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Abstra
t The eikonal equation and variants of it are of signi�
ant interest for problems in
omputer vision and image pro
essing. It is the basis for 
ontinuous versions of mathemat-i
al morphology, stereo, shape-from-shading and for re
ent dynami
 theories of shape. Itsnumeri
al simulation 
an be deli
ate, owing to the formation of singularities in the evolvingfront and is typi
ally based on level set methods. However, there are more 
lassi
al ap-proa
hes rooted in Hamiltonian physi
s whi
h have yet to be widely used by the 
omputervision 
ommunity. In this paper we review the Hamiltonian formulation, whi
h o�ers spe-
i�
 advantages when it 
omes to the dete
tion of singularities or sho
ks. We spe
ialize tothe 
ase of Blum's grass�re 
ow and measure the average outward 
ux of the ve
tor �eldthat underlies the Hamiltonian system. This measure has very di�erent limiting behaviorsdepending upon whether the region over whi
h it is 
omputed shrinks to a singular pointor a non-singular one. Hen
e, it is an e�e
tive way to distinguish between these two 
ases.We 
ombine the 
ux measurement with a homotopy preserving thinning pro
ess applied ina dis
rete latti
e. This leads to a robust and a

urate algorithm for 
omputing skeletons in2D as well as 3D, whi
h has low 
omputational 
omplexity. We illustrate the approa
h withseveral 
omputational examples.



1 Introdu
tionVariational prin
iples have emerged naturally from 
onsiderations of energy minimizationin me
hani
s [27℄. We 
onsider these in the 
ontext of the eikonal equation, whi
h arises ingeometri
al opti
s and has be
ome of great interest for problems in 
omputer vision [10, 22℄.It is the basis for 
ontinuous versions of mathemati
al morphology [9, 45, 64℄, as well asfor Blum's grass�re transform [5℄ and dynami
 theories of shape representation [23, 61℄. Ithas also been used for appli
ations in image pro
essing and analysis [48, 11℄, shape-from-shading [20, 44, 39, 25℄ and stereo [15℄.As is well known, some 
are must be taken with the numeri
al simulation of this equation,sin
e it is a hyperboli
 partial di�erential equation for whi
h a smooth initial front maydevelop singularities or sho
ks as it propagates. At su
h points, 
lassi
al 
on
epts su
h asthe normal to a 
urve and its 
urvature are not de�ned. Nevertheless, it is pre
isely thesepoints that are important for the above appli
ations in 
omputer vision sin
e, e.g., it is theywhi
h denote the skeleton (see Figure 3). To 
ontinue the evolution while preserving sho
ks,the te
hnology of level set methods introdu
ed by Osher and Sethian [41℄ has proved tobe extremely powerful. The approa
h relies on the notion of a weak solution, developed invis
osity theory [12℄ and the introdu
tion of an appropriate entropy 
ondition to sele
t it.The representation of the evolving front as a level set of a hypersurfa
e allows topologi
al
hanges to be handled in a natural way and robust, eÆ
ient implementations have re
entlybeen developed [49℄.As pointed out in [41℄, level set methods are Eulerian in nature be
ause 
omputations arerestri
ted to grid points whose lo
ations are �xed. For su
h methods, the question of 
om-puting the lo
us of sho
ks for dynami
ally 
hanging systems remains of 
ru
ial importan
e,i.e., the methods are sho
k preserving but do not expli
itly dete
t sho
ks. Sho
k dete
tionmethods whi
h rely on interpolation of the underlying hypersurfa
e are 
omputationally veryexpensive. Numeri
al thresholds are introdu
ed and high order a

urate numeri
al s
hemesmust be used [40, 56℄.On the other hand, there are more 
lassi
al methods rooted in Hamiltonian physi
s, whi
h
an also be used to study sho
k theory. Although su
h formulations have been applied to
omputer vision problems [20, 44, 39℄, the numeri
al methods have yet to be widely used. Inthis paper we review the Hamiltonian formalism for simulating the eikonal equation whi
h1



o�ers a number of 
on
eptual advantages when it 
omes to sho
k tra
king. Hamiltoniansystems are of 
ourse fundamental in 
lassi
al physi
s and have a natural physi
al inter-pretation based on elementary Hamiltonian and Lagrangian me
hani
s. The existen
e ofsu
h simple di�erential equations is also relevant to 
onsidering whether these models haveany possible biologi
al implementations [36℄. We spe
ialize to the 
ase of Blum's grass�re
ow [5℄ and 
ompute a measure of the average outward 
ux of the ve
tor �eld underlying theHamiltonian system. As the region over whi
h this 
ux is 
omputed shrinks to a point, themeasure 
an be shown to have very di�erent limiting behaviors depending upon whether ornot that point is singular. Thus, it is a very e�e
tive way of distinguishing between medialand non-medial points. We 
ombine the average outward 
ux measure with a homotopypreserving thinning pro
ess applied in a dis
rete latti
e. This leads to a robust and eÆ-
ient algorithm for 
omputing skeletons in 2D as well as 3D whi
h has low 
omputational
omplexity. We illustrate the method with a number of examples of medial axes (2D) andmedial surfa
es (3D) of syntheti
 obje
ts as well as 
omplex anatomi
al stru
tures obtainedfrom medi
al images.To the best of our knowledge, the 
losest work in 
omputer vision is the formulationof Oliensis and Dupuis of the shape-from-shading problem [39℄. Their method also usesHamilton-Ja
obi theory and has similar robust numeri
al properties. In parti
ular, a densityfun
tion for marker parti
les is propagated to obtain estimates of where parti
les a

umulate.This strategy is used to distinguish sour
es from sinks in order to re
onstru
t shape fromintensity images. We now review some relevant ba
kground on skeletons, followed by a briefoverview of skeletonization approa
hes related to our method.1.1 2D and 3D SkeletonsThe 2D skeleton (medial axis) of a 
losed set A � R2 is the lo
us of 
enters of maximalopen dis
s 
ontained within the 
omplement of the set [5℄. An open dis
 is maximal if thereexists no other open dis
 
ontained in the 
omplement of A that properly 
ontains the dis
.The 3D skeleton (medial surfa
e) of a 
losed set A � R3 is de�ned in an analogous fashionas the lo
us of 
enters of maximal open spheres 
ontained in the 
omplement of the set.Both types of skeletons have been widely used in bio-medi
ine for tasks involving obje
trepresentation [37, 58℄, registration [30℄ and segmentation [47℄. They have also been used for2



graph-based obje
t re
ognition in 
omputer vision [38, 66, 52, 31, 57℄, for animating obje
tsin graphi
s [62, 42℄ and for manipulating them in 
omputer-aided design. Despite theirpopularity, their numeri
al 
omputation remains non-trivial. Most algorithms are not stablewith respe
t to small perturbations of the boundary and heuristi
 measures for simpli�
ationare often introdu
ed.Interest in the skeleton as a representation for an obje
t stems from a number of inter-esting properties: i) it is a thin set, i.e., it 
ontains no interior points, ii) it is homotopi
to the original shape, iii) it is invariant under Eu
lidean transformations of the obje
t (ro-tations and translations) and iv) given the radius of the maximal ins
ribed 
ir
le or sphereasso
iated whi
h ea
h skeletal point, the obje
t 
an be re
onstru
ted exa
tly. Hen
e, itprovides a 
ompa
t representation while preserving the obje
t's genus and making 
ertainuseful properties expli
it, su
h as its lo
al width.Approa
hes to 
omputing skeletons 
an be broadly organized into three 
lasses. First,methods based on thinning attempt to realize Blum's grass�re formulation [5℄ by peelingaway layers from an obje
t while retaining spe
ial points [2, 28, 8, 35℄. It is possible tode�ne erosion rules in a latti
e su
h that the topology of the obje
t is preserved. However,these methods are quite sensitive to Eu
lidean transformations of the data and typi
ally failto lo
alize skeletal points a

urately. As a 
onsequen
e, only a 
oarse approximation to theobje
t is usually re
onstru
ted [35, 4, 28℄.Se
ond, it has been shown that under appropriate smoothness 
onditions the verti
es of theVoronoi diagram of a set of boundary points 
onverges to the exa
t skeleton as the samplingrate in
reases [46℄. This property has been exploited to develop skeletonization algorithms in2D [38℄, as well as extensions to 3D [53, 54℄. The dual of the Voronoi diagram, the Delaunaytriangulation (or tetrahedralization in 3D) has also been used extensively. Here the skeletonis de�ned as the lo
us of 
enters of 
ir
ums
ribed 
ir
les of ea
h triangle (spheres of ea
htetrahedra in 3D) [18, 37℄. Both types of methods ensure homotopy between obje
ts andtheir skeletons and a

urately lo
alize skeletal points, provided that the boundary is sampleddensely. Unfortunately, the te
hniques used to prune elements of the Voronoi graph whi
h
orrespond to small perturbations of the boundary are typi
ally based on heuristi
s. Inpra
ti
e, the results are not invariant under Eu
lidean transformations and the optimizationstep, parti
ularly in 3D, 
an have a high 
omputational 
omplexity [37℄.3



A third 
lass of methods exploits the fa
t that the lo
us of skeletal points 
oin
ides withthe singularities of a Eu
lidean distan
e fun
tion to the boundary. These approa
hes attemptto dete
t lo
al maxima of the distan
e fun
tion, or the 
orresponding dis
ontinuities in itsderivatives [1, 29, 19℄. The numeri
al dete
tion of these singularities is itself a non-trivialproblem; whereas it may be possible to lo
alize them, ensuring homotopy with the originalobje
t is diÆ
ult. The are also some re
ent approa
hes to 
omputing 2D and 3D skeletonswhi
h 
ombine aspe
ts of thinning, Voronoi diagrams and distan
e fun
tions [34, 65, 8, 63℄.1.2 Related WorkWe now present a brief overview of sele
ted approa
hes that are related to the method wedevelop in this paper. We refrain from an exhaustive review of the large body of work in
omputer vision and 
omputational geometry on 
omputing 2D and 3D skeletons, sin
e thisis beyond the s
ope of this paper.Leymarie and Levine have simulated the grass�re by utilizing the magnitude of the gradientve
tor �eld of a signed distan
e fun
tion to attra
t a snake moving in from the obje
t'sboundary [29℄. In this te
hnique the 
ontour has to be �rst segmented at 
urvature extrema,whi
h is itself a 
hallenging problem. Kimmel et al. have also proposed a method where the
ontour is �rst segmented at lo
ations of positive 
urvature maxima [24℄. Outward distan
efun
tions to ea
h segment are then 
omputed and the skeleton is obtained by interpolatingthe zero level set of the distan
e map di�eren
es and removing spurious points. Geiger et al.have introdu
ed a variational approa
h to 
omputing symmetri
 axis trees, where portionsof a 
urve are mat
hed against others, in
orporating 
onstraints in
luding 
o-
ir
ularityand parallelism [32℄. The approa
h leads to an abstra
tion that is related to the medialaxis, but is 
omprised by a di�erent lo
us of points. Dynami
 programming is used tomake the 
omputation eÆ
ient. Tek and Kimia have proposed an approa
h for 
al
ulatingsymmetry maps, whi
h is based on the 
ombination of a wavefront propagation te
hniquewith an exa
t (analyti
) distan
e fun
tion [63℄. In this te
hnique the representation must bepruned in order to distinguish salient bran
hes from unwanted ones. Pudney has introdu
ed adistan
e ordered homotopy preserving thinning pro
edure where points are removed in orderof their distan
e from the boundary while an
horing end points and 
enters of maximal ballsidenti�ed from a 
hamfer distan
e fun
tion [43℄. Malandain and Fernandez-Vidal obtain two4
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 view of a monotoni
ally advan
ing front (Eq. 1). T (x; y) is a graph of the`solution' surfa
e, the level sets of whi
h are the evolved 
urves.sets based on thresholding a fun
tion of two heuristi
 measures, � and d, to 
hara
terizethe singularities of the Eu
lidean distan
e fun
tion [34℄. The two sets are 
ombined using atopologi
al re
onstru
tion pro
ess. Tari and Shah have proposed a 
hara
terization of thesymmetries of n-dimensional shapes by looking at properties of the Hessian of a suitablyde�ned s
alar edge-strength fun
tional [60℄. Furst and Pizer have introdu
ed a notion ofan optimal parameter height ridge in arbitrary dimension by exploiting a sub-dimensionalmaximum property [16℄. Kalitzin et al. have 
onsidered index 
omputations on ve
tor �eldsasso
iated with s
alar images in order to identify their singularities [21℄. Ve
tor �elds rootedin magneto-stati
s have also been used for extra
ting symmetry and edge lines in greys
aleimages [13℄.2 The Eikonal EquationWe begin by showing the 
onne
tion between a monotoni
ally advan
ing front and thewell known eikonal equation. Consider the 
urve evolution equation�C�t = FN ; (1)where C is the ve
tor of 
urve 
oordinates, N is the unit inward normal and F = F (x; y)is the speed of the front at ea
h point in the plane, with F � 0 (the 
ase F � 0 is alsoallowed). Let T (x; y) be a graph of the solution surfa
e, obtained by superimposing all theevolved 
urves in time (see Figure 1). In other words, T (x; y) is the time at whi
h the 
urve5




rosses a point (x; y) in the plane. Referring to the �gure, the speed of the front is given byF (x; y) = dh = 1tan(�) = 1d0 = 1krTk :Hen
e, T (x; y) satis�es the eikonal equationkrTk F = 1: (2)A number of algorithms have been re
ently developed to numeri
ally solve this equation,in
luding Sethian's fast mar
hing method [49℄ whi
h systemati
ally 
onstru
ts T using onlyupwind values, Rouy and Tourin's vis
osity solutions approa
h [44℄ and Sussman et al.'slevel set method for in
ompressible two-phase 
ows [59℄. However, none of these methodsaddress the issue of sho
k dete
tion expli
itly and more work has to be done to tra
k sho
ks.A di�erent approa
h, whi
h is related to the solution surfa
e T (x; y) viewed as a graph, hasbeen proposed by Shah et al [50, 61℄. Here the key idea is to use an edge strength fun
tionalv in pla
e of the surfa
e T (x; y), 
omputed by a linear di�usion equation. The equation 
anbe eÆ
iently implemented and the framework extends to greys
ale images as well as 
urveswith triple point jun
tions. It provides an approximation to the rea
tion-di�usion spa
eintrodu
ed in [23℄, but does not extend to the extreme 
ases, i.e., morphologi
al erosion bya dis
 stru
turing element (rea
tion) or motion by 
urvature (di�usion). Hen
e, points ofmaximum (lo
al) 
urvature of the evolved 
urves are interpreted as skeletal points. Thisregularized skeleton is typi
ally not 
onne
ted and its relation to the 
lassi
al skeleton,obtained from the eikonal equation with F = 1, is as yet un
lear.In the next se
tion, we shall 
onsider an alternate framework for solving the eikonalequation, whi
h is based on the 
anoni
al equations of Hamilton. The te
hnique is widelyused in 
lassi
al me
hani
s and rests on the use of a Legendre transformation (see [3, 51℄)whi
h takes a system of n se
ond-order di�erential equations to a mathemati
ally equivalentsystem of 2n �rst-order di�erential equations. We believe that the method o�ers spe
i�
advantages over alternatives for a number of vision problems that involve sho
k tra
kingand skeletonization.
6



3 Hamilton's Canoni
al Equations and the Hamilton-Ja
obi Skele-ton FlowWe begin this se
tion with an overview of the Hamiltonian formalism, taken from [3, 51℄.Although this is standard material in 
lassi
al me
hani
s, these te
hniques may be unfamiliarto the general 
omputer vision audien
e. In a Lagrangian formulation the independentvariables are the 
oordinates q of parti
les and their velo
ities _q. For example, in the
ontext of the Eq. (1) these would be the positions of points along the 
urve C and theirasso
iated velo
ities FN . Ea
h parti
le follows the path of least a
tion in rea
hing a futurelo
ation at a future time. In mathemati
al terms, the a
tion fun
tion minimized, Sq0;t0, isgiven by Sq0;t0(q; t) = Z
 Ldt:Here 
 is an extremal 
urve 
onne
ting the points (q0; t0) and (q; t) and L(q; _q) is theLagrangian. In other words, of all possible paths 
onne
ting (q0; t0) and (q; t), the traje
tory
 followed by the parti
le is the one that minimizes the a
tion fun
tion. The asso
iatedEuler-Lagrange equation is ddt �L� _q � �L�q = 0 (3)where the momenta are derived quantities given byp = �L� _q :The key to the Hamiltonian formalism is to ex
hange the roles of _q and p by repla
ing theLagrangian L(q; _q) with a Hamiltonian H(q;p) su
h that the velo
ities now be
ome thederived quantities _q = �H�p :This 
an be done by applying the following Legendre transformationH(q;p) = p � _q� L(q; _q) (4)where the _q's are written as fun
tions of q's and p's. It is a simple exer
ise to verify thatthe above expression for the velo
ities _q then holds. One 
an also take partial derivatives ofthe Hamiltonian with respe
t to the q's and verify that�H�q = ��L�q :7



The Lagrangian formalism The Hamiltonian formalismThe state of the system is des
ribed by The state of the system is des
ribed by(q; _q): (q;p):The state may be represented by a point The state may be represented by a pointmoving with a velo
ity in an in a 2n-dimensional phase spa
e.n-dimensional 
on�guration spa
e.The n 
oordinates evolve a

ording to The 2n 
oordinates and momenta obeyn se
ond-order equations. 2n �rst-order equations.For a given L several traje
tories For a given H only one traje
torymay pass through a given point passes through a given pointin the 
on�guration spa
e. in the phase spa
e.Table 1: A 
omparison of the Lagrangian and Hamiltonian formalisms, taken from [51℄.Using Eq. (3), �L�q 
an be repla
ed with _p to give Hamilton's 
anoni
al equations:_p = ��H�q ; _q = �H�p : (5)Thus, in the Hamiltonian formalism one starts with the initial positions and momenta(q(0);p(0)) and integrates Eq. (5) to obtain the phase spa
e (q(t);p(t)) of the system.A 
omparison of the Lagrangian and Hamiltonian formalisms is presented in Table 1.Following Arnold [3, pp. 248{258℄, we now use Huygens' prin
iple to show the 
onne
tionbetween the eikonal equation and a Hamilton-Ja
obi equation. For every point q0, de�ne thefun
tion Sq0(q) as the 
ost of the path from q0 to q (see Figure 2). As indi
ated earlier, thetraje
tory followed from q0 to q will be the path of least a
tion. The wave front generatedat time t is given by fq : Sq0(q) = tg. The ve
tor p = �S�q is 
alled the ve
tor of normalslowness of the front. By Huygens' prin
iple the dire
tion of the ray _q is 
onjugate to thedire
tion of motion of the front, i.e., p � _q = 1. In an anisotropi
 medium the ve
tors p and_q have di�erent dire
tions in general.Let us spe
ialize to the 
ase of a monotoni
ally advan
ing front in an inhomogeneous butisotropi
 medium (Eq. 1). Here the speed F (x; y) depends only on position (not on dire
tion),and the dire
tions of p and _q 
oin
ide. The Lagrangian asso
iated with the a
tion fun
tion8
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Figure 2: Dire
tion of a ray _q and the dire
tion of motion of the wave front p. From [3℄.minimized (Eq. (3)) is given byL = 1F (x; y) k�
=�tk= 1F (x; y) k _qk :This 
an be interpreted as a 
onformal (in�nitesimal) length element and we have assumedthat the extremals emanating from the point (q0; t0) do not interse
t elsewhere, i.e., theyform a 
entral �eld of extremals. For an isotropi
 medium the extremals turn out to bestraight lines and for the spe
ial 
ase F (x; y) = 1 the a
tion fun
tion be
omes Eu
lideanlength.It 
an be shown that the ve
tor of normal slowness, p = �S�q , is not arbitrary but satis�esthe Hamilton-Ja
obi equation �S�t = �H q; �S�q! ; (6)where the Hamiltonian fun
tion H(q;p) is the Legendre transformation with respe
t to _qof the Lagrangian dis
ussed earlier [3℄. Rather than solve the nonlinear Hamilton-Ja
obiequation for the a
tion fun
tion S (whi
h will give the solution surfa
e T (x; y) to Eq. (2)),it is mu
h more 
onvenient to look at the evolution of the phase spa
e (q(t);p(t)) under theequivalent Hamiltonian system given by Eq. (5). This o�ers a number of advantages, the mostsigni�
ant being that the equations be
ome linear and hen
e trivial to simulate numeri
ally.We shall now derive this system of equations for the spe
ial 
ase of a front advan
ing withspeed F (x; y) = 1. This 
ase is of parti
ular interest for shape analysis be
ause the lo
us ofsho
ks whi
h form 
oin
ides with the tra
e of the Blum skeleton [5, 9, 23℄.For the 
ase of a front moving with 
onstant speed, re
all that the a
tion fun
tion beingminimized is Eu
lidean length and hen
e S 
an be viewed as a Eu
lidean distan
e fun
tion9



from the initial 
urve C0. Furthermore, the magnitude of its gradient, krSk, is identi
al to 1in its smooth regime, whi
h is pre
isely where the assumption of a 
entral �eld of extremalsis valid.With q = (x; y), p = (Sx; Sy), kpk= 1, we asso
iate to the evolving plane 
urve C � R2the surfa
e ~C � R4 given by~C := f(x; y; Sx; Sy) : (x; y) 2 C; S2x + S2y = 1; p � _q = 1g:The Hamiltonian fun
tion obtained by applying the Legendre transformation (Eq. 4) to theLagrangian L =k _qk is given byH = p � _q� L = 1� (S2x + S2y) 12 :The asso
iated Hamiltonian system is_p = ��H�q = (0; 0); _q = �H�p = �(Sx; Sy): (7)~C 
an be evolved under this system of equations, with ~C(t) � R4 denoting the resulting(
onta
t) surfa
e. The proje
tion of ~C(t) onto R2 will then give the parallel evolution of Cat time t, C(t).We illustrate this 
ow by representing the initial 
urve with a sequen
e of marker parti
lesand then evolving them a

ording to Eq. 7. Further details are presented in [55℄. Withq = (x; y), p = (Sx; Sy) = rS, the system of equations be
omesf _Sx = 0; _Sy = 0; _x = �Sx; _y = �Syg;a gradient dynami
al system. The se
ond equation indi
ates that the traje
tory of themarker parti
les will be governed by the ve
tor �eld obtained from the gradient of theEu
lidean distan
e fun
tion S and the �rst indi
ates that this ve
tor �eld does not 
hangewith time and 
an be 
omputed on
e at the beginning of the simulation. Proje
ting this 4Dsystem onto the (x; y) plane for ea
h instan
e of time t will give the evolved 
urve C(t). Thesuperposition of all the level 
urves gives the solution surfa
e T (x; y) in Figure 1. Figure 3depi
ts the evolution of marker parti
les, with speed F = 1, for several di�erent shapes.Whereas a variety of methods 
an be used to simulate the eikonal equation, in
luding levelset te
hniques and their fast mar
hing versions [49℄, the Hamiltonian formalism o�ers theadvantage that the formation of sho
ks 
an be made expli
it. As shown in the followingse
tion the key idea is to exploit a measure of the average outward 
ux of the ve
tor �eld _q.10



Figure 3: The evolution of marker parti
les under the Hamiltonian system. The initial parti
les arepla
ed on the boundary and iterations of the pro
ess are superimposed. These 
orrespond to level setsof the solution surfa
e T (x; y) in Figure 1.4 Flux and Divergen
eWe approa
h the dis
rimination of medial points, whi
h 
oin
ide with the sho
ks of thegrass�re 
ow, from non-medial ones, by 
omputing the average outward 
ux of the ve
tor�eld _q about a point. The average outward 
ux is de�ned as the outward 
ux through theboundary of a region 
ontaining the point, normalized by the length of the boundaryRÆR < _q;N > dslength(ÆR) (8)
11



Here ds is an element of the bounding 
ontour ÆR of the region R and N is the outwardnormal at ea
h point of the 
ontour. Via the divergen
e theoremZR div( _q)da � ZÆR < _q;N > ds; (9)where da is an area element. Thus the outward 
ux is related to the divergen
e in thefollowing way div( _q) � lim�a!0 RÆR < _q;N > ds�a : (10)It is well known that the outward 
ux, or equivalently the integral of the divergen
e of_q measures the degree to whi
h the 
ow generated by _q is area preserving for the regionover whi
h it is 
omputed. To elaborate, the outward 
ux (and hen
e also the averageoutward 
ux) is negative if the area en
losed by the region ÆR is shrinking under the a
tionof the Hamiltonian 
ow, positive if it is growing and zero otherwise. This quantity is 
learlystrongly dependent on the shape of the region R. However, it 
an be shown that in the limitas the region ÆR shrinks to a non-medial point, the average outward 
ux approa
hes zero.When 
onsidering a region ÆR that 
ontains a medial point, unfortunately the standardform of the divergen
e theorem does not apply sin
e the ve
tor �eld _q be
omes singular.Instead, the limiting behavior of the average outward 
ux as the region ÆR shrinks to amedial point 
an be 
onsidered. Furthermore, it 
an be shown that this quantity approa
hesa stri
tly negative number proportional to < _q;N 0 >, where N 0 is now a one-sided normal tothe medial axis or surfa
e.1 The 
onstant of proportionality depends upon whether the axispoint is a regular point or a bran
h point. Thus, in the limit as ÆR shrinks to a point theaverage outward 
ux 
al
ulation is an e�e
tive way of dete
ting the singularities of the ve
tor�eld _q. Non-medial points give values that are 
lose to zero and medial points 
orrespondingto strong singularities give large negative values. Whereas thus far we have fo
ussed on the
ase of a (2D) 
losed 
urve, the very same analysis applies to a 
losed (3D) surfa
e evolvinga

ording to an eikonal equation. One simply has to repla
e the initial 
losed 
urve C withthe 
losed surfa
e S in Eq. (1), add a third 
oordinate z to the phase spa
e in Eq. (7) and1The proof of this fa
t was 
onveyed to us by Jim Damon in personal 
ommuni
ations. He pointed usto an alternate form of the divergen
e theorem that 
ould be applied in regions interse
ting the medial axisor surfa
e, whi
h he used to work out the limiting behavior of the average outward 
ux. We are grateful tohim for this analysis. 12



repla
e the area element with a volume element and the 
ontour integral with a surfa
eintegral in Eqs. (8), (9) and (10).

Figure 4: The gradient ve
tor �eld of a signed distan
e fun
tion to the boundary of a panther shape(left), with the asso
iated average outward 
ux (right). Whereas the smooth regime of the ve
tor �eldgives zero 
ux (medium grey), strong singularities give either large negative values (dark grey) in theinterior or large positive values (light grey) in the exterior.Figure 4 illustrates the average outward 
ux 
omputation on the silhouette of a panthershape, where values 
lose to zero are shown in medium grey. All 
omputations are 
arriedout on a re
tangular latti
e, although the bounding 
urve is shown in interpolated form.Stri
tly speaking, the average outward 
ux is desired only in the limit as the region shrinksto a point. However, the average outward 
ux over a very small neighborhood (a 
ir
le in2D or a sphere in 3D) provides a suÆ
ient approximation to the limiting values. Strongsingularities 
orrespond either to high magnitude negative (dark grey) or positive numbers(light grey), depending upon whether the ve
tor �eld is 
ollapsing at or emanating from aparti
ular point. A threshold on the average outward 
ux yields a 
lose approximation tothe skeleton, as used in [55℄. However, in general it is impossible to guarantee that the resultobtained by simple thresholding is homotopi
 to the original shape. A high threshold mayyield a 
onne
ted set, but it is not thin and unwanted bran
hes may be present, Figure 5(left). A low threshold yields a thin set, but it may be dis
onne
ted, Figure 5 (right).The solution, as we shall now show, is to introdu
e additional 
onstraints to ensure that theresulting skeleton is homotopi
 to the shape. The essential idea is to in
orporate a homotopypreserving thinning pro
ess, where the removal of points is guided by the average outward13




ux values. In the 
ontext of the Hamilton-Ja
obi skeleton 
ow (Eq. 7), this leads to arobust and eÆ
ient algorithm for 
omputing 2D and 3D skeletons.
Figure 5: Thresholding the average outward 
ux map in Figure 4. A high threshold yields a 
onne
ted set,but it is not thin and unwanted bran
hes are present (left). A low threshold yields a 
loser approximationto the desired medial axis, but the result is now dis
onne
ted (right).5 Homotopy Preserving SkeletonsOur goal is to 
ombine the divergen
e 
omputation with a digital thinning pro
ess, su
hthat as many points as possible are removed without altering the obje
t's topology. In digitaltopology a point is simple if its removal does not 
hange the topology of the obje
t. In 2D weshall 
onsider re
tangular latti
es, where a point is a unit square with 8 neighbors, as shownin Figure 6 (left). Hen
e, a 2D digital point is simple if its removal does not dis
onne
t theobje
t or 
reate a hole. In 3D we shall 
onsider 
ubi
 latti
es, where a point is a unit 
ubewith 6 fa
es, 12 edges and 8 verti
es. Hen
e, a 3D digital point is simple if its removal doesnot dis
onne
t the obje
t, 
reate a hole, or 
reate a 
avity [26℄.5.1 2D Simple PointsConsider the 3x3 neighborhood of a 2D digital point P 
ontained within an obje
t andsele
t those neighbors whi
h are also 
ontained within the obje
t. Constru
t a neighborhoodgraph by pla
ing edges between all pairs of neighbors (not in
luding P ) that are 4-adja
entor 8-adja
ent to one another. If any of the 3-tuples f2; 3; 4g, f4; 5; 6g, f6; 7; 8g, or f8; 1; 2g,are nodes of the graph, remove the 
orresponding diagonal edges f2; 4g, f4; 6g, f6; 8g, orf8; 2g, respe
tively. This ensures that there are no degenerate 
y
les in the neighborhoodgraph (
y
les of length 3). Now, observe that if the removal of P dis
onne
ts the obje
t,14
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Figure 6: Left: A 3x3 neighborhood of a 
andidate point for removal P . Right: An exampleneighborhood graph for whi
h P is simple. There is no edge between neighbors 6 and 8 (see text).or introdu
es a hole, the neighborhood graph will not be 
onne
ted, or will have a 
y
le,respe
tively. Conversely, a 
onne
ted graph that has no 
y
les is a tree. Hen
e, we have a
riterion to de
ide whether or not P is simple:Proposition 1 A 2D digital point P is simple if and only if its 3x3 neighborhood graph,with 
y
les of length 3 removed, is a tree.A straightforward way of determining whether or not a graph is a tree is to 
he
k that itsEuler 
hara
teristi
 jV j�jEj (the number of verti
es minus the number of edges) is identi
alto 1. This 
he
k only has to be performed lo
ally, in the 3x3 neighborhood of P . Figure 6(right) shows an example neighborhood graph for whi
h P 
an be removed.5.2 3D Simple PointsIn 3D a digital point 
an have three types of neighbors: two points are 6-neighbors if theyshare a fa
e; two points are 18-neighbors if they share a fa
e or an edge; and two points are26-neighbors if they share a fa
e, an edge or a vertex. This indu
es three n-
onne
tivities,where n 2 f6; 18; 26g, as well as three n-neighborhoods for x (Nn(x)). An n-neighborhoodwithout its 
entral point is de�ned as N�n = Nn(x)nfxg. An obje
t A is n-adja
ent to anobje
t B, if there exist two points x 2 A and y 2 B su
h that x is an n-neighbor of y. An-path from x1 to xk is a sequen
e of points x1; x2; :::; xk, su
h that for all xi, 1 < i � k, xi�1is n-adja
ent to xi. An obje
t represented by a set of points O is n-
onne
ted, if for everypair of points (xi; xj) 2 O � O, there is a n-path from xi to xj.Based on these de�nitions, Malandain et al. provide a topologi
al 
lassi�
ation of a pointx in a 
ubi
 latti
e by 
omputing two numbers [33℄: i) C�: the number of 26-
onne
ted
omponents 26-adja
ent to x in O \N�26 and ii) �C: the number of 6-
onne
ted 
omponents15



6-adja
ent to x in �O \N18: An important result with respe
t to our goal of thinning is thefollowing:Theorem 1 (Malandain et al. 1993) P is simple if C�(P ) = 1 and �C(P ) = 1.We 
an now determine whether or not the removal of a point will alter the topologyof a digital obje
t. When preserving homotopy is the only 
on
ern, simple points 
an beremoved sequentially until no more simple points are left. The resulting set will be thinand homotopi
 to the obje
t. However, without a further 
riterion the relationship to theskeleton will be un
ertain sin
e the lo
us of surviving points depends entirely on the orderin whi
h the simple points are removed. In the 
urrent 
ontext, we have derived a natural
riterion for ordering the thinning, based on the average outward 
ux of the gradient ve
tor�eld of the Eu
lidean distan
e fun
tion.5.3 Flux-Ordered ThinningRe
all from Se
tion 4, that the average outward 
ux of the gradient ve
tor �eld of theEu
lidean distan
e fun
tion 
an be used to distinguish non-medial points from medial ones.This quantity tends to zero for the former, but approa
hes a negative number below a
onstant times < _q;N 0 > for the latter, where N 0 is the one-sided normal to the medial axisor surfa
e. Hen
e, the average outward 
ux provides a natural measure of the \strength"of a skeletal point for numeri
al 
omputations. The essential idea is to order the thinningsu
h that the weakest points are removed �rst and to stop the pro
ess when all survivingpoints are not simple, or have a total average outward 
ux below some 
hosen (negative)value, or both. This will a

urately lo
alize the skeleton and also ensure homotopy with theoriginal obje
t. Unfortunately the result is not guaranteed to be a thin set, i.e., one withoutan interior.One way of satisfying this last 
onstraint is to de�ne an appropriate notion of an end point.Su
h a point would 
orrespond to the end point of a 
urve (in 2D or 3D), or a point on therim of a surfa
e, in 3D. The thinning pro
ess would pro
eed as before, but the threshold
riterion for removal would be applied only to end points. Hen
e, all surviving points whi
hwere not end points would not be simple and the result would be a thin set.In 2D, an end point will be viewed as any point that 
ould be the end of a 4-
onne
ted or16



8-
onne
ted digital 
urve. It is straightforward to see that su
h a point may be 
hara
terizedas follows:Proposition 2 A 2D point P 
ould be an end point of a 1 pixel thi
k digital 
urve if, in a 3x3neighborhood, it has a single neighbor, or it has two neighbors, both of whi
h are 4-adja
entto one another.In 3D, the 
hara
terization of an end point is more diÆ
ult. An end point is either theend of a 26-
onne
ted 
urve, or a 
orner or point on the rim of a 26-
onne
ted surfa
e. InR3, if there exists a plane that passes through a point p su
h that the interse
tion of theplane with the obje
t in
ludes an open 
urve whi
h ends at p, then p is an end point of a3D 
urve, or is on the rim or 
orner of a 3D surfa
e. This 
riterion 
an be dis
retized easilyto 26-
onne
ted digital obje
ts by examining 9 digital planes in the 26-neighborhood of p asin [43℄.5.4 The Algorithm and its ComplexityThe essential idea behind the 
ux-ordered thinning pro
ess is to remove simple points se-quentially, ordered by their average outward 
ux, until a threshold is rea
hed. Subsequently,simple points are removed if they are not end points. The pro
edure 
onverges when allremaining points are either not simple or are end points. The thinning pro
ess 
an be madevery eÆ
ient by observing that a point whi
h does not have at least one ba
kground pointas an immediate neighbor 
annot be removed, sin
e this would 
reate a hole or a 
avity.Therefore, the only potentially removable points are on the border of the obje
t. On
e aborder point is removed, only its neighbors may be
ome removable. This suggests the im-plementation of the thinning pro
ess using a heap. A full des
ription of the pro
edure isgiven in Algorithm 1.We now analyze the 
omplexity of the algorithm. The 
omputation of the distan
e trans-form [6℄, the gradient ve
tor �eld and the average outward 
ux are all O(n) operations. Heren is the total number of points in the array. The implementation of the thinning is moresubtle. We 
laim an O(klog(k)) worst 
ase 
omplexity, where k is the number of pointsinside the obje
t. The explanation is as follows. At �rst, store only the points that are onthe outer layer of the obje
t in a heap, using the average outward 
ux as the sorting key17



Algorithm 1 The Flux-Ordered Thinning Algorithm.Part I: Average Outward FluxCompute the distan
e transform of the obje
t D [6℄.Compute the gradient ve
tor �eld rD.Compute the average outward 
ux of rD using Eq. 9For ea
h point P in the interior of the obje
tF lux(P ) = Pni=1 < Ni;rD(Pi) > =n,where Pi is an n-neighbor (n = 8 in 2D, n = 26 in 3D) of P andNi is the outward normal at Pi of the unit (dis
 in 2D, sphere in 3D)
entered at P .Part II: Homotopy Preserving ThinningFor ea
h point P on the boundary of the obje
tif (P is simple)insert(P , Heap) with F lux(P )as the sorting key for insertionWhile (Heap.size > 0)P = HeapExtra
tMax(Heap)if (P is simple)if (P is not an end point) or (F lux(P ) > Thresh)Remove Pfor all neighbors Q of Pif (Q is simple)insert(Q, Heap)else mark P as a skeletal (end) pointend f if gend f if gend f while g
18



for insertion. The extra
tion of the maximum from the heap will provide the best 
andidatefor removal. If this point is removable, then delete it from the obje
t and add its simple(potentially removable) neighbors to the heap. A point 
an only be inserted a 
onstantnumber of times (at most 26 times for a 3D, 26-neighborhood and at most 8 times for a 2D,8-neighborhood) and insertion in a heap, as well as the extra
tion of the minimum, are bothO(log(l)) operations, where l is the number of elements in the heap. There 
annot be morethan k elements in the heap, be
ause we only have a total of k points within the obje
t. Theworst 
ase 
omplexity for thinning is therefore O(klog(k)). Hen
e, the worst 
ase 
omplexityof the algorithm is O(n) +O(klog(k)). We should point out that this is a very loose upperbound. The heap only 
ontains points from the obje
t's surfa
e and therefore in pra
ti
ethe 
omplexity is almost linear in the number of digital points n.6 Examples6.1 Medial Axes

Figure 7: Left: A subpixel medial axis, with bran
h points shown as empty 
ir
les and end points as�lled 
ir
les. Compare with the results in Figure 5. Right: The re
onstru
tion as the envelope of themaximal ins
ribed disks (grey) of the medial axis, overlaid on the original shape.We �rst present examples of medial axes, 
omputed for a range of 2D binary shapes. Thesame outward 
ux threshold was used in ea
h example to determine whi
h end points topreserve. The input is a 2D binary array where the foreground and ba
kground are identi�edby distin
t values. The implementation then uses an exa
t (signed) distan
e fun
tion to apie
ewise 
ir
ular ar
 interpolation of the boundary, whi
h allows for subpixel 
omputations(details are presented in [14℄). Figure 7 (left) shows the subpixel medial axis for the panther19



silhouette with bran
h points shown as empty 
ir
les and end points as 
losed 
ir
les. Thea

ura
y of the representation is illustrated in Figure 7 (right), where the shape is re
on-stru
ted as the envelope of the maximal ins
ribed dis
s asso
iated with ea
h medial axispoint. Figure 8 depi
ts subpixel medial axes for a number of other shapes. The resultsdemonstrate the robustness of the framework under Eu
lidean transformations, as well as
hanges in s
ale.6.2 Medial Surfa
esNext we illustrate the algorithm with both syntheti
 data and volumetri
 stru
tures seg-mented from medi
al images. For these we used the D-Eu
lidean distan
e fun
tion [6℄ whi
hprovides a good approximation to the true distan
e fun
tion. On
e again, the only freeparameter is the 
hoi
e of the outward 
ux threshold below whi
h the removal of end pointsis blo
ked. For these examples, the value was sele
ted so that approximately 25% of thepoints within the volume had a lower average outward 
ux.6.2.1 A

ura
y, Stability and RobustnessA

ura
y: We test the method by using syntheti
 obje
ts for whi
h the expe
ted stru
tureof the medial surfa
e is known. Figures 9 and 10 illustrate the 
omputation of the 
ux-basedmedial surfa
es for a 
ube and a 
ylinder, respe
tively. In both 
ases the 
omputations leadto the stru
tures one would expe
t when 
onsidering the lo
i of 
entres of maximal ins
ribedspheres. Also, the re
onstru
tion from the medial surfa
e and its asso
iated distan
e fun
tionis a

urate.Stability: Next we test the sensitivity of the method to boundary perturbations. Figure 11shows the same 
ube as earlier, but with points randomly removed (top row) or added(bottom row), up to a depth of four voxels. The resulting medial surfa
e is no longer assmooth as before but no spurious sheets have been added. This illustrates the stability ofthe method in the presen
e of moderate boundary noise. In fa
t, the boundary protrusionsor indentations have to be signi�
ant in order for spurious bran
hes or sheets to appear, asillustrated in Figure 12.
20



Figure 8: Subpixel medial axes for a range of shapes, obtained by 
ux-ordered thinning. The dete
tedend points and bran
h points are 
ir
led.Robustness: Third, we test the robustness of the method under rotation. We rotate the
ube by 30 degrees around the z axis and 
ompute its medial surfa
e. Figure 13 
omparesthis result with the medial surfa
e of the original 
ube. The two outputs are 
learly almost21



Figure 9: First Column: Three views of a 
ube. Se
ond Column: The 
orresponding 
ux-basedmedial surfa
es. Third Column: The obje
t re
onstru
ted from the medial surfa
es in the previous
olumn.identi
al.6.2.2 Labeling the Medial Surfa
eThe medial surfa
e 
an be labeled using the 
lassi�
ation of Malandain et al. [33℄. Spe
if-i
ally, the numbers C� and �C, des
ribed in Se
tion 5, 
an be used to 
lassify 
urve points,surfa
e points, border points and jun
tion points. However, jun
tion points 
an be mis
las-si�ed as surfa
e points when 
ertain spe
ial 
on�gurations of voxels o

ur and these 
aseshave to be dealt with using a new de�nition for simple surfa
es [33℄.Let x be a surfa
e point ( �C = 2 and C� = 1). Let Bx and Cx be the two 
onne
ted
omponents of �O \ N18 6-adja
ent to x. Two surfa
e points x and y are in an equivalen
e22



Figure 10: First Column: Three views of a 
ylinder. Se
ond Column: The 
orresponding 
ux-based medial surfa
es. Third Column: The obje
t re
onstru
ted from the medial surfa
es in theprevious 
olumn.relation if there exists a 26-path x0; x1; :::; xi; :::; xn with x0 = x and xn = y su
h that fori 2 [0; :::; n�1℄; (Bxi\Bxi+1 6= ; and Cxi\Cxi+1 6= ;) or (Bxi\Cxi+1 6= ; and Cxi\Bxi+1 6= ;).A simple surfa
e is then de�ned as any equivalen
e 
lass of this equivalen
e relation.We use this de�nition in our framework to �nd all the mis
lassi�ed jun
tions. If the 26-neighborhood of a previously 
lassi�ed surfa
e point x is not a simple surfa
e, then x is ajun
tion point. Figures 13 and 14 illustrate the labeling of the medial surfa
e of a 
ube and a
ylinder. The medial surfa
e of the 
ylinder is 
orre
tly labeled as having two simple sheets
onne
ted by a 3D digital 
urve through two jun
tion points.The same de�nition 
an be used to extra
t the individual simple surfa
es 
omprising themedial surfa
e of an obje
t. The idea is to �nd an unmarked surfa
e point on the medialsurfa
e and use it as a \sour
e" to build its asso
iated simple surfa
e using a depth �rst23



Figure 11: First Row: Three views of the 
ube in Figure 9, but with up to 4 voxels in depth removedrandomly from the surfa
e. Se
ond Row: The resulting medial surfa
e. Third Row Three views ofa 
ube in Figure 9, but with up to 4 voxels in depth added randomly to the surfa
e. Fourth Row:The resulting medial surfa
e.sear
h strategy. The next simple surfa
e is built from the next unmarked surfa
e point andso on, until all surfa
e points are marked. 24



Figure 12: Top Row: Three views of the 
ube in Figure 9 but with up to 30 voxels in depth randomlyremoved or added to the surfa
e. Bottom Row The resulting medial surfa
e shows spurious bran
hesand sheets, but has a smooth main stru
ture.6.2.3 Experiments on MR and MRA DataWe now illustrate the method on volumetri
 data segmented from medi
al images. Figure 15illustrates the results on brain ventri
les obtained from a magneti
 resonan
e (MR) image.The medial surfa
e 
onsists of two main sheets whi
h re
e
t the \butter
y-like" stru
tureof the original obje
t. The �gure demonstrates that thresholding the 
ux (se
ond 
olumn)results in erroneous topologies, whereas the full algorithm (third 
olumn) 
omputes medialsurfa
es whi
h are both thin and topologi
ally 
orre
t. The ventri
les re
onstru
ted fromthe medial surfa
e in the third 
olumn are shown in the fourth 
olumn.Next, we illustrate the approa
h on a (partial) data set of blood vessels obtained from amagneti
 resonan
e angiography (MRA) image of the brain, in Figure 16. The blood vesselshave 
omplex topology with loops (due to pathologies) and are already quite thin in severalpla
es. The bottom row illustrates the a

ura
y of the method, where the medial surfa
es are25



Figure 13: Top Row: The medial surfa
e of the 
ube in Figure 9. Bottom Row: The 
ube is rotatedby 30 degrees around the z axis and its medial surfa
e is re
omputed. The viewing dire
tions are thesame for the top and bottom rows. The two medial surfa
es have also been automati
ally segmentedinto surfa
e points (grey), jun
tion points (blue) and border points (red) using the 
lassi�
ation of [33℄.

Figure 14: The medial surfa
e of a 
ylinder is labeled into border points (blue), surfa
e points (grey),
urve points (green) and jun
tion points (red) 26



Figure 15: First Column: Four views of the ventri
les of a brain, segmented from volumetri
 MR datausing an a
tive surfa
e. Se
ond Column: The 
orresponding medial surfa
es obtained by threshold-ing the 
ux map. Third Column: The 
ux-based medial surfa
es obtained using the same threshold,but with the in
orporation of homotopy preserving thinning. Fourth Column: The ventri
les re
on-stru
ted from the 
ux-based medial surfa
es in the previous 
olumn.shown embedded within the original data set. Generi
ally these stru
tures are thin sheetswhi
h approa
h 3D 
urves when the blood vessels be
ome perfe
tly 
ylindri
al. In a numberof medi
al appli
ations where the obje
ts are tubular stru
tures, an expli
it redu
tion of themedial surfa
e to a set of 3D 
urves is of interest [17, 7, 8, 65℄. There is a straightforwardmodi�
ation of our framework whi
h allows this. The essential idea is to modify the endpoint 
riteria su
h that only end points of 3D 
urves are preserved. Rim and 
orner pointsof surfa
es are now 
onsidered to be removable points during the thinning pro
ess, resultingin a medial surfa
e 
onsisting only of 3D 
urves. This is illustrated for a portion of the vesseldata in Figure 17, whi
h gives three 1 voxel wide 26-
onne
ted 3D digital 
urves.Finally, Figure 18 illustrates the 3D medial surfa
e of the sul
i of a brain. Rather thanshow the entire surfa
e, whi
h is diÆ
ult to visualize, we have shown an X, Y and Z sli
e27



Figure 16: Top Row: Blood vessels segmented from volumetri
 MRA data with magni�ed portionsshown in the middle and right 
olumns. Middle Row: The 
orresponding 
ux-based medial surfa
es.Third Row: The 
ux-based medial surfa
es (solid) are shown within the vessel surfa
es (transparent).through the volume in grey, with the interse
tion of that sli
e and the medial surfa
e shownin bla
k. The medial surfa
e is well lo
alized and 
aptures the 
omplex topology of theobje
t's shape. The 
omputation times for the 3D examples running on a dual pro
essor 550MHz Pentium III ma
hine are shown in Table 2. As predi
ted by the 
omplexity analysis inSe
tion 5.4, the 
omputations of the distan
e transform and the divergen
e map are linearin the size n of the 3D array, while the thinning pro
edure has an O(klog(k)) dependen
e28



Figure 17: Left Column: Blood vessels segmented from volumetri
 MRA data, with a magni�edportion shown in the se
ond row. Middle Column: The 
ux-based 3D 
urves. Right Column:The 
ux-based 3D 
urves are shown embedded within the vessel data.on k, the number of points 
ontained within the volume.7 Con
lusionsIn this paper we have applied a Hamiltonian formalism to the eikonal equation, whi
ho�ers 
on
eptual advantages when it 
omes to sho
k dete
tion. The 
al
ulation shows thatwhen applied to Blum's grass�re 
ow, the gradient ve
tor �eld _q of the signed Eu
lideandistan
e fun
tion to the obje
t's boundary drives the motion of points on the bounding 
urve(2D) or surfa
e (3D). A measure of the average outward 
ux of this ve
tor �eld 
an be usedto distinguish medial points from non-medial ones. In the limit as the region about whi
hthis 
ux is 
omputed shrinks to a point, the measure tends to zero for non-medial pointsbut to a negative number below a 
onstant fa
tor times _q � N 0 for medial points, whereN 0 is the one-sided normal to the medial axis or surfa
e. We have 
ombined this measure29



Figure 18: Top Row: Medial surfa
es of the sul
i of a brain, segmented from an MR image. The three
olumns represent X, Y and Z sli
es through the volume, shown in grey. The 
ross se
tion through the3D medial surfa
e in ea
h sli
e is shown in bla
k. Bottom Row: A zoom-in on a sele
ted region ofthe 
orresponding sli
e in the top row, to show detail.with a homotopy preserving thinning pro
ess on a dis
rete latti
e to develop an algorithmwhi
h is 
omputationally eÆ
ient and yields skeletons that are homotopi
 to the originalobje
ts and thin in 2D as well as in 3D. Whereas in theory the average outward 
ux isdesired only in the limit as the region shrinks to a point, our experiments show that theaverage outward 
ux 
omputed over a very small neighborhood (a 
ir
le in 2D or a spherein 3D) provides a suÆ
ient approximation to the limiting values. This, being an integralformulation, is robust to boundary perturbations and digital rotations, as demonstrated byour numeri
al experiments. We have also illustrated that digital segmentations of medialaxes and surfa
es su
h as those proposed in [33℄, 
an be readily in
orporated. Thus, theapproa
h has a number of advantages over alternative methods in the literature. Finally, it30



Data Set Array Size (n) Number of Points (k) DT DIV THIN TOTALCube 128x128x128 120000 26.21s 6.18s 33.50s 65.89sCylinder 128x128x128 26260 26.40s 6.18s 8.15s 40.73sVentri
les 192X169x99 30909 39.60s 9.44s 10.17s 59.21sVessels 63x151x164 14377 14.07s 3.31s 3.74s 21.12sSul
i 192x169x99 798221 38.71s 10.54s 240.85s 290.1sTable 2: The 
omputation times for the 3D examples, running on a dual pro
essor 550 MHz PentiumIII ma
hine. The times taken in se
onds to 
ompute the distan
e transform (DT), the divergen
e map(DIV) and to 
arry out the thinning (THIN), are ea
h shown separately. The results are 
onsistent withthe 
omplexity analysis in Se
tion 5.4 .should be 
lear that whereas we have fo
used on the interior of an obje
t, the skeleton of theba
kground 
an be similarly obtained by lo
ating points with high positive average outward
ux.A
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