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Abstrat The eikonal equation and variants of it are of signi�ant interest for problems inomputer vision and image proessing. It is the basis for ontinuous versions of mathemat-ial morphology, stereo, shape-from-shading and for reent dynami theories of shape. Itsnumerial simulation an be deliate, owing to the formation of singularities in the evolvingfront and is typially based on level set methods. However, there are more lassial ap-proahes rooted in Hamiltonian physis whih have yet to be widely used by the omputervision ommunity. In this paper we review the Hamiltonian formulation, whih o�ers spe-i� advantages when it omes to the detetion of singularities or shoks. We speialize tothe ase of Blum's grass�re ow and measure the average outward ux of the vetor �eldthat underlies the Hamiltonian system. This measure has very di�erent limiting behaviorsdepending upon whether the region over whih it is omputed shrinks to a singular pointor a non-singular one. Hene, it is an e�etive way to distinguish between these two ases.We ombine the ux measurement with a homotopy preserving thinning proess applied ina disrete lattie. This leads to a robust and aurate algorithm for omputing skeletons in2D as well as 3D, whih has low omputational omplexity. We illustrate the approah withseveral omputational examples.



1 IntrodutionVariational priniples have emerged naturally from onsiderations of energy minimizationin mehanis [27℄. We onsider these in the ontext of the eikonal equation, whih arises ingeometrial optis and has beome of great interest for problems in omputer vision [10, 22℄.It is the basis for ontinuous versions of mathematial morphology [9, 45, 64℄, as well asfor Blum's grass�re transform [5℄ and dynami theories of shape representation [23, 61℄. Ithas also been used for appliations in image proessing and analysis [48, 11℄, shape-from-shading [20, 44, 39, 25℄ and stereo [15℄.As is well known, some are must be taken with the numerial simulation of this equation,sine it is a hyperboli partial di�erential equation for whih a smooth initial front maydevelop singularities or shoks as it propagates. At suh points, lassial onepts suh asthe normal to a urve and its urvature are not de�ned. Nevertheless, it is preisely thesepoints that are important for the above appliations in omputer vision sine, e.g., it is theywhih denote the skeleton (see Figure 3). To ontinue the evolution while preserving shoks,the tehnology of level set methods introdued by Osher and Sethian [41℄ has proved tobe extremely powerful. The approah relies on the notion of a weak solution, developed invisosity theory [12℄ and the introdution of an appropriate entropy ondition to selet it.The representation of the evolving front as a level set of a hypersurfae allows topologialhanges to be handled in a natural way and robust, eÆient implementations have reentlybeen developed [49℄.As pointed out in [41℄, level set methods are Eulerian in nature beause omputations arerestrited to grid points whose loations are �xed. For suh methods, the question of om-puting the lous of shoks for dynamially hanging systems remains of ruial importane,i.e., the methods are shok preserving but do not expliitly detet shoks. Shok detetionmethods whih rely on interpolation of the underlying hypersurfae are omputationally veryexpensive. Numerial thresholds are introdued and high order aurate numerial shemesmust be used [40, 56℄.On the other hand, there are more lassial methods rooted in Hamiltonian physis, whihan also be used to study shok theory. Although suh formulations have been applied toomputer vision problems [20, 44, 39℄, the numerial methods have yet to be widely used. Inthis paper we review the Hamiltonian formalism for simulating the eikonal equation whih1



o�ers a number of oneptual advantages when it omes to shok traking. Hamiltoniansystems are of ourse fundamental in lassial physis and have a natural physial inter-pretation based on elementary Hamiltonian and Lagrangian mehanis. The existene ofsuh simple di�erential equations is also relevant to onsidering whether these models haveany possible biologial implementations [36℄. We speialize to the ase of Blum's grass�reow [5℄ and ompute a measure of the average outward ux of the vetor �eld underlying theHamiltonian system. As the region over whih this ux is omputed shrinks to a point, themeasure an be shown to have very di�erent limiting behaviors depending upon whether ornot that point is singular. Thus, it is a very e�etive way of distinguishing between medialand non-medial points. We ombine the average outward ux measure with a homotopypreserving thinning proess applied in a disrete lattie. This leads to a robust and eÆ-ient algorithm for omputing skeletons in 2D as well as 3D whih has low omputationalomplexity. We illustrate the method with a number of examples of medial axes (2D) andmedial surfaes (3D) of syntheti objets as well as omplex anatomial strutures obtainedfrom medial images.To the best of our knowledge, the losest work in omputer vision is the formulationof Oliensis and Dupuis of the shape-from-shading problem [39℄. Their method also usesHamilton-Jaobi theory and has similar robust numerial properties. In partiular, a densityfuntion for marker partiles is propagated to obtain estimates of where partiles aumulate.This strategy is used to distinguish soures from sinks in order to reonstrut shape fromintensity images. We now review some relevant bakground on skeletons, followed by a briefoverview of skeletonization approahes related to our method.1.1 2D and 3D SkeletonsThe 2D skeleton (medial axis) of a losed set A � R2 is the lous of enters of maximalopen diss ontained within the omplement of the set [5℄. An open dis is maximal if thereexists no other open dis ontained in the omplement of A that properly ontains the dis.The 3D skeleton (medial surfae) of a losed set A � R3 is de�ned in an analogous fashionas the lous of enters of maximal open spheres ontained in the omplement of the set.Both types of skeletons have been widely used in bio-mediine for tasks involving objetrepresentation [37, 58℄, registration [30℄ and segmentation [47℄. They have also been used for2



graph-based objet reognition in omputer vision [38, 66, 52, 31, 57℄, for animating objetsin graphis [62, 42℄ and for manipulating them in omputer-aided design. Despite theirpopularity, their numerial omputation remains non-trivial. Most algorithms are not stablewith respet to small perturbations of the boundary and heuristi measures for simpli�ationare often introdued.Interest in the skeleton as a representation for an objet stems from a number of inter-esting properties: i) it is a thin set, i.e., it ontains no interior points, ii) it is homotopito the original shape, iii) it is invariant under Eulidean transformations of the objet (ro-tations and translations) and iv) given the radius of the maximal insribed irle or sphereassoiated whih eah skeletal point, the objet an be reonstruted exatly. Hene, itprovides a ompat representation while preserving the objet's genus and making ertainuseful properties expliit, suh as its loal width.Approahes to omputing skeletons an be broadly organized into three lasses. First,methods based on thinning attempt to realize Blum's grass�re formulation [5℄ by peelingaway layers from an objet while retaining speial points [2, 28, 8, 35℄. It is possible tode�ne erosion rules in a lattie suh that the topology of the objet is preserved. However,these methods are quite sensitive to Eulidean transformations of the data and typially failto loalize skeletal points aurately. As a onsequene, only a oarse approximation to theobjet is usually reonstruted [35, 4, 28℄.Seond, it has been shown that under appropriate smoothness onditions the verties of theVoronoi diagram of a set of boundary points onverges to the exat skeleton as the samplingrate inreases [46℄. This property has been exploited to develop skeletonization algorithms in2D [38℄, as well as extensions to 3D [53, 54℄. The dual of the Voronoi diagram, the Delaunaytriangulation (or tetrahedralization in 3D) has also been used extensively. Here the skeletonis de�ned as the lous of enters of irumsribed irles of eah triangle (spheres of eahtetrahedra in 3D) [18, 37℄. Both types of methods ensure homotopy between objets andtheir skeletons and aurately loalize skeletal points, provided that the boundary is sampleddensely. Unfortunately, the tehniques used to prune elements of the Voronoi graph whihorrespond to small perturbations of the boundary are typially based on heuristis. Inpratie, the results are not invariant under Eulidean transformations and the optimizationstep, partiularly in 3D, an have a high omputational omplexity [37℄.3



A third lass of methods exploits the fat that the lous of skeletal points oinides withthe singularities of a Eulidean distane funtion to the boundary. These approahes attemptto detet loal maxima of the distane funtion, or the orresponding disontinuities in itsderivatives [1, 29, 19℄. The numerial detetion of these singularities is itself a non-trivialproblem; whereas it may be possible to loalize them, ensuring homotopy with the originalobjet is diÆult. The are also some reent approahes to omputing 2D and 3D skeletonswhih ombine aspets of thinning, Voronoi diagrams and distane funtions [34, 65, 8, 63℄.1.2 Related WorkWe now present a brief overview of seleted approahes that are related to the method wedevelop in this paper. We refrain from an exhaustive review of the large body of work inomputer vision and omputational geometry on omputing 2D and 3D skeletons, sine thisis beyond the sope of this paper.Leymarie and Levine have simulated the grass�re by utilizing the magnitude of the gradientvetor �eld of a signed distane funtion to attrat a snake moving in from the objet'sboundary [29℄. In this tehnique the ontour has to be �rst segmented at urvature extrema,whih is itself a hallenging problem. Kimmel et al. have also proposed a method where theontour is �rst segmented at loations of positive urvature maxima [24℄. Outward distanefuntions to eah segment are then omputed and the skeleton is obtained by interpolatingthe zero level set of the distane map di�erenes and removing spurious points. Geiger et al.have introdued a variational approah to omputing symmetri axis trees, where portionsof a urve are mathed against others, inorporating onstraints inluding o-irularityand parallelism [32℄. The approah leads to an abstration that is related to the medialaxis, but is omprised by a di�erent lous of points. Dynami programming is used tomake the omputation eÆient. Tek and Kimia have proposed an approah for alulatingsymmetry maps, whih is based on the ombination of a wavefront propagation tehniquewith an exat (analyti) distane funtion [63℄. In this tehnique the representation must bepruned in order to distinguish salient branhes from unwanted ones. Pudney has introdued adistane ordered homotopy preserving thinning proedure where points are removed in orderof their distane from the boundary while anhoring end points and enters of maximal ballsidenti�ed from a hamfer distane funtion [43℄. Malandain and Fernandez-Vidal obtain two4
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T(x,y)=0Figure 1: A geometri view of a monotonially advaning front (Eq. 1). T (x; y) is a graph of the`solution' surfae, the level sets of whih are the evolved urves.sets based on thresholding a funtion of two heuristi measures, � and d, to haraterizethe singularities of the Eulidean distane funtion [34℄. The two sets are ombined using atopologial reonstrution proess. Tari and Shah have proposed a haraterization of thesymmetries of n-dimensional shapes by looking at properties of the Hessian of a suitablyde�ned salar edge-strength funtional [60℄. Furst and Pizer have introdued a notion ofan optimal parameter height ridge in arbitrary dimension by exploiting a sub-dimensionalmaximum property [16℄. Kalitzin et al. have onsidered index omputations on vetor �eldsassoiated with salar images in order to identify their singularities [21℄. Vetor �elds rootedin magneto-statis have also been used for extrating symmetry and edge lines in greysaleimages [13℄.2 The Eikonal EquationWe begin by showing the onnetion between a monotonially advaning front and thewell known eikonal equation. Consider the urve evolution equation�C�t = FN ; (1)where C is the vetor of urve oordinates, N is the unit inward normal and F = F (x; y)is the speed of the front at eah point in the plane, with F � 0 (the ase F � 0 is alsoallowed). Let T (x; y) be a graph of the solution surfae, obtained by superimposing all theevolved urves in time (see Figure 1). In other words, T (x; y) is the time at whih the urve5



rosses a point (x; y) in the plane. Referring to the �gure, the speed of the front is given byF (x; y) = dh = 1tan(�) = 1d0 = 1krTk :Hene, T (x; y) satis�es the eikonal equationkrTk F = 1: (2)A number of algorithms have been reently developed to numerially solve this equation,inluding Sethian's fast marhing method [49℄ whih systematially onstruts T using onlyupwind values, Rouy and Tourin's visosity solutions approah [44℄ and Sussman et al.'slevel set method for inompressible two-phase ows [59℄. However, none of these methodsaddress the issue of shok detetion expliitly and more work has to be done to trak shoks.A di�erent approah, whih is related to the solution surfae T (x; y) viewed as a graph, hasbeen proposed by Shah et al [50, 61℄. Here the key idea is to use an edge strength funtionalv in plae of the surfae T (x; y), omputed by a linear di�usion equation. The equation anbe eÆiently implemented and the framework extends to greysale images as well as urveswith triple point juntions. It provides an approximation to the reation-di�usion spaeintrodued in [23℄, but does not extend to the extreme ases, i.e., morphologial erosion bya dis struturing element (reation) or motion by urvature (di�usion). Hene, points ofmaximum (loal) urvature of the evolved urves are interpreted as skeletal points. Thisregularized skeleton is typially not onneted and its relation to the lassial skeleton,obtained from the eikonal equation with F = 1, is as yet unlear.In the next setion, we shall onsider an alternate framework for solving the eikonalequation, whih is based on the anonial equations of Hamilton. The tehnique is widelyused in lassial mehanis and rests on the use of a Legendre transformation (see [3, 51℄)whih takes a system of n seond-order di�erential equations to a mathematially equivalentsystem of 2n �rst-order di�erential equations. We believe that the method o�ers spei�advantages over alternatives for a number of vision problems that involve shok trakingand skeletonization.
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3 Hamilton's Canonial Equations and the Hamilton-Jaobi Skele-ton FlowWe begin this setion with an overview of the Hamiltonian formalism, taken from [3, 51℄.Although this is standard material in lassial mehanis, these tehniques may be unfamiliarto the general omputer vision audiene. In a Lagrangian formulation the independentvariables are the oordinates q of partiles and their veloities _q. For example, in theontext of the Eq. (1) these would be the positions of points along the urve C and theirassoiated veloities FN . Eah partile follows the path of least ation in reahing a futureloation at a future time. In mathematial terms, the ation funtion minimized, Sq0;t0, isgiven by Sq0;t0(q; t) = Z Ldt:Here  is an extremal urve onneting the points (q0; t0) and (q; t) and L(q; _q) is theLagrangian. In other words, of all possible paths onneting (q0; t0) and (q; t), the trajetory followed by the partile is the one that minimizes the ation funtion. The assoiatedEuler-Lagrange equation is ddt �L� _q � �L�q = 0 (3)where the momenta are derived quantities given byp = �L� _q :The key to the Hamiltonian formalism is to exhange the roles of _q and p by replaing theLagrangian L(q; _q) with a Hamiltonian H(q;p) suh that the veloities now beome thederived quantities _q = �H�p :This an be done by applying the following Legendre transformationH(q;p) = p � _q� L(q; _q) (4)where the _q's are written as funtions of q's and p's. It is a simple exerise to verify thatthe above expression for the veloities _q then holds. One an also take partial derivatives ofthe Hamiltonian with respet to the q's and verify that�H�q = ��L�q :7



The Lagrangian formalism The Hamiltonian formalismThe state of the system is desribed by The state of the system is desribed by(q; _q): (q;p):The state may be represented by a point The state may be represented by a pointmoving with a veloity in an in a 2n-dimensional phase spae.n-dimensional on�guration spae.The n oordinates evolve aording to The 2n oordinates and momenta obeyn seond-order equations. 2n �rst-order equations.For a given L several trajetories For a given H only one trajetorymay pass through a given point passes through a given pointin the on�guration spae. in the phase spae.Table 1: A omparison of the Lagrangian and Hamiltonian formalisms, taken from [51℄.Using Eq. (3), �L�q an be replaed with _p to give Hamilton's anonial equations:_p = ��H�q ; _q = �H�p : (5)Thus, in the Hamiltonian formalism one starts with the initial positions and momenta(q(0);p(0)) and integrates Eq. (5) to obtain the phase spae (q(t);p(t)) of the system.A omparison of the Lagrangian and Hamiltonian formalisms is presented in Table 1.Following Arnold [3, pp. 248{258℄, we now use Huygens' priniple to show the onnetionbetween the eikonal equation and a Hamilton-Jaobi equation. For every point q0, de�ne thefuntion Sq0(q) as the ost of the path from q0 to q (see Figure 2). As indiated earlier, thetrajetory followed from q0 to q will be the path of least ation. The wave front generatedat time t is given by fq : Sq0(q) = tg. The vetor p = �S�q is alled the vetor of normalslowness of the front. By Huygens' priniple the diretion of the ray _q is onjugate to thediretion of motion of the front, i.e., p � _q = 1. In an anisotropi medium the vetors p and_q have di�erent diretions in general.Let us speialize to the ase of a monotonially advaning front in an inhomogeneous butisotropi medium (Eq. 1). Here the speed F (x; y) depends only on position (not on diretion),and the diretions of p and _q oinide. The Lagrangian assoiated with the ation funtion8
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Figure 2: Diretion of a ray _q and the diretion of motion of the wave front p. From [3℄.minimized (Eq. (3)) is given byL = 1F (x; y) k�=�tk= 1F (x; y) k _qk :This an be interpreted as a onformal (in�nitesimal) length element and we have assumedthat the extremals emanating from the point (q0; t0) do not interset elsewhere, i.e., theyform a entral �eld of extremals. For an isotropi medium the extremals turn out to bestraight lines and for the speial ase F (x; y) = 1 the ation funtion beomes Eulideanlength.It an be shown that the vetor of normal slowness, p = �S�q , is not arbitrary but satis�esthe Hamilton-Jaobi equation �S�t = �H q; �S�q! ; (6)where the Hamiltonian funtion H(q;p) is the Legendre transformation with respet to _qof the Lagrangian disussed earlier [3℄. Rather than solve the nonlinear Hamilton-Jaobiequation for the ation funtion S (whih will give the solution surfae T (x; y) to Eq. (2)),it is muh more onvenient to look at the evolution of the phase spae (q(t);p(t)) under theequivalent Hamiltonian system given by Eq. (5). This o�ers a number of advantages, the mostsigni�ant being that the equations beome linear and hene trivial to simulate numerially.We shall now derive this system of equations for the speial ase of a front advaning withspeed F (x; y) = 1. This ase is of partiular interest for shape analysis beause the lous ofshoks whih form oinides with the trae of the Blum skeleton [5, 9, 23℄.For the ase of a front moving with onstant speed, reall that the ation funtion beingminimized is Eulidean length and hene S an be viewed as a Eulidean distane funtion9



from the initial urve C0. Furthermore, the magnitude of its gradient, krSk, is idential to 1in its smooth regime, whih is preisely where the assumption of a entral �eld of extremalsis valid.With q = (x; y), p = (Sx; Sy), kpk= 1, we assoiate to the evolving plane urve C � R2the surfae ~C � R4 given by~C := f(x; y; Sx; Sy) : (x; y) 2 C; S2x + S2y = 1; p � _q = 1g:The Hamiltonian funtion obtained by applying the Legendre transformation (Eq. 4) to theLagrangian L =k _qk is given byH = p � _q� L = 1� (S2x + S2y) 12 :The assoiated Hamiltonian system is_p = ��H�q = (0; 0); _q = �H�p = �(Sx; Sy): (7)~C an be evolved under this system of equations, with ~C(t) � R4 denoting the resulting(ontat) surfae. The projetion of ~C(t) onto R2 will then give the parallel evolution of Cat time t, C(t).We illustrate this ow by representing the initial urve with a sequene of marker partilesand then evolving them aording to Eq. 7. Further details are presented in [55℄. Withq = (x; y), p = (Sx; Sy) = rS, the system of equations beomesf _Sx = 0; _Sy = 0; _x = �Sx; _y = �Syg;a gradient dynamial system. The seond equation indiates that the trajetory of themarker partiles will be governed by the vetor �eld obtained from the gradient of theEulidean distane funtion S and the �rst indiates that this vetor �eld does not hangewith time and an be omputed one at the beginning of the simulation. Projeting this 4Dsystem onto the (x; y) plane for eah instane of time t will give the evolved urve C(t). Thesuperposition of all the level urves gives the solution surfae T (x; y) in Figure 1. Figure 3depits the evolution of marker partiles, with speed F = 1, for several di�erent shapes.Whereas a variety of methods an be used to simulate the eikonal equation, inluding levelset tehniques and their fast marhing versions [49℄, the Hamiltonian formalism o�ers theadvantage that the formation of shoks an be made expliit. As shown in the followingsetion the key idea is to exploit a measure of the average outward ux of the vetor �eld _q.10



Figure 3: The evolution of marker partiles under the Hamiltonian system. The initial partiles areplaed on the boundary and iterations of the proess are superimposed. These orrespond to level setsof the solution surfae T (x; y) in Figure 1.4 Flux and DivergeneWe approah the disrimination of medial points, whih oinide with the shoks of thegrass�re ow, from non-medial ones, by omputing the average outward ux of the vetor�eld _q about a point. The average outward ux is de�ned as the outward ux through theboundary of a region ontaining the point, normalized by the length of the boundaryRÆR < _q;N > dslength(ÆR) (8)
11



Here ds is an element of the bounding ontour ÆR of the region R and N is the outwardnormal at eah point of the ontour. Via the divergene theoremZR div( _q)da � ZÆR < _q;N > ds; (9)where da is an area element. Thus the outward ux is related to the divergene in thefollowing way div( _q) � lim�a!0 RÆR < _q;N > ds�a : (10)It is well known that the outward ux, or equivalently the integral of the divergene of_q measures the degree to whih the ow generated by _q is area preserving for the regionover whih it is omputed. To elaborate, the outward ux (and hene also the averageoutward ux) is negative if the area enlosed by the region ÆR is shrinking under the ationof the Hamiltonian ow, positive if it is growing and zero otherwise. This quantity is learlystrongly dependent on the shape of the region R. However, it an be shown that in the limitas the region ÆR shrinks to a non-medial point, the average outward ux approahes zero.When onsidering a region ÆR that ontains a medial point, unfortunately the standardform of the divergene theorem does not apply sine the vetor �eld _q beomes singular.Instead, the limiting behavior of the average outward ux as the region ÆR shrinks to amedial point an be onsidered. Furthermore, it an be shown that this quantity approahesa stritly negative number proportional to < _q;N 0 >, where N 0 is now a one-sided normal tothe medial axis or surfae.1 The onstant of proportionality depends upon whether the axispoint is a regular point or a branh point. Thus, in the limit as ÆR shrinks to a point theaverage outward ux alulation is an e�etive way of deteting the singularities of the vetor�eld _q. Non-medial points give values that are lose to zero and medial points orrespondingto strong singularities give large negative values. Whereas thus far we have foussed on thease of a (2D) losed urve, the very same analysis applies to a losed (3D) surfae evolvingaording to an eikonal equation. One simply has to replae the initial losed urve C withthe losed surfae S in Eq. (1), add a third oordinate z to the phase spae in Eq. (7) and1The proof of this fat was onveyed to us by Jim Damon in personal ommuniations. He pointed usto an alternate form of the divergene theorem that ould be applied in regions interseting the medial axisor surfae, whih he used to work out the limiting behavior of the average outward ux. We are grateful tohim for this analysis. 12



replae the area element with a volume element and the ontour integral with a surfaeintegral in Eqs. (8), (9) and (10).

Figure 4: The gradient vetor �eld of a signed distane funtion to the boundary of a panther shape(left), with the assoiated average outward ux (right). Whereas the smooth regime of the vetor �eldgives zero ux (medium grey), strong singularities give either large negative values (dark grey) in theinterior or large positive values (light grey) in the exterior.Figure 4 illustrates the average outward ux omputation on the silhouette of a panthershape, where values lose to zero are shown in medium grey. All omputations are arriedout on a retangular lattie, although the bounding urve is shown in interpolated form.Stritly speaking, the average outward ux is desired only in the limit as the region shrinksto a point. However, the average outward ux over a very small neighborhood (a irle in2D or a sphere in 3D) provides a suÆient approximation to the limiting values. Strongsingularities orrespond either to high magnitude negative (dark grey) or positive numbers(light grey), depending upon whether the vetor �eld is ollapsing at or emanating from apartiular point. A threshold on the average outward ux yields a lose approximation tothe skeleton, as used in [55℄. However, in general it is impossible to guarantee that the resultobtained by simple thresholding is homotopi to the original shape. A high threshold mayyield a onneted set, but it is not thin and unwanted branhes may be present, Figure 5(left). A low threshold yields a thin set, but it may be disonneted, Figure 5 (right).The solution, as we shall now show, is to introdue additional onstraints to ensure that theresulting skeleton is homotopi to the shape. The essential idea is to inorporate a homotopypreserving thinning proess, where the removal of points is guided by the average outward13



ux values. In the ontext of the Hamilton-Jaobi skeleton ow (Eq. 7), this leads to arobust and eÆient algorithm for omputing 2D and 3D skeletons.
Figure 5: Thresholding the average outward ux map in Figure 4. A high threshold yields a onneted set,but it is not thin and unwanted branhes are present (left). A low threshold yields a loser approximationto the desired medial axis, but the result is now disonneted (right).5 Homotopy Preserving SkeletonsOur goal is to ombine the divergene omputation with a digital thinning proess, suhthat as many points as possible are removed without altering the objet's topology. In digitaltopology a point is simple if its removal does not hange the topology of the objet. In 2D weshall onsider retangular latties, where a point is a unit square with 8 neighbors, as shownin Figure 6 (left). Hene, a 2D digital point is simple if its removal does not disonnet theobjet or reate a hole. In 3D we shall onsider ubi latties, where a point is a unit ubewith 6 faes, 12 edges and 8 verties. Hene, a 3D digital point is simple if its removal doesnot disonnet the objet, reate a hole, or reate a avity [26℄.5.1 2D Simple PointsConsider the 3x3 neighborhood of a 2D digital point P ontained within an objet andselet those neighbors whih are also ontained within the objet. Construt a neighborhoodgraph by plaing edges between all pairs of neighbors (not inluding P ) that are 4-adjaentor 8-adjaent to one another. If any of the 3-tuples f2; 3; 4g, f4; 5; 6g, f6; 7; 8g, or f8; 1; 2g,are nodes of the graph, remove the orresponding diagonal edges f2; 4g, f4; 6g, f6; 8g, orf8; 2g, respetively. This ensures that there are no degenerate yles in the neighborhoodgraph (yles of length 3). Now, observe that if the removal of P disonnets the objet,14
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Figure 6: Left: A 3x3 neighborhood of a andidate point for removal P . Right: An exampleneighborhood graph for whih P is simple. There is no edge between neighbors 6 and 8 (see text).or introdues a hole, the neighborhood graph will not be onneted, or will have a yle,respetively. Conversely, a onneted graph that has no yles is a tree. Hene, we have ariterion to deide whether or not P is simple:Proposition 1 A 2D digital point P is simple if and only if its 3x3 neighborhood graph,with yles of length 3 removed, is a tree.A straightforward way of determining whether or not a graph is a tree is to hek that itsEuler harateristi jV j�jEj (the number of verties minus the number of edges) is identialto 1. This hek only has to be performed loally, in the 3x3 neighborhood of P . Figure 6(right) shows an example neighborhood graph for whih P an be removed.5.2 3D Simple PointsIn 3D a digital point an have three types of neighbors: two points are 6-neighbors if theyshare a fae; two points are 18-neighbors if they share a fae or an edge; and two points are26-neighbors if they share a fae, an edge or a vertex. This indues three n-onnetivities,where n 2 f6; 18; 26g, as well as three n-neighborhoods for x (Nn(x)). An n-neighborhoodwithout its entral point is de�ned as N�n = Nn(x)nfxg. An objet A is n-adjaent to anobjet B, if there exist two points x 2 A and y 2 B suh that x is an n-neighbor of y. An-path from x1 to xk is a sequene of points x1; x2; :::; xk, suh that for all xi, 1 < i � k, xi�1is n-adjaent to xi. An objet represented by a set of points O is n-onneted, if for everypair of points (xi; xj) 2 O � O, there is a n-path from xi to xj.Based on these de�nitions, Malandain et al. provide a topologial lassi�ation of a pointx in a ubi lattie by omputing two numbers [33℄: i) C�: the number of 26-onnetedomponents 26-adjaent to x in O \N�26 and ii) �C: the number of 6-onneted omponents15



6-adjaent to x in �O \N18: An important result with respet to our goal of thinning is thefollowing:Theorem 1 (Malandain et al. 1993) P is simple if C�(P ) = 1 and �C(P ) = 1.We an now determine whether or not the removal of a point will alter the topologyof a digital objet. When preserving homotopy is the only onern, simple points an beremoved sequentially until no more simple points are left. The resulting set will be thinand homotopi to the objet. However, without a further riterion the relationship to theskeleton will be unertain sine the lous of surviving points depends entirely on the orderin whih the simple points are removed. In the urrent ontext, we have derived a naturalriterion for ordering the thinning, based on the average outward ux of the gradient vetor�eld of the Eulidean distane funtion.5.3 Flux-Ordered ThinningReall from Setion 4, that the average outward ux of the gradient vetor �eld of theEulidean distane funtion an be used to distinguish non-medial points from medial ones.This quantity tends to zero for the former, but approahes a negative number below aonstant times < _q;N 0 > for the latter, where N 0 is the one-sided normal to the medial axisor surfae. Hene, the average outward ux provides a natural measure of the \strength"of a skeletal point for numerial omputations. The essential idea is to order the thinningsuh that the weakest points are removed �rst and to stop the proess when all survivingpoints are not simple, or have a total average outward ux below some hosen (negative)value, or both. This will aurately loalize the skeleton and also ensure homotopy with theoriginal objet. Unfortunately the result is not guaranteed to be a thin set, i.e., one withoutan interior.One way of satisfying this last onstraint is to de�ne an appropriate notion of an end point.Suh a point would orrespond to the end point of a urve (in 2D or 3D), or a point on therim of a surfae, in 3D. The thinning proess would proeed as before, but the thresholdriterion for removal would be applied only to end points. Hene, all surviving points whihwere not end points would not be simple and the result would be a thin set.In 2D, an end point will be viewed as any point that ould be the end of a 4-onneted or16



8-onneted digital urve. It is straightforward to see that suh a point may be haraterizedas follows:Proposition 2 A 2D point P ould be an end point of a 1 pixel thik digital urve if, in a 3x3neighborhood, it has a single neighbor, or it has two neighbors, both of whih are 4-adjaentto one another.In 3D, the haraterization of an end point is more diÆult. An end point is either theend of a 26-onneted urve, or a orner or point on the rim of a 26-onneted surfae. InR3, if there exists a plane that passes through a point p suh that the intersetion of theplane with the objet inludes an open urve whih ends at p, then p is an end point of a3D urve, or is on the rim or orner of a 3D surfae. This riterion an be disretized easilyto 26-onneted digital objets by examining 9 digital planes in the 26-neighborhood of p asin [43℄.5.4 The Algorithm and its ComplexityThe essential idea behind the ux-ordered thinning proess is to remove simple points se-quentially, ordered by their average outward ux, until a threshold is reahed. Subsequently,simple points are removed if they are not end points. The proedure onverges when allremaining points are either not simple or are end points. The thinning proess an be madevery eÆient by observing that a point whih does not have at least one bakground pointas an immediate neighbor annot be removed, sine this would reate a hole or a avity.Therefore, the only potentially removable points are on the border of the objet. One aborder point is removed, only its neighbors may beome removable. This suggests the im-plementation of the thinning proess using a heap. A full desription of the proedure isgiven in Algorithm 1.We now analyze the omplexity of the algorithm. The omputation of the distane trans-form [6℄, the gradient vetor �eld and the average outward ux are all O(n) operations. Heren is the total number of points in the array. The implementation of the thinning is moresubtle. We laim an O(klog(k)) worst ase omplexity, where k is the number of pointsinside the objet. The explanation is as follows. At �rst, store only the points that are onthe outer layer of the objet in a heap, using the average outward ux as the sorting key17



Algorithm 1 The Flux-Ordered Thinning Algorithm.Part I: Average Outward FluxCompute the distane transform of the objet D [6℄.Compute the gradient vetor �eld rD.Compute the average outward ux of rD using Eq. 9For eah point P in the interior of the objetF lux(P ) = Pni=1 < Ni;rD(Pi) > =n,where Pi is an n-neighbor (n = 8 in 2D, n = 26 in 3D) of P andNi is the outward normal at Pi of the unit (dis in 2D, sphere in 3D)entered at P .Part II: Homotopy Preserving ThinningFor eah point P on the boundary of the objetif (P is simple)insert(P , Heap) with F lux(P )as the sorting key for insertionWhile (Heap.size > 0)P = HeapExtratMax(Heap)if (P is simple)if (P is not an end point) or (F lux(P ) > Thresh)Remove Pfor all neighbors Q of Pif (Q is simple)insert(Q, Heap)else mark P as a skeletal (end) pointend f if gend f if gend f while g
18



for insertion. The extration of the maximum from the heap will provide the best andidatefor removal. If this point is removable, then delete it from the objet and add its simple(potentially removable) neighbors to the heap. A point an only be inserted a onstantnumber of times (at most 26 times for a 3D, 26-neighborhood and at most 8 times for a 2D,8-neighborhood) and insertion in a heap, as well as the extration of the minimum, are bothO(log(l)) operations, where l is the number of elements in the heap. There annot be morethan k elements in the heap, beause we only have a total of k points within the objet. Theworst ase omplexity for thinning is therefore O(klog(k)). Hene, the worst ase omplexityof the algorithm is O(n) +O(klog(k)). We should point out that this is a very loose upperbound. The heap only ontains points from the objet's surfae and therefore in pratiethe omplexity is almost linear in the number of digital points n.6 Examples6.1 Medial Axes

Figure 7: Left: A subpixel medial axis, with branh points shown as empty irles and end points as�lled irles. Compare with the results in Figure 5. Right: The reonstrution as the envelope of themaximal insribed disks (grey) of the medial axis, overlaid on the original shape.We �rst present examples of medial axes, omputed for a range of 2D binary shapes. Thesame outward ux threshold was used in eah example to determine whih end points topreserve. The input is a 2D binary array where the foreground and bakground are identi�edby distint values. The implementation then uses an exat (signed) distane funtion to apieewise irular ar interpolation of the boundary, whih allows for subpixel omputations(details are presented in [14℄). Figure 7 (left) shows the subpixel medial axis for the panther19



silhouette with branh points shown as empty irles and end points as losed irles. Theauray of the representation is illustrated in Figure 7 (right), where the shape is reon-struted as the envelope of the maximal insribed diss assoiated with eah medial axispoint. Figure 8 depits subpixel medial axes for a number of other shapes. The resultsdemonstrate the robustness of the framework under Eulidean transformations, as well ashanges in sale.6.2 Medial SurfaesNext we illustrate the algorithm with both syntheti data and volumetri strutures seg-mented from medial images. For these we used the D-Eulidean distane funtion [6℄ whihprovides a good approximation to the true distane funtion. One again, the only freeparameter is the hoie of the outward ux threshold below whih the removal of end pointsis bloked. For these examples, the value was seleted so that approximately 25% of thepoints within the volume had a lower average outward ux.6.2.1 Auray, Stability and RobustnessAuray: We test the method by using syntheti objets for whih the expeted strutureof the medial surfae is known. Figures 9 and 10 illustrate the omputation of the ux-basedmedial surfaes for a ube and a ylinder, respetively. In both ases the omputations leadto the strutures one would expet when onsidering the loi of entres of maximal insribedspheres. Also, the reonstrution from the medial surfae and its assoiated distane funtionis aurate.Stability: Next we test the sensitivity of the method to boundary perturbations. Figure 11shows the same ube as earlier, but with points randomly removed (top row) or added(bottom row), up to a depth of four voxels. The resulting medial surfae is no longer assmooth as before but no spurious sheets have been added. This illustrates the stability ofthe method in the presene of moderate boundary noise. In fat, the boundary protrusionsor indentations have to be signi�ant in order for spurious branhes or sheets to appear, asillustrated in Figure 12.
20



Figure 8: Subpixel medial axes for a range of shapes, obtained by ux-ordered thinning. The detetedend points and branh points are irled.Robustness: Third, we test the robustness of the method under rotation. We rotate theube by 30 degrees around the z axis and ompute its medial surfae. Figure 13 omparesthis result with the medial surfae of the original ube. The two outputs are learly almost21



Figure 9: First Column: Three views of a ube. Seond Column: The orresponding ux-basedmedial surfaes. Third Column: The objet reonstruted from the medial surfaes in the previousolumn.idential.6.2.2 Labeling the Medial SurfaeThe medial surfae an be labeled using the lassi�ation of Malandain et al. [33℄. Speif-ially, the numbers C� and �C, desribed in Setion 5, an be used to lassify urve points,surfae points, border points and juntion points. However, juntion points an be mislas-si�ed as surfae points when ertain speial on�gurations of voxels our and these aseshave to be dealt with using a new de�nition for simple surfaes [33℄.Let x be a surfae point ( �C = 2 and C� = 1). Let Bx and Cx be the two onnetedomponents of �O \ N18 6-adjaent to x. Two surfae points x and y are in an equivalene22



Figure 10: First Column: Three views of a ylinder. Seond Column: The orresponding ux-based medial surfaes. Third Column: The objet reonstruted from the medial surfaes in theprevious olumn.relation if there exists a 26-path x0; x1; :::; xi; :::; xn with x0 = x and xn = y suh that fori 2 [0; :::; n�1℄; (Bxi\Bxi+1 6= ; and Cxi\Cxi+1 6= ;) or (Bxi\Cxi+1 6= ; and Cxi\Bxi+1 6= ;).A simple surfae is then de�ned as any equivalene lass of this equivalene relation.We use this de�nition in our framework to �nd all the mislassi�ed juntions. If the 26-neighborhood of a previously lassi�ed surfae point x is not a simple surfae, then x is ajuntion point. Figures 13 and 14 illustrate the labeling of the medial surfae of a ube and aylinder. The medial surfae of the ylinder is orretly labeled as having two simple sheetsonneted by a 3D digital urve through two juntion points.The same de�nition an be used to extrat the individual simple surfaes omprising themedial surfae of an objet. The idea is to �nd an unmarked surfae point on the medialsurfae and use it as a \soure" to build its assoiated simple surfae using a depth �rst23



Figure 11: First Row: Three views of the ube in Figure 9, but with up to 4 voxels in depth removedrandomly from the surfae. Seond Row: The resulting medial surfae. Third Row Three views ofa ube in Figure 9, but with up to 4 voxels in depth added randomly to the surfae. Fourth Row:The resulting medial surfae.searh strategy. The next simple surfae is built from the next unmarked surfae point andso on, until all surfae points are marked. 24



Figure 12: Top Row: Three views of the ube in Figure 9 but with up to 30 voxels in depth randomlyremoved or added to the surfae. Bottom Row The resulting medial surfae shows spurious branhesand sheets, but has a smooth main struture.6.2.3 Experiments on MR and MRA DataWe now illustrate the method on volumetri data segmented from medial images. Figure 15illustrates the results on brain ventriles obtained from a magneti resonane (MR) image.The medial surfae onsists of two main sheets whih reet the \buttery-like" strutureof the original objet. The �gure demonstrates that thresholding the ux (seond olumn)results in erroneous topologies, whereas the full algorithm (third olumn) omputes medialsurfaes whih are both thin and topologially orret. The ventriles reonstruted fromthe medial surfae in the third olumn are shown in the fourth olumn.Next, we illustrate the approah on a (partial) data set of blood vessels obtained from amagneti resonane angiography (MRA) image of the brain, in Figure 16. The blood vesselshave omplex topology with loops (due to pathologies) and are already quite thin in severalplaes. The bottom row illustrates the auray of the method, where the medial surfaes are25



Figure 13: Top Row: The medial surfae of the ube in Figure 9. Bottom Row: The ube is rotatedby 30 degrees around the z axis and its medial surfae is reomputed. The viewing diretions are thesame for the top and bottom rows. The two medial surfaes have also been automatially segmentedinto surfae points (grey), juntion points (blue) and border points (red) using the lassi�ation of [33℄.

Figure 14: The medial surfae of a ylinder is labeled into border points (blue), surfae points (grey),urve points (green) and juntion points (red) 26



Figure 15: First Column: Four views of the ventriles of a brain, segmented from volumetri MR datausing an ative surfae. Seond Column: The orresponding medial surfaes obtained by threshold-ing the ux map. Third Column: The ux-based medial surfaes obtained using the same threshold,but with the inorporation of homotopy preserving thinning. Fourth Column: The ventriles reon-struted from the ux-based medial surfaes in the previous olumn.shown embedded within the original data set. Generially these strutures are thin sheetswhih approah 3D urves when the blood vessels beome perfetly ylindrial. In a numberof medial appliations where the objets are tubular strutures, an expliit redution of themedial surfae to a set of 3D urves is of interest [17, 7, 8, 65℄. There is a straightforwardmodi�ation of our framework whih allows this. The essential idea is to modify the endpoint riteria suh that only end points of 3D urves are preserved. Rim and orner pointsof surfaes are now onsidered to be removable points during the thinning proess, resultingin a medial surfae onsisting only of 3D urves. This is illustrated for a portion of the vesseldata in Figure 17, whih gives three 1 voxel wide 26-onneted 3D digital urves.Finally, Figure 18 illustrates the 3D medial surfae of the suli of a brain. Rather thanshow the entire surfae, whih is diÆult to visualize, we have shown an X, Y and Z slie27



Figure 16: Top Row: Blood vessels segmented from volumetri MRA data with magni�ed portionsshown in the middle and right olumns. Middle Row: The orresponding ux-based medial surfaes.Third Row: The ux-based medial surfaes (solid) are shown within the vessel surfaes (transparent).through the volume in grey, with the intersetion of that slie and the medial surfae shownin blak. The medial surfae is well loalized and aptures the omplex topology of theobjet's shape. The omputation times for the 3D examples running on a dual proessor 550MHz Pentium III mahine are shown in Table 2. As predited by the omplexity analysis inSetion 5.4, the omputations of the distane transform and the divergene map are linearin the size n of the 3D array, while the thinning proedure has an O(klog(k)) dependene28



Figure 17: Left Column: Blood vessels segmented from volumetri MRA data, with a magni�edportion shown in the seond row. Middle Column: The ux-based 3D urves. Right Column:The ux-based 3D urves are shown embedded within the vessel data.on k, the number of points ontained within the volume.7 ConlusionsIn this paper we have applied a Hamiltonian formalism to the eikonal equation, whiho�ers oneptual advantages when it omes to shok detetion. The alulation shows thatwhen applied to Blum's grass�re ow, the gradient vetor �eld _q of the signed Eulideandistane funtion to the objet's boundary drives the motion of points on the bounding urve(2D) or surfae (3D). A measure of the average outward ux of this vetor �eld an be usedto distinguish medial points from non-medial ones. In the limit as the region about whihthis ux is omputed shrinks to a point, the measure tends to zero for non-medial pointsbut to a negative number below a onstant fator times _q � N 0 for medial points, whereN 0 is the one-sided normal to the medial axis or surfae. We have ombined this measure29



Figure 18: Top Row: Medial surfaes of the suli of a brain, segmented from an MR image. The threeolumns represent X, Y and Z slies through the volume, shown in grey. The ross setion through the3D medial surfae in eah slie is shown in blak. Bottom Row: A zoom-in on a seleted region ofthe orresponding slie in the top row, to show detail.with a homotopy preserving thinning proess on a disrete lattie to develop an algorithmwhih is omputationally eÆient and yields skeletons that are homotopi to the originalobjets and thin in 2D as well as in 3D. Whereas in theory the average outward ux isdesired only in the limit as the region shrinks to a point, our experiments show that theaverage outward ux omputed over a very small neighborhood (a irle in 2D or a spherein 3D) provides a suÆient approximation to the limiting values. This, being an integralformulation, is robust to boundary perturbations and digital rotations, as demonstrated byour numerial experiments. We have also illustrated that digital segmentations of medialaxes and surfaes suh as those proposed in [33℄, an be readily inorporated. Thus, theapproah has a number of advantages over alternative methods in the literature. Finally, it30



Data Set Array Size (n) Number of Points (k) DT DIV THIN TOTALCube 128x128x128 120000 26.21s 6.18s 33.50s 65.89sCylinder 128x128x128 26260 26.40s 6.18s 8.15s 40.73sVentriles 192X169x99 30909 39.60s 9.44s 10.17s 59.21sVessels 63x151x164 14377 14.07s 3.31s 3.74s 21.12sSuli 192x169x99 798221 38.71s 10.54s 240.85s 290.1sTable 2: The omputation times for the 3D examples, running on a dual proessor 550 MHz PentiumIII mahine. The times taken in seonds to ompute the distane transform (DT), the divergene map(DIV) and to arry out the thinning (THIN), are eah shown separately. The results are onsistent withthe omplexity analysis in Setion 5.4 .should be lear that whereas we have foused on the interior of an objet, the skeleton of thebakground an be similarly obtained by loating points with high positive average outwardux.Aknowledgements This work was supported by the Natural Sienes and EngineeringResearh Counil of Canada, FCAR Qu�ebe, the Canadian Foundation for Innovation, theNational Siene Foundation, the Air Fore OÆe of Sienti� Researh, the Army ResearhOÆe and by a Multi University Researh Initiative grant. We are grateful to Pavel Dimitrovand Carlos Phillips for help with the 2D simulations. Louis Collins, Georges Le Goualher,Belinda Lee and Terry Peters kindly supplied the medial data. Finally, we are partiu-larly grateful to Jim Damon of the Department of Mathematis at the University of NorthCarolina, Chapel Hill with whom we have had many useful disussions. He pointed us toan alternate form of the divergene theorem that ould be applied in regions ontainingmedial points. He used this form to show that for medial points the average outward uxmeasure tends to a negative number in the limit as the region is shrunk to the point underonsideration. This alulation lends our algorithm a very strong theoretial motivation.
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