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A direct procedure for obtaining the Fourier coefficients of a chain-encoded contour is
presented. Advantages of the procedure are that it does not require integration or the use of
fast Fourier transform techniques, and that bounds on the accuracy of the image contour
feconstruction are easy to specify. Elliptic properties of the Fourier coefficients arc shown and
used for a convenient and intuitively pleasing procedure of normalizing a Fourier contour
representation. Extension of the contour representation o arbitrary objects at arbitrary aspect
angle is discussed. The procedures have direct application to a variety of pattern recognition
problems that involve analysis of well-defined image contours.

1. INTRODUCTION

Fourier descriptors have been successfully used by many investigators {1-4] for
the characterization of closed contours. In this paper, a particularly simple way of
obtaining the Fourier coefficients of a chain-encoded [5, 12] contour is presented as
well as bounds on the error of such a representation and, also, an intuitively pleasing
way of normalizing the Fourier coefficients using a harmonic, elliptic description of
the contour {6, 7). The resulting Fourier descriptors are invariant with rotation,
dilation and translation of the contour, and also with the starting point on the
contour, but lose no information about the shape of the contour.

2. FOURIER COEFFICIENTS OF A CHAIN CODE

The chain code first described by Freeman [5] approximates a continuous contour
by a sequence of piecewise linear fits that consist of eight standardized line
segments. The code of a contour is then the chain ¥ of length K

V= a\ayay...ay,

where each link g, is an integer between 0 and 7 oriented in the direction (m/4)a, (as
measured counter-clockwise from the X axis of an X-Y coordinate system) and of
length 1 or v2 depending, respectively, on whether a; is even or odd. The vector
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representation of the link a,, using phasor notation, is

i

1+ (‘/_2-_’ I)(l _ (_])u‘) L%a ( ! Aa'muz' \

2
An example of a chain code,
V, = 0005676644422123,

is shown in Fig. 1b, using the method of deriving a chain code from an areg-quamized
image (Fig. 1a) described by Kuhl [8). The Fourier coefficients of a chain encoded
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FiG. 1. Properues of the chain code ¥, = (005676644422123.  (a) Area-quantized image.  (b) (‘huxr;
code of image.  (¢) 1-, 2-, 3-, and 4-harmonic representations of the chain code V. (d)  Actual ciror anc
predicted bound on error versus harmonic conitent.
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contou developed in this section of the paper for a particular starting point on
the contour. The Fourier series representation is appropriate for the chain code
because the code repealts on successive traversals of the contour.

Elementary properties of the chain code are easily described. Assuming that the

chain code is followed at constant speed, the time needed to traverse a particular
link a; is

A:,.=1+(‘/52"1)(1—(—1)“').

The time required to traverse the first p links in the chain is

P
1,= 2 Ay

i=1

and the basic period of the chain code is T = ¢ x- The changes in the x, y projections
of the chain as the link a; is traversed are ;
Lo Q=22 oely €
Ax; = sgn(6 — a;)sgn(2 — a,), ax:= 0

Ay, = sgn(4 ~ a;)sgn(q,),

where
: 1 Z>0
sgn(Z){ 0 Z=0
—1 Z <0,

and, arbitrarily locating the starting point of the chain code at the origin, the
projections on x and y of the first p links of the chain are, respectively,

14
, = 2 Ax,,

i=]

p
»= 2 by,

i=1

]
Il

The Fourier series expansion for the x projection of the chain code of the complete
contour is defined as

“x(r) = Ay + ”?la,,cos 2"7:”1 + b,,sinz%:ﬂ—{,
where
Ay = leOTx(t) di,
a, = %forx(t)cos 2nTm dr,
b, = %f“rx(l)sin nmi
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The Fourier coefficients corresponding to the nth harmonig a, anc By = 0) are
most easily found because x(¢) is piecewise linear and continuous for. all time. The
derivation of the coefficients here involves the time derivative )'c({), whxch consists of
the sequence of piecewise constant derivatives Ax,/A1, associated vath ‘h? time
intervals 1, <1<, for values of p in the range of 1 = p = K. Th‘e time derivative
is periodic with period 7 and can itself be rcprcselrlt_eg_rl?y the Fourier series

” o

. bt 2nwt -  2nmr S
x(1) = "E::I ®,€08 === + B,sin—r—, T
where /‘(“.
2 (T 2nwt ;
== X dr,
a, Tj(; x(t)cos T 4
2 (T, 1 J
B, = ?L x(1)sin T dxi,
Then j’i
7 (% N
a,== 9 —=|" cos di
Tl’ 1 A’P /;p—l T ; = ';(’— Sinwt j
2 XA x 2nwt [ 2nme,_,
== 3 ——p(sin —sin
T T
p=1 4 B e
' L
and ' 2T
KA
2 Xp i, Zn'n'ld
== —_— t
A, T 2 At f ST
p=1 P T
2 Eaidx, 2nmi, a 2nmi,_, B L= s
:_7‘EKI-COS T cos—— == L
p=1 P ,
But x(r) is also obtained directly frogx its definition as
2nm . 2n@t | 2nmw 2nwt )
(1) = 2] ~—7~a"sm—?—-+—7:~b"cos - . ing
n= (“t‘ 7
Equating coefficients from the two expressions of (1),
K Ax 2nat 2nmi .
a :__I__ —’e[cos 7 _ cos TI’ '}, v
" 2n'a? p=I At T
KA 2nmt 2nwt, .
b= —— ——ﬁ[sin 2 — sin T”‘]‘ v
" 2nlg? Pl Ar, T

The Fourier series expansion for the y projection of the chain code of the complete



R S B S L7 VTV IR vee R R U YR

o
wWi1)=Cy+ 3 ccos 2';,7” 4. 2

i ’

n=1\

where
T K 4y [ i Inmt
c, = 2 __f p—1
2nin? PE:‘ AIP cos )T cos——T }
ek by
T K Ay 2nwt 2
d,=—— 3 Xl s 2 _ 2
2n?a? 2, A, T T .

The apphcabili}y of the expressions for the Fourier coefficients =xtends to the
general_lzcd‘ chain code descnbe.d by Freeman [9] as well as to any piecewise linear
representation of a contour since no constraints are made on the incremental
changes Ax, and Ay, (A1, = (Ax] + Ay2)'/2).

The DC components in these Fourier series are as follows: :

t

y _1 §~Axp 2 o
0—Tp=t2Alp(tl’_lp—l)+£p(’p_’;>—|) \ZQT\ ’
B X Ayp 2 Detr =N
Co*_fpgl 2Afp(’P_t§_‘) +6P(IP-IP—1)’
where
Pl Ax P! |
gﬁzjgl AXJ_E: E AIJ,
Jj=1
pél p=1 i
8= 2 Ay, — " 3 A,
g =1 / AII’ j=1 ! .
and !
£I = 8] =0

Graphic examples of 1-, 2-, 3-, and 4-harmonic Fourier a imati i
» 275 3+, roximat
code ¥, are shown in Fig. lc. pproimations of the chain

3. NUMBER OF HARMONICS NEEDED IN THE FOURIER APPROXIMATION

It is useful to be able to specify the number of harmonics required such that a

trunca.tcd Fguner approximation to a contour be in error by no more than ¢ in the x
or y dimension. Let

N
2
Xy = Ay + E a,cos ni + b,sin 2nmt
=1 T
il 2nmit 2 "
Yy=Co+ 3 €,C08 — +d, sin r;m

n=1

be the Fourier series truncated after N harmonics lor the x(1) and y(1) projecuons.
respectively, and define the error, €, as

= HMX[SUPIX(I)“‘XN(I)I,SUPIY(I)*‘yN(l;J

Then it is shown by Giardina and Kuhl [7] that ¢ is bounded by the expression

e=Tmax| V(). PG,

where the total variation of the derivative %(f) has been symbolized as ¥ (%(1)) and
of the derivative y(t) as Vg( 5(1)). The derivatives for the link a, are

. _ Ax;
%= At
. _ Ay
Y= AL

1

and can be tabulated according to the value of a; as shown in Table 1. Then, the
total variations of X(t) and y(r) are, respectively:

T K
g(x(t)) = (25‘;_5‘:'—1) + ke — %],
2

+ ikt 0l

F0) = | 255

A graph of the actual error, €, versus the number of harmonics, N, used in the
Fourier approximation is shown in Fig. 1d for the chain code V. The predicted
bounds on the error are shown superimposed on the graph as predicted by the
maximum, lotal-variation formula.

The following five chain codes are now examined:

V, — 11172206667666444444222,

V, = 5412343001010007711075454506541344446,

V, = 00466026046246532671240224,

¥V, = 003107045476445715345041331420600,

V, = 2333446766544433267700012232545433221566770101444322110455667000321
1077334556710007762334445007776.

They are examples of image contours of increasingly greater complexity (ie.,
wiggliness) as shown in Figs. 2 through 6. In each figure the chain-code representa-
tion of the image contour is displayed with superimposed Fourier approximations,
which incorporate increasingly higher harmonic content. Also, the actual error and
one-half the predicted bound on the error versus harmonic content, NV, are shown at
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X and y Derivatives of Link a,

a, x,

0 1.0 0.0

1 0.707 0.707
2 0.0 1.0

3 -0.707 0.707
4 —-1.0 0.0

5 —=0.707 —=0.707
6 0.0 =10

7 0.707 —0.707

the bottom of each figure. The factor of one-half has been incorporated on the
predicted bound because it has been experimentally found that for all but the most
simple figures, as for example an equilateral triangle, the bound is quite conserva-
tive. It is apparent from inspection of the figures that as the contour becomes more
complex, the predicted bound becomes more conservative, and that to make com-,
parisons of the accuracy of harmonic reconstruction for different contours bothi
plots of e must be normalized against T = 1,; i.e, use e’ = ¢ /T. 1

The predicted bound on e offers the advantage of quick and easy computation;
compared to the calculation of the actual error, but a heuristic factor (e.g., division‘
by a constant) must be applied to the bound to obtain a closer approximation to the
error curve. The heuristic factor would be developed by experimentation for particu-

lar applications and might, for example, be a function of the number of large:
angular changes in the contour. ‘

4. PROPERTIES OF THE FOURIER EXPANSION OF A CLOSED CONTOUR

The truncated Fourier approximation to a closed contour can be written as

N
x(1)=4,+ 3 X,

n=1

N
y(l):C0+ 2 Yn'

n=1|

where the components of the projections X,, Y, (1 <n < N) are

2mnt . 2mnt
X, (1) = a,00s== + b,sin 7
_ 2ant . 2ant
Y, (1) = c,cos 7 td,sin T

It has been shown by Kuhl [7] that the points (X,. Y,) all have elliptic loci, and that
the Fourier approximation to the original contour can be viewed as the addition in
proper phase relationship of rotating phasors, which are defined by the projections.
Each rotating phasor has an elliptic locus and rotates faster than the first harmonic
by its harmonic number n. This is demonstrated in Fig. 7 with considerable artistic
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F16.2. Propertics of the chain code ¥y = 11172206667666444444222. (a)  1-. 2-, 5-. and 7-harmonic

representations of the chain code. (b)  Actual error and predicied bound on error versus harmonic

content.
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F1G. 3. Properties of the chain code V3 = 541234300101000771107545450654 | 344446,
and 12-harmonic representations of the chain code.
versus harmonic content.

(@) 1-, 4-, 8-,
(b) Actual error and predicted bound on error

license for the sake of clarity, and examples of the elliptic locus of (X, Y)) for a
particular chain-code are given in Figs. 2 through 6. The same elliptic loci for the
points (X, Y, ) will be obtained regardless of the starting point on the contour, but
the phasors will take different orientation to approximate the contour. This will now
be shown by introducing a rotational operator that relates the Fourier coefficients
a,, b, ¢, and d, (n = 1) at any starting point to the coefficients ay, by, c, and d}
for another starting point displaced A units around the contour, and by then
comparing the loci of (X,, Y,) at the two starting points.

A difference in the starting points is displayed in the projected space as a phase
shift; i.e., a starting point displaced A units in the direction of rotation around the

|

&
J

; ”Qg

Lol bon]

ERROR =

EERENUREE FREE!

| ! |
0.00 [lll}l‘llilel%lllllllll]lllT}

0 5 10 15 20 25 30
HARMONIC CONTENT N

b

1G. 4. roperties of the chain code = 2 . (a) - 3-.7-. an -
F P { th h ode V, 00466026046246532671240224. (a i 7 d 15

harmonic content.




5
1 1/2 PREDICTED BOUND ON ERROR—/..'"-.
4 —
3 0
c ]
© -
[ -
w, 1 ACTUAL ERROR
, 4
0 ':"l—m‘l_r_Y_l_l"l-l_V_Y—f_i_T_l_‘—'—'_nﬂ'_f—iﬁ—rT—T"

10 15 20 25 30
HARMONIC CONTENT N ——

(=]
o

b

Fi16. 6. Properties of the chain code V¥, = 2333446766544433267700012232545433
2215667701014443221104556670003211077334556710007762334445007776. (a) 1-, 9-, 12-, and 30-
harmonic representations of the chain code. (b) Actual error and predicted bound on error versus
harmonic content.
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contour from the original starting point will have projections for n = 1,

27n

T

2
TR (* + A,

X(*+A)=
( ) = a,cos T

(r* + A) + b,sin

n 2an . 2mn
Y, (r* + A) = c,cos T (r*+A)+ d,,sm—T—-(l‘ +A),
where G S GS = G b bim
*+A=1. R TUPTRCIP U S
Expanding X, and Y, and collecting terms, = e uf“ o Gl
2ant* * EE T SRS S
X3(1*) = ajcos = + brsin Zunt et (o
2ant* . 2anr*
Yt I‘ = r* + *
*(1*) = cicos T dysin =,
where
, ,
| cos 2mnA sin 2mnA
* * = r : 4
by d} —sin 2mn) 2anA || b, 4,
T cos

The coefficients a?, b7, ¢ and d are correct for the ofigih of r* (i.e., t* = 0) located
at the displaced starting point.
The elliptic locus for the points (X,, Y,) is shown by removing the dependency on

the sine and cosine terms 1o obtain

(d2 + 2)X2 + (a2 + B2)Y} = 2X,Y,(a,c, + b,d,) _
(a,d, = be,) -

1,

n

and similarly fc e projections X7, Y.¥., because

Xr(e7) = X, (" +A),

Yr(er) = Y,(* £ A),
(d2 + c2)x:? + (a2 + 1) Ys? — 2X2¥r(a,c, + b,d) _
(a,d, = bie,)’ '

Therefore, the same elliptic loci are obtained for different starting points.
Counter-clockwise rotation of the X, Y coordinate axes through ¢ degrees into the
U,V axes, as shown in Fig. 7, s accomplished by the rotational operation

(7] =[ s, imt[x)

The effect of this axial rotation on the Fourier coefficients az, br, ¢t and d} is
readily apparent when the projections X3, Y are expressed in matrix form,

2mnt* e (@l es : s':.)l;
x| _far e]|<TT BT
ve| Tl ) g 2t | e s e e

T bt s LRV

Then the projections on the U, V axes v,, ¥, are

2mnt*

{U"]— cosy  siny || Xp| _| cos¥  siny at |7
v, 7| —siny cosy}| ¥r | —siny cosyl|cr dr . 2mne*
sin—=

and an axially rotated set of Fourier coefficients a**, b**, ¢x*, and d}* may be
defined as
f

I
, ap* byt | cos Y osinygllar b7 Y
l\\ crr dy —siny  cosy || cr dr|

The combined effects of an axial rotation and a displacement of the starting point
on the coelficients a,, b,, ¢,, and d, of the original starting point are readily
expressed in matrix notation as follows:

2anh . 2anA

[a:* b,,"] _[ cosy  sin \p”an b"] cos sin=—
R LR I ~3Q - A 2 A
o 7 siny  cosyifc, . sinZW; cos W;;_

Y

L Y
R
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S. ELLIPTIC FOURIER FEATURES

The Fourier coefficients a,, b,, ¢,, and d, (1 <n < N) of the truncated Fourier
approximation to a closed contour are used here as the classification of the contour.
Since the coefficients vary according to the starting point of a trace of the contour
(e.g., the Freeman chain code) and the spatial rotation, magnitude and translation of
the contour, self-consistent normalization procedures based only on the intrinsic,
shape properties of the contour must be specified. The rotating phasors provide the
basis of a most convenient mode of normalization when the locus of the first
harmonic phasor is elliptic, yielding two simply related classifications corresponding
to the positions at either end of the major axis of the ellipse. When this locus is
circular, useful classifications consist of the coefficient descriptions for those places
on the original contour that are at a specified (e.g., maximum) distance from the
contour center point (Ay, Cy). The two related methods of classification are now
presented with the elliptic locus case discussed first.

5.1. Classifications for Elliptic 1st Harmonic Locus

A contour classification is obtained for this case in a two-step process. Initially the
first harmonic phasoy is rotated until it is aligned with a semi-major axis of its locus.
Then the X, Y coordinate axes in which the contour was originally oriented are
rotated into new U, V coordinate axes, defined by the major and minor axes of the
ellipse, such that the positive X axis is coincident with the semimajor axis located in
the phasor rotation. The existence of only two possible classifications is easily
verified by constructing phasor-addition diagrams of contours similar to those
shown in Fig. 7 for different combinations of rotations and by observing that the
phasor additions at each semimajor axis are always oriented the same way in the
framework of the U,V coordinate axes. To determine the relationship between
the two classifications, let the classification associated with one semimajor axis be
obtained through starting-point and spatial angular rotations of §, and y, radians,
respectively, where 6, = 27\, /T and A, is the displacement of thc starting pomé\

Then the dasslhcauon for the semimajor axis is (1 = n < N) PO R SN
. o
s o
axt br* cosy, siny, {la, b, cos(@?l —sinnf | e
o dE | T —sing, cosy, e, d, sin@?1 cosnf, |’

The classification for the other semimajor axis is obtained by a further rotation of
both the starting-point and spatial angles through # radians as follows:

2ayt byt cos(y, + =) a, b,
- CII d'l

WOt L dxr ~sin(y, + 7)
~sinn(8, + w)

sin(y, + )
cos(y, + 7)

n

[cosn(eK + )

sinn(8, + =) cosn(8, + w)
_ cosy, siny, ||la, b, (=1)" cosnf, —sinné,
—siny, cosy, d, sinnf,  cosné,
o qynti et ot
=1 [IC:Q |

Sa b rimt e s ey b AT YRl e ——a & Lo

|
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Therefore, the odd harmonics of the two classifications remain the same for all n,
but the even harmonics (not including the bias terms 4, and C,) change sign.

The starting-point, angular rotation 4,, is dctcrmln;d from the point (x,. y,) with
ellipuc locus

-

&
x, =a,cosf + bsiné,

yy =ccosd +dsinf,

where 6= Zm/ T, by differentiating the magnitude of the first harmonic phasor
= (x} + y})'/* and setting the derivative equal to zero, which yields

5 ae—

2 +
r 0] = larClan __M

A
& 2 a,+c,——bf——d,2]' |
This expression locates the first semimajor axis to occur moving away from the
starting point in the direction of rotation about the contour. This can be proven by
substituting the value of 6, in the second derivative of E and noting that a negative
quantity is always obtained; j.e., 0 < 6, <.
The spatial rotation ¢, is aclcrmmed from the Fourier coefficients af and ¢f that
are correct for the starting point displaced 6, radians. Now

at cf| | cos8, sinf |[a; ¢
bt dr| | —sin8, cosé, ||b, 4,

and the point (x}, yf) with elliptic locus is

o 2m . 27w
xH (%) = alcos—.[—.t* + bsin=r*,

27 . 2w
yH(*) = r,‘cos—i,—t* + d;'smTI".

Since r* = 0 when the first harmonic phasor is aligned with the semimajor axis, y, is
readily obtained as

| y1(0)
= t
¥ arcan[xr(o)
k-
arctanz—;,

I

0=y, <27

Furthermore, the magnitude of the semimajor axis is

CE*(0)= (x1(0)" + y; (0)) : ‘.
= (a2 + r2)2

The classification can be made independent of size by dividing each of the coeffi-
cients by the magnitude of the semimajor axis, and independent of translation by

\/)(/‘)_M b
"C/« ._;“‘-ch:
NP (&( i

(VRN

T ot \,_'f“
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ignoring the bias terms A4, and Cy. It should be noted that the first harmonic content
of the size-normalized classification is always characterized by at* = 1.0, b1* = 0.0
c1* =00, and | 43* |< 1.0. R
) An example of the elliptic classification procedure is shown for the tank on an
m.cline in Fig. 8. In Fig. 8a the image and the first harmonic ellipse are shown and in
Fig. 8b the 30th harmonic approximation of the tank is given. In Fig. 8c the two
possible classifications involving the 30th harmonic approximation are shown by
solid and dotted lines, respectively, as generated by the normalized coefficients.

5.2. Classifications for Circular 1st Harmonic Locus

A contour classification for this case is obtained in a manner analogous to the
elliptif:al case except that the starting-point and spatial rotations cannot be made to
a s.emxmajor axis. Instead, the rotations are made to the line emanating from the bias
point (Ay, Gy) to the point on the contour most distant from the bias point. If
several such maximal points on the contour are equidistant from (Ay. G) then a like

0.5

0.0

i

lllA}llll[lllllJlll[lJlAIl

g R EE S I

-15 ~-1.0 -0.5 0.0 05 1.0 1.5

c

Fi1G. 8 A tank and its two possible classifications. (a) A tank and its lst harmonic ellipse.  (b) The
30th harmonic representation of the tank. () The two possible classifications of the tank.
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number of classifications will be obtained. Working with the previously described
chain code representation of the contour the candidate distances £, (1 =p = X)
will be among the bias point (A, C) and the heads of the chain links a,. Each
distance £, is

E,=((4g=x,)" + (G -5))"

The indices of p corresponding to equally large maxima are stored and a classifica-
tion is required for each one. The starting-point rotation 8, for a classification
corresponding to index p is

_ 2at,

6=~ 0<g,=2m,

and the spatial rotation angle ¥, is

=G
b \pp=arclan[—£—~—-
Xp—

Ao], OS\[zp<2'n'.

The classification for index p is then

* % *% H —_—

pant Gort| | cosy, siny, Mla b, ] cos nf, sin ng,
% ¥ % —_cy 1

RS siny, cosy,||c, d,[|sinnd, cosnd,

Size normalization of the classification is again accomplished by dividing each of the
Fourier coefficients by [a} + ¢?]'/2, which is the radius of the first harmonic circle.
Note, the first harmonic locus is a circle when

at + b+ ¢ +di=2(ad, — bc,)).

If a contour can be rotated by 360° /m (where m is an integer = 3) 50 as to coincide
with itself, it will have a circular first harmonic locus and only one unique
classification. Examples of such contours are squares and pentagons, and hurricane-
like figures with many identical, equispaced, swirling, S-shaped arms. An example of
the classification procedure for a windmill blade is shown in Fig. 9. In Figs. 9a and
b, the blade, the first harmonic circle, and the thirteenth harmonic approximation of
the blade are given. In Fig. 9c, the classification involving the first thirteen
harmonics is shown as generated from the normalized coefficients.

The circle-case normalization procedure can be modified to act as a substitute for
the elliptic-case procedure by employing a different method of size normalization;
i.e., by normalizing the magnitude of the coefficients against the maximal distance
E,.

6. RECOGNITION DECISIONS

The contour classifications are used in both a training (i.e., library cataloging)
mode for known examples of classes and a decision mode for recognizing unknown
images. The rotation and size normalized classifications stored for a known class m
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;rrans;llauon is 1ignored by omitting the bias coefficients. For the case of an elliptic
irst harmonic locus the classification indices corresponding to the two semi-major
axe§dgre p= 1,'2 and for the case of a circular first harmonic locus with P
. . _ .
quidistant maxxmal contour points, p = 1,2,...,P. The normalized classifications
for an unknown image are

{,a:* bre

. ,
<Ay

where (he classification index r is defined identically to that of p for a known class
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A metric distance, D,,, between the known class m and the unknown image is

m

defined as the combined minimum over the classification indices r and p.

N
;

D}=  min min 9 DX(r, p, m)|,
r=1.2....R| p=t.2...p

n=1

where

2 2
Dnl(r’ P, 771) = (ra:* _pa::l) + (rb:* ‘pb:r:)

+ (e = o) (dre i)

The expression for D,, reduces according to the number of values of p that are stored
for class m and the number of values of r computed for the unknown image. For
example, if only one value of r is computed for the unknown image the expression
reduces to a minimum over the p index. And, if all values of r are computed for the
unknown image but only one value of p is stored the expression reduces 10 a
minimum over the r index. The minimum of the distances D,, (1 <m = M), among
the unknown image and the known classes determines the class of the unknown
image.

It is clear that in dealing with continuous, unquantized contours the Fourier
descriptors will give unique, separable classifications as long as enough harmonics
are included in the truncated Fourier series, and that the Fourier descriptors are
therefore good for template matching applications. However, in sampling these
contours some information is destroyed according to the coarseness of the sampling
interval and the contours will, in general, be encoded differently for each particular
orientation on the sampling grid. The result is a nonzero metric, D, among the
normalized classifications of the same contour for different relative grid orientations
and grid coarsenesses. The importance of these effects is of course extremely
dependent on the application and the inherent separability of the classes of interest,
and merits a case-by-case statistical examination in arriving at an overall system
design. A simple example of the quantization effect on the metric is given for the
airplane images in Fig. 10, each of which is derived from the same original
unquantized image. The image shown at the top left of the figure has the highest
resolution and consists of pixels of unit size on edge while the other images have
progressively lower resolution and consist of respective pixel sizes of 2, 3, 4, and 5
units on edge, which are indicated in Roman numerals. Normalized image classifica-
tions at each level of resolution are shown for harmonic truncations N = 7. 14, 21,
and 28. The metric matrices for harmonic truncations of N = 7, 14, 21, and 28 are
shown in Table 2, and each matrix corresponds Lo its respective row N of normalized
classifications in Fig. 10. It is noted that the metric among different grid resolutions
becomes greater as the harmonic content increases, as expected from inspection of
the expression for D. What is surprising is that the metric among different resolu-
tions does not necessarily increase as the separation among the resolutions increases.
This experimental result is an indication that the Fourier-coefficient classifications
will tend to cluster in the classification space for different pixel resolutions across an
image.
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ORIGINAL PIXEL REPRESENTATIONS
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7. RECOGNITION OF SOLID OBJECTS AT ARBITRARY ASPECT ANGLE

A recogml}xorf system for arbitrarily shaped, solid objects at arbitrary aspect angle
that uses elliptic Fourier features is proposed here as an extension of the imag
recogniuon system already discussed. The system requires that detailed a riogc'
knowledge be available about the shape of the object. The system assumcsp th !
aspect can be resolved into three components—roll, pitch, and yaw—and that llal
coordinale axes are located at the center of gravilyo“f thc:hdbject with one axis in lr:?
observer’s line of sight about which pitch changes. oy L h :

'I.‘hc_ elliptic Fourier feature set is invariant with pitch, but for arbilr;;r bodies th
variation as a function of yaw and roll is quite complicated. Thcrcforcylhc fc;_uurc
set must be rePrescnled in a 4 X N classification space as a toroidal su}fucc whicl‘:
can be gpprgx:matcd by a single closed line that itself consists of closéd curv‘cs and
conseclmg line segments. Each closed curve traces the feature set ‘varia(ion with
360° of roll for a particular yaw angle, and each connecting line segment traces the
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TABLE 2

Metric Matrices for the Five Different Resolution Images in Fig. 10 at Harmonic Truncations of
N = 7,14, 21, and 28

Resolution cell size

1 2 3 4 5

Harmonic i I 0.000000 057901 209273 216583 318336
truncation=7 8 § 2 057901 0.000000 177079 176443 272942
_g . 209273 177079 0.000000 1248555 287131

28 4 216583 176443 248555 0.000000 1194504

< 5 318336 272942 287131 194504 0.000000

Resolution cell size

1 2 3 4 5
Harmonic - 1 0.000000 066026 .219366 .239670 337399
truncation = 14 .2 § 2 1066026 0.000000 185995 199620 294752
%;_—: 3 219366 .185995 0.000000 .262008 .300132
$° 4 239670 199620 .262008 0.000000 .214473
= 5 337399 .294752 300132 214473 0.000000

Resolution cell size

i 2 3 4 5
Harmonic = i 0.000000 . .070559 222526 .244808 338798
truncation =21 .8 & 2 070559 0.000000 .188583 .205077 .296366
-3 ;-_: 3 222526 188583 0.000000 .265366 301661
S 94 244808 .205077 1265366 0.000000 .218607
&« 5 338798 296366 301661 218607 0.000000

Resolution cell size

1 2 3 4 5
Harmonic = ! 0.000000 072647 223299 .246054 1339471
truncation’ = 28 -2 82 072647 0.000000 189842 206575 1296969
% =3 223299 189842 0.000000 .267048 .302408
g © 4 .246054 206575 .267048 0.000000 219584
5

339471 296969 .302408 219584 0.000000

feature set variation with an incremental change of the yaw angle for a constant roll
angle. The classification surface contour is traced out, starting at 0° roll and yaw, by
following these roll and yaw curves in proper sequence and without repetition so
that all are included.

Recognition of an unknown body requires a means of measuring the mean square
distances between multiple observations of it and the classification surfaces of
known body shapes. A procedure for encoding such surfaces and performing
recognition decisions using n-dimensional chain codes is discussed by Kuhl [10] and
Kuhl and Perrella [11] in relation to the recognition of arbitrary targets at arbitrary
aspect angle using polarized radar-backscalter measurements.
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8 CONCLUSION

A classification and recognition procedure has been described that s dire.
applicable to classes of objects that cannot change shape and whose images are
subject to sensory-equipment distortions, but that may occur in different orie
tions, sizes and translations. The features used in the procedure are normal;
Fourier coefficients derived from chain codes of the image contours. The normal
tion is performed according to various elliptic properties of the Fourier coeffici.
themselves.
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