vector, or the normal vector, which are orthogonal
to each other. We can therefore define two equivalent
fundamental fields, depending whether we assign a tan-
gent or normal vector at the receiving site.

Derivation of the 3-D voting kernels. Denote the fun-
damental 2-D stick kernel by .In 3-D, we need 3 vot-
ing kernels: the stick, the plate, and the ball voting
kernels. The 3-D stick kernel is obtained by revolving
the normal version of  90 degrees about the z-axis
(denote it by ). Then, we rotate about the x-axis,
and integrate the contributions by tensor addition during
the rotation. The resulting 3-D stick kernel describes the
orientation  in world coordinates. The other ori-
entations can be obtained by a simple rotation. Hence,
w.l.o.g., the 3-D stick kernel is defined mathematically
as

 (1)

where  are angles of rotation about the x, y, z axis
respectively. 

To obtain the plate kernel, we rotate the 3-D stick
kernel obtained above about the z-axis, integrating the
contributions by tensor addition. Therefore, the 3-D
plate kernel thus obtained describes a plate with normal
orientation is . Again, the other orientations can
be obtained readily by a simple rotation. Denote the 3-D
stick kernel by V, the plate is derived from V by:

(2)

To obtain the ball kernel, we rotate the 3-D stick
kernel about the y-axis and z-axis (the order does not
matter), integrating the contributions by tensor addition:

(3)

3.5  Feature Extraction

In this section, we summarize the marching process
for feature extraction in 3-D, by giving mathematical
definitions. Detailed implementation can be found in
[18].

 At the end of the voting process, we have produced
a dense tensor map, which is then decomposed in two
dense vector maps (three in 3-D).

 In 3-D, each voxel of these maps has a 2-tuple
, where  is a scalar indicating strength and  is

a unit vector indicating direction:

•  Surface map (SMap): , and  
indicates the normal direction.

•  Curve map (CMap): , and  
indicates the tangent direction.

•  Junction map (JMap): , and  is arbitrary.
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These maps are dense vector fields, which are then
used as input to our extremal algorithms in order to gen-
erate features such as junctions, curves, and surfaces.

The definition of point extremality, corresponding
to junctions, is straightforward: it is a local maximum of
the scalar value s.

Surface extremality. Let each voxel in the given vector
field hold a 2-tuple  where  indicates field
strength and  denotes the normal direction. The vector
field is continuous and dense, i.e.,  is defined for
every point  in 3-D space. 

A point is on an extremal surface if its strength  is
locally extremal along the direction of the normal, i.e.,

. This is a necessary condition for 3-D sur-
face extremality. A sufficient condition, which is used in
implementation, is defined in terms of zero crossings
along the line defined by .We therefore define the gra-
dient vector  as, and
project  onto , i.e., . Thus, an extremal
surface is the locus of points with .

Curve extremality. Each voxel in the given potential
vector field holds a 2-tuple , where  is the field
strength and  indicates the tangent direction. Suppose
the field is continuous and dense, in which  is
defined for every point  in 3-D space. 

A point  with  is on an extremal curve if
any displacement from  on the plane normal to  will
result in a lower  value, i.e.,where  and  define the
plane  normal to  at .This is a
necessary condition for 3-D curve extremality. A suffi-
cient condition, which is used in implementation, is
defined in terms of zero crossings in the u-v plane nor-
mal to . Define  where  defines a
rotation to align a frame with the u-v plane and  is
defined earlier. By construction, an extremal curve is
the locus of points with .

4 Feature inference in 2-D and 3-D
In this section, we apply the tensor voting formal-

ism for structure inference from 2-D and 3-D data.

4.1  2-D

Here, we consider the general case where the input
consists of both oriented and non-oriented data. Both
types of data can be handled exactly the same way using
our unified methodology, by having a first pass in which
the oriented tokens vote with the 2-D fundamental stick
kernel, and the non-oriented tokens with a 2-D ball ker-
nel. Votes are collected only at the locations where
tokens appear. Then, a second pass of voting is per-
formed. Here, we discard the ball component of the ten-
sor, and dense votes are collected. A dense tensor map is
produced. This dense tensor map is then decomposed
into a junction map and a curve map. Figure 5 shows an
example of curve and junction inference from a mixed

input consisting of an ellipse made up of curve elements
(tangents), and a curve made up of dots. Another exam-
ple of a “pretzel” is shown in Figure 6.
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4.2  3-D

We generate a pipe-like object and randomly sam-
ple points on it. Then, we add 100% of random noise
points to the data (i.e., only 1 point out of 2 is good).
Another example is two linked tori, with 50% noise. In
both cases, a first pass of tensor voting is performed to
infer normal information. Then, a second pass of voting
is performed which produces the dense extrapolation
required for surface and curve extraction. The resulting

surface and junction curve inferred are shown in
Figure 7. Note the noisy-ness and the topological diffi-
culty associated with this example. In Figure 8, we
show an application to dental restoration. Note that we

can infer not only the shape of the tooth, but also the
grooves and the preparation line, from noisy laser data. 

5 Applications to Vision and Visualization
We now show how it is possible to apply our meth-

odology to individual problem instances in early vision

Figure 7.  Pipe and two linked tori
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and also visualization, by incorporating problem-
instance specific constraints.

5.1  Stereo

The derivation of scene description from binocular

stereo images involves two processes: establishing fea-
ture correspondences across images, and reconstructing
scene surfaces from the depth measurements obtained
from feature correspondences. The basic constraints
used in the two processes are common, namely, the
uniqueness and the continuity constraints (proposed by
Marr [17]). The issues needed to be addressed in both
cases are identical, namely, the presence of noise, indis-
tinct image features, surface discontinuities, and half
occlusions [8]. Despite the similarities, these two pro-
cesses are traditionally implemented sequentially.
Instead, Hoff and Ahuja [11] have argued that the steps
of matching and surface reconstruction should be
treated simultaneously. In this section, we present an
algorithm which approaches the shape from stereo prob-
lem from the same perspective. Given a calibrated ste-
reo image pair, we derive a scene description in terms of
surfaces, junctions, and region boundaries directly from
local measurements of feature correspondence.

Figure 9 depicts an overview of our algorithm for
inference using both binocular and monocular informa-
tion. A running example is given in Figure 10 to illus-

trate the steps. Given a pair of binocular images
(Figure 10(a)), we obtain an initial set of disparity
assignment using traditional cross-correlation
(Figure 10(b)). To evaluate the saliency of the disparity
assignments, each match point cast votes during the ten-
sor voting process using the surface inference voting
field. The surface saliency map is computed after vot-
ing. In order to identify false matches, we keep the most
salient match, and remove all other matches with lower
saliency values, along each line of sight (Figure 10(c)).
Salient surfaces and junctions are then extracted from
the resulting saliency tensor field (Figure 10(d)). In
order to rectify the poorly located region boundaries due
to the weakness of the correlation process, we use the
monocular edge information to trim down the inferred
surface. For correct localization of the surface boundary,
occluded points of salient surfaces are also allowed to
stay in the data cluster. A tensor voting based region
inference procedure is then applied to infer bounded
surfaces (Figure 10(e)). A detailed description can be
found in [18]. Another example is shown in Figure 11. 

5.2  Motion

In this section, we extend our tensor representation
and voting scheme to address the problem of motion
flow estimation for a scene with multiple moving
objects, observed from a possibly moving camera. We
take as input a (possibly sparse) noisy velocity field, as
obtained from local matching, and produce as output a
set of motion boundaries, a dense velocity field within
each boundary, and identify pixels with different veloci-
ties in overlapping layers. For a fixed observer, these
overlapping layers capture occlusion information. For a
moving observer, further processing is required to seg-
ment independent objects and infer 3-D structure. One
of the advantages of our framework over previous
approaches, is that we do not need to generate layers by
iteratively fitting data to a set of predefined parameters.
Instead, we find boundaries first, then infer regions and
specifically determine occlusion overlap relationships.
We use the framework of tensors to represent velocity
information, together with saliency (confidence), and
uncertainty. Communication between sites is performed
by convolution-like tensor voting. A detailed descrip-
tion can be found in [18].

Figure 12 illustrates the steps of our method. The
input is a field of velocity vectors, derived here via a
three-frame maximum cross-correlation technique. We
then generate a dense tensor velocity field, which
encodes not only velocity, but also estimates of confi-
dence (saliency) and uncertainty. We then extract dis-
continuities from this field, which are found as locations
of maximal velocity uncertainty using the tensor voting
formalism. Interpreting these uncertain velocity loca-
tions as local estimates of boundaries of regions, tensor
voting is used again to both align tangents along these

Figure 9.  Overview of the shape from stereo 
method
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boundaries, and to join these tangents into region
boundaries.

Having segmented the motion field, tensor voting is
used again between pixels not separated by boundaries
to accurately estimate the velocities at the borders of
these objects (which are inherently uncertain in the
presence of occlusion). 

With coherent velocities at the borders of these
objects, a local representation of occlusion is found by

determining which region’s velocity field dominates in
both future and past frames. From this analysis, the
locations of pixels with multiple velocities are deter-
mined.

5.3  Flow visualization

This example demonstrates the detection, extrac-
tion, and visualization of shock waves, given a flow
field such as a velocity field in a viscous medium.
Figure 13 depicts the experimental set-up of a Blunt Fin
(see Hung and Bunning [12]) and the velocity field.
Note that the display of the whole velocity field is very
difficult to understand. The experimental configuration
is as follows: air flows over a flat plate with a blunt fin
rising from the plate. The free stream flow direction is
parallel to the plate and the flat part of the fin, i.e.,
entirely in the x component direction [67]. Figure 14
depicts four slices of the velocity field. Note the abrupt
change in the flow pattern that creates a shock, as the
fluid hits the blunt end of the fin.

(b) initial point (both) and line (right only) correspondences

(a) input images

(c) unique disparity assignments

d) inferred surfaces and junctions, and the associated disparity 
assignments

(e) inferred surfaces, surface discontinuities and region 
boundaries

(f) a rectified, texture mapped view of the recovered scene 
description

Figure 10.  Shape from stereo for a real scene

Figure 11.  Shape from stereo for a Renault part

(a) input images

(b) inferred surfaces and junctions in the disparity space.

(c) two views of the rectified, texture mapped view of the re-
covered scene description



The presence of shock wave is characterized by
local maxima of density gradient, c.f. Pagendarm and
Walter [19], which is in coherence with the definition of
surface extremality, and thus are extracted as extremal

surfaces. First, we compute the density field (the left
column of Figure 15 shows two views of different slices
of the density field). Raw local density maxima are
extracted in the density field, which results in a sparse
set of points. Also, the original data set is sampled on a
curvilinear grid. Therefore, a tensor voting pass is
needed. Each site in the resulting dense field holds a 2-
tuple  where s is the magnitude of density and 
denotes the estimated normal. The dense field is input to
the extremal surface algorithm. The resulting extremal
surface, corresponding to the shock wave known as a
“ -shock” [12] due to its branching structure and
shape, is faithfully and explicitly extracted (c.f. [19])
and shown in the right column of Figure 15.

6 Conclusion and future work
In this paper, we have presented a complete formal-

ism, tensor voting, to address the problem of salient
structure inference from 2-D and 3-D data which can be
contaminated with noise. Our methodology is grounded
on tensor calculus for data representation, and tensor
voting for data communication. Our method is non-iter-
ative, and the only free parameter is the scale, which in
fact is a property of human visual perception. The basic
formalism has been extended to solve other problems as
well, such as shape from stereo, motion segmentation,
and flow visualization, and we have obtained very
encouraging results. Our ongoing work focus on the
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generalization of the basic formalism to higher dimen-
sions [27], and also the use of higher order description
[28].
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