#### **Generalized Hough Transform**

**Brian Matthews** 

## **Original Hough Transform**

- $(x-x_0)^2+(y-y_0)^2=r^2$
- Each point is evidence for a circle.
- Given (x,y,r) increment bins in all satisfying (x<sub>0</sub>,y<sub>0</sub>)
- Find local maxima in accumulator







## **Arbitrary Shape**

- Reconstruction of the reference origin by adding all displacement vectors to all boundary points
- R(φ(x)) table holds all reference points that a certain gradient is evidence of.





# Scale(s) / Rotation(θ)

 $T_s[R(\Phi)] = sR(\Phi)$ 

• Vote in all bins ranging over scale

 $T_{\theta}[R(\Phi)] = Rot\{R[(\Phi - \theta)mod2\pi], \theta\}$ 

- Vote in all bins ranging over rotation
- Accumulator space is now 4D
   A((x,y),θ,s)

### **Composite Images**

 Sub-shapes(S<sub>k</sub>) of shape(S) can be found by taking voting on the union of R-tables of subshapes.

$$R_{s}(\phi) = T_{s} \left\{ T_{\theta} \left[ \bigcup_{k=1}^{N} R_{S_{k}}(\phi) \right] \right\}.$$

### Strength in numbers

- Dynamic
  Programming
- Connected
  Components
- Weight
  Functions



Fig. 12. Dynamic Hough transform.