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In a wide variety of applications we wish to study the
geometrical properties of objects.

We wish to measure, describe and compare the size
and shapes of objects

Shape: location, rotation and scale information (simi-
larity transformations) can be removed. [Kendall, 1984]

Size-and-shape: location, rotation (rigid body trans-
formations) can be removed.

Session |
Dryden and Mardia (1998, chapters 1,2,3,4)

e Introduction

e Motivation and applications
e Size and shape coordinates
e Shape space

e Shape distances.

An object’s shape is invariant under the similarity trans-
formations of translation, scaling and rotation.

Two mouse second thoracic vertebra (T2 bone) out-
lines with the same shape.
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e Landmark: point of correspondence on each object
that matches between and within populations.

Different types: anatomical (biological), mathematical,
pseudo, quasi

From Galileo (1638) illustrating the differences in shapes
of the bones of small and large animals.

e Bookstein (1991)

Type | landmarks (joins of tissues/bones)

Type Il landmarks (local properties such as maximal
curvatures)

Type Il landmarks (extremal points or constructed land-
marks)

T2 mouse vertebra with six mathematical landmarks ¢ Labelled or un-labelled configurations

(line junctions) and 54 pseudo-landmarks.



Six labelled triangles: A, B have the same size and
shape; C has the same shape as A, B (but larger size);
D has a different shape but its labels can be permuted
to give the same shape as A, B, C; triangle E can be
reflected to have the same shape as D; triangle F has
a different shape from A,B,C,D,E.

Geometrical shape analysis

Rather than working with quantities derived from or-
ganisms one works with the complete geometrical ob-
ject itself (up to similarity transformations).

In the spirit of D’Arcy Thompson (1917) who consid-
ered the geometric transformations of one species to
another

“fﬁf

We conside a shape space obtained directly from the
landmark coordinates, which retains the geometry of
a point configuration at all stages.
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Traditional methods

- ratios of distances between landmarks or angles sub-
mitted to multivariate analysis

- the full geometry usually if often lost

- collinear points?

- interpretation of shape differences in multivariate space?
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e Pioneers: Fred Bookstein and David Kendall

Summaries of the field are given by Bookstein (1991,
Cambridge), Small (1996, Springer), Dryden and Mar-
dia (1998, Wiley), Kendall et al (1999, Wiley), Lele and
Richstmeier (2001, Chapman and Hall).

b
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The map of 52 megalithic sites (+) that form the ‘Old
Stones of Land’s End’ in Cornwall (from Stoyan et al.,

MR brain scan

1995).
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Electrophoretic gel matching

Proton density weighted MR image
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Face recognition

Cortical surface extracted from MR scan
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203 Pseudo-landmarks on the cortical surface of the
brain

21

e Centroid size:

k m
SX)=|cxX|=v Y Y (X — X;)?

i=1j=1

where X; = 1Yk, X;; and

1
C=1I— Elklf

|X|| = v/trace(XT X) - Euclidean norm,

I}, - k X kidentity matrix, 13 - £ x 1 vector of ones.

23

OUR FOCUS: k landmarks in m real dimensions
X is a k x m matrix (M = IRF™\ coincidence set)

Invariance with respect to Euclidean similarity group
(translation, scale and rotation) = {R™ xRt xS0(m)}

Size....

Any positive real valued function g(X) suchthat g(aX) =
ag(X) for a positive scalar a.
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An alternative size measure is the baseline size, i.e.
the length between landmarks 1 and 2:

D12(X) = [[(X)2 — (X)1]]-

This was used as early as 1907 by Galton for normal-
izing faces.

Other size measures: square root of area, cube root
of volume

24



Shape coordinates:
Fixed coordinate system
VS

Local Coordinate system

Are angles appropriate.....??
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In real co-ordinates:
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Landmarks: z1,x2,...,x; € C

e Bookstein shape coordinates (1984,1986) (For two
dimensional data)
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Shape: uf’ = 2:21 -05, (j=3,...,k)
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The outline of a microfossil with three landmarks (from
Bookstein, 1986).
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A scatter plot of (U+1/2) for the Bookstein shape vari-
ables for some microfossil data. (Bookstein, 1986)
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The shape space of triangles, using Bookstein’s co-
ordinates (UB, VB). All triangles could be relabelled
and reflected to lie in the shaded region.

A scatter plot of the Bookstein shape variables for the
T2 mouse data.

31 32



Kendall's shape coordinates

Remove location zpp = Hz° = (21, ..., 2;,_1) *

24
uK+iwk =271 (=3, k).
z1

Simple 1-1 linear correspondence with Booklstein S.V.
(equ. 2.11 of book)

For triangles Kendall's SV sends baselineto —1/4/3,1/4/3
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Kendall's spherical shape shape variables (6, ¢) are
then given by the usual polar coordinates

1 1 1
= —sinfcos¢ , y= —sinfsing , z= —cosé,
T = ¢,y 5 ¢, z 5

where 0 < 8 < 7 is the angle of latitude and 0 < ¢ <
27 is the angle of longitude.
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e Kendall's shape sphere (1983) (triangles only)

Isosceles triangles 3 Equilateral (North pole)

Unlabelled
Right-angled

Flat triangles
(Equator)

12

3

Reflected equilateral (South pole)

A mapping from Kendall's shape variables to the sphere

IS

1—72 ué( vé{
= z =

TToa+y YT 12

and r? = (uf)? + (v5)?, so that

m2+y2+22=%.
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Kendall's Bell
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The Schmidt net for 1/12 sphere

& =2sin <g> ,

-1.0

Yp=¢; 0<E</2,0<¢<2m

05 0.0 05
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Bookstein 3D coordinates
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Bookstein coordinates - 3D

Landmarks X; = (14, 24, ©3;) T

T
uj = (u1j,u2j, uz;)

1 X, + X
:A(Xj—( 1+ 2)) , i=3,..k
| X2 — X4 2

where A is a 3 x 3 rotation matrix
(a function of (X1, X5, X3) ) and

X1 — (-1/2,0,0)T, X5 — (1/2,0,0)7,

T
X3 — uz = (u13,u23,0)

where up3 > 0, uzz = 0 and X; — u; for j =

4,.. k.
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Goodall-Mardia QR shape coordinates > 2 D
Helmertized landmarks Xy = HX (k x m matrix)

SIZE AND SHAPE (JOINTLY)

Xg=Tr , T € SO(m),

T is lower triangular
SHAPE:

W =T/|T|

40



Shape coordinates
1. FILTER OUT TRANSLATION:

a) Shift centroid to origin

b) Take linear orthogonal contrasts, e.g. Helmert con-

trasts
c¢) Shift baseline midpoint to origin

2. RE-SCALE:

a) Re-scale to unit centroid size

b) Re-scale to unit area

¢) Re-scale to a standard baseline length

d) Re-scale to minimize ‘distance’ to a template

3. REMOVE ROTATION:

a) Rotate baseline to horizontal
b) Rotate to minimize ‘distance’ to a template

Bookstein shape coordinates: 1c/2c/3a
Kendall shape coordinates: 1b/2c/3a
Procrustes shape coordinates: 1a/2d/3b
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2. Remove size (rescale)
gy Xg _ HX
S(X) HX]|

e Z is the PRESHAPE (¢ S(k—1)m—1)

3. Remove rotation

[(X]={Zr : T € SO(m)},

e [X] is the SHAPE of X.
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SHAPE SPACE....Kendall (1984)
1. Remove location (Pre-multiply by Helmert sub-matrix)

Xy =HX

where jth row of the Helmert sub-matrix H is given
by,

_1
(hj”hj’_]hj?o”o> 3 h_] = _{.7(.7 + 1)} 2

and the h; is repeated j times and zero is repeated
k—j—1times,j=1,..,k— 1.

Note C = HT H (centering matrix) so || X¢|| = || X gl =

S(X). (centroid size)
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e Dimensions....

Original configuration: k& x m
Centered configuration: km — m
Preshape: km —m — 1

Shape: km —m —1 —m(m — 1)/2

e Shape space is hon-Euclidean

44



SHAPE SPACES

Assume k£ > m + 1. [k points in m Euclidean dimen-
sions]

m=1: Z’{ is a unit radius (k — 2)-sphere.
m = 2: X% is the complex projective space CPF—2.

m > 2: ¥k has a singularity set 7(D,,,_») of dimen-
sion m — 2 and is NOT a homogeneous space.

For m > 2 the space spaces Z%'H are topological
spheres.
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Planar case: m = 2 dimensional data
>k = 8k/s0(2) = cPk-2

Helmertized landmarks
2 = Hz% = (21,..., z_1)T € €71\ {0}
Now multiplying by

A=re% (reRT,wel0,27))

rotates and rescales zp. So,

{Azm s A e C\ {0}},

is the set representing the SHAPE of z°. This is a
complex line through the origin (but not including it) in
k — 1 dimensions. The union of all such sets is the
complex projective space CPk—2

NB: CPF=2 = §2
47

Write X = U[A, 0]V, for the pseudo-singular value decom-
position where U € SO(m — 1),V € SO(k — 1), and A =
diag(A1,...,Am). Let

o [AXESH > > 1> D} if E=m 41
X {XeSk A >...>An1> A} if k>m 41

Le and DG Kendall (1993, Annals of Statistics)

Theorem On =(xk,), the Riemannian metric can be expressed
as

(/\2 )\2)2
2+)\2 ¢’L]

dpzzid,\$+ (Z%dA) + >

i=2 =2 1<i<j<m

m k-1
+>° > N

i=1 j=m+1
where ¢;; are co-ordinates for SO(k — 1).
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PLANAR CASE: Procrustes/Riemannian distance
Complex configurations z° = (29, ..., z,‘;)T,

w’ = (wg, ...,w,‘é)T

with centroids z¢, we.

Shape distance p(2°, w°) satisfies

|Z 1(25 —zc)(w _w0)|
VEN22 = 2e||PV T [[wf — wel|?

where w{ means the complex conjugate of wy.

cosp(z%,w®) =

NB cosp is the modulus of the complex correlation
between z° and w°.

e k = 3: pis the great circle distance on §2(1/2).

48



Complex configurations z° = (29, ..., zg)T

Bookstein co-ordinates:

o _

z 29
wP="0_"1 _05, (j=3,...,k)
23— 21

Kendall co-ordinates:
wJK =zj_1/z5, (G=3,...,k)

where (z1,...,2p_1)1 = Hz2°

e Linear relationship:

wi = 2H,wP

where Hj is lower right (k — 2) x (k — 2) partition of

H.

For k = 3: w8 = (/3/2)wk.

PROCRUSTES ANALYSIS

Juvenile (

) Adult (- - - - - - )

1000 2000 3000

0

-1000

-2000

2000 -1000 0 1000 2000 3000
x

0 1000 2000 3000

-1000

-2000

2000 -1000 0 1000 2000 3000
x

Register adult onto juvenile

49

51

Session Il

e Procrustes analysis

e Tangent coordinates

e Shape variability

e Shape models

e Tangent space inference
e Shapes package.
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PLANAR PROCRUSTES ANALYSIS

Two centred configurations y = (y1, ..., %) | and
w = (w1, ...,wg) |, both in C¥, with
y*lk =0= w*lk,

[v* - transpose of the complex conjugate of y]

Match w onto y using complex linear regression

y = (a+ib)1j + Bew + e
= [1p,w]A+e
== XDA+€,

Xp = [1j,w] - ‘design’ matrix
A = (a 4+ ib, Be®)T - similarity transformation pa-
rameters

52



Procrustes match = least squares

Minimize the sum of square errors

D?(y,w) = ¢*e = (y — XpA)*(y — XpA).

Full Procrustes fit (superimposition) of w on y

wP = XpA = (a@+ )1, + Beidw,
where

A= (X}pXp) X}y,

i.e.
a4ib = 0,
6 = arg(w*y) = —arg(y*w),
B = (wyy*w)/?/(w*w).

53

FULL Procrustes distance dg - full set of similarity

transformations used in matching

PARTIAL Procrustes distance d p - matching over trans-

lation and rotation ONLY

For fairly similar shapes they are very similar,
asdp = dp + O(d}) = p+ O(p3)

In this course for simplicity we shall concentrate on

FULL Procrustes matching.
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Procrustes fit w? = w*yw/(w*w)
Procrustes residual vector r = y — w?

Minimized objective function
D2(r,0) = y*y — (y*ww*y) /(w*w)
(not symmetric unless y*y = w*w)

Initially standardize to unit centroid size....

Full Procrustes distance:
Y Y g g b
lyll |l

_ Jq_yrwwly 1/2
o w*wy*y

dF(’LU, y)

inf
B,6,a,b

54

Section of the pre-shape sphere

56



12 1/2

Section of the SHAPE SPHERE FOR TRIANGLES,

illustrating the relationship between dg, dp and p
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Female (left) and Male (right) gorilla skulls

200
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g x> gl W W
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100
100

-300 -200  -100 0 100 -300 -200 -100 0 100

Mean shape? Shape variance/covariance?
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Procrustes residuals from the match of w onto y are
different from y onto w

0 1000 2000 3000

-1000

2000

2000 -1000 0 1000 2000 3000
X

JUV to ADULT (above): § = 45.5°, 3 = 1.131.
ADULT to JUV: 88 = —45.5° BE = 0.875 #
1/1.131
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CONFIGURATION MODEL

Random sample of n configurations w1, . . ., wn from
the perturbation model

w; =yl + Biei(u+ &), i=1,...,n,

where v; € C - translations

B; € RT - scales

0 < 6; < 2m - rotations

€; € C are independent zero mean complex random
errors

w is the population mean configuration.

AIM: to estimate [u] - the shape of
Procrustes mean:

n
[A] = arginf 3~ df(w;, u).
i=1

60



Consider w; to be centred: w1 = 0.

(Kent,1994)Procrustes mean shape [j] is the dom-
inant eigenvector of

n n
S= > wiw]/(wjw;) = Y 2z},
=1 =1
where the z; = w;/||lw;||, ¢ =1,...,n, are the pre-
shapes.

Proof We wish to minimize

n n *p*
R

i=1 i=1 Wi Wi p

= n—pu*Su/(u*w).
Therefore,
i =arg sup u*Su.

l[ul=1

Hence, result follows.
61

Procrustes fits (Generalized Procrustes analysis)

06

04

Female gorillas

63

e Procrustes fits: match w; to i

wfzwfﬁwi/(w;‘wi), i=1,...,n,

1
n

NB Arithmetic mean:

Q.

n_, w!’ has same shape as

e Procrustes residuals

62

g & 2%,

o ¥® %,

g # *® wl
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Other mean shape estimates:

150

e Bookstein mean shape

100

Take sample mean of Bookstein coordinates UB

50
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111 ]%11
The male (—-) and female (- - -) full Procrustes mean e o o o
shapes registered by GPA. ’
Female Gorillas
64 65

[In Book chapter 12]

e MDS mean shape (Kent, 1994; Lele 1991)

Obtain average squared Euclidean distance matrix D
B let B= —%C’DC (centred inner product matrix)

Let f1,..., fp be the scaled eigenvectors

&

&
o MDSm(D) = [f1, f2,-- -, fm]

' (invariant under reflections too)

Male Gorillas o IMPORTANT: If shape variations small the mean
shape estimates are approximately linearly related.
i.e. Multivariate normal based inference will be equiv-
alent to first order. (Kent, 1994)
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Tangent coordinates

Consider complex landmarks 2° = (29, ..., zg)T with
pre-shape
z = (zla "'Jzk—l)T = HZO/”HZO”‘

Let v be a complex pole on the complex pre-shape
sphere usually chosen as an average shape.

Let us rotate the configuration by an angle 6 to be as
close as possible to the pole and then project onto
the tangent plane at , denoted by T'(v). Note that
6 = arg(—~*z) minimizes ||y — ze®||2 .

68

PROCRUSTES TANGENT SPACE

Procrustes tangent co-ordinates T' of X at the pole
M:

T = RX —cospM
where 0 < p < «/2 is the Riemannian distance be-

tween the shapes of M and X, and R is the optimal
Procrustes rotation to match X to M.

T
M

The rays from the origin in Procrustes tangent space
correspond to minimal geodesics in shape space.
70

The partial Procrustes tangent coordinates for a
planar shape are given by

v==e¥I; 1 — vz, v € T(%), 1)

where § = arg(—~*z). Partial Procrustes tangent
coordinates involve only rotation (and not scaling) to
match the pre-shapes.

Note that v*y = 0 and so the complex constraint
means we can regard the tangent space as a real
subspace of IR2*~2 of dimension 2k — 4. The ma-
trix I,_q — ~v~* is the matrix for complex projection
into the space orthogonal to «. Below we see a sec-
tion of the shape sphere showing the tangent plane
coordinates.

69

A diagrammatic view of a section of the pre-shape
sphere, showing the partial tangent plane coordinates
v and the full Procrustes tangent plane coordinates
vp. Note that the inverse projection from v to ze® is
given by

zet? = [(1- v*v)l/Q'y +9] , zeCSF 2 (2
Hence an icon for partial Procrustes tangent coordi-
nates is given by X; = H T z.
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Icons for partial Procrustes tangent coordinates for
the T2 vertebral data (Small group).
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The Euclidean norm of a point v in the partial Pro-
crustes tangent space is equal to the full Procrustes
distance from the original configuration z° correspond-
ing to v to an icon of the pole H T+, i.e.

vl = dp(z°, H" 7).

Important point: This result means that standard mul-
tivariate methods in tangent space which involve cal-
culating distances to the pole ~ will be equivalent to
non-Euclidean shape methods which require the full
Procrustes distance to the icon H " ~. Also, if X; and
X are close in shape, and v1 and vy are the tangent
plane coordinates, then

lvi—v2|| = dp(X1, X2) = p(X1, X2) = dp(X1, X2).

®)
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Pairwise scatter plots for centroid size (S) and the
(z,y) coordinates of icons for the partial Procrustes
tangent coordinates for the T2 vertebral data (Small

group).
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For practical purposes this means that standard mul-
tivariate statistical techniques in tangent space will be
good approximations to non-Euclidean shape meth-
ods, provided the data are not too highly dispersed.

Full Procrustes tangent coordinates
An alternative tangent space is obtained by allowing

scaling by 8 > 0 of the pre-shape z in the matching
to the pole . In the above section



Shape variability

e Overall measure

n
RMS(dp) =n"" Y dp(w;, ).

=1
RMS(dp)rEMALE = 0.044
RMS(dF)MALE‘ = 0.050
e PCA in tangent space to shape space
- PCA of Procrustes residuals r; = w!” — fi
- PCA of Procrustes tangent coordinates v;
(project r; so to obtain part that is orthogonal to z and

its rotations)
- NB for observations close to i we have r; ~ v;
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Mouse vertebra example:

-0.2 0.0 0.2 0.4 0.6
7 #
R
i

-0.4

-0.6

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
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e S, - sample covariance matrix of some tangent co-
ordinates v,

12 _ T
== (vi —0)(v; — V)

i=1

Sy
where g = 1 >y
n 2

7, - eigenvectors of Sy: principal components (PCs),
with eigenvalues Ay > Ap > ... > X, >0

e PC score for the ith individual on the jth PC is:
Sij = ;-r(vi—ﬁ), i=1,...,n;53=1,...,p,

e PC summary of the data in the tangent space is

P
v =0+ Y 8i%
i=1
fori =1,...,n.

e Standardized PC scores:

1/2 . .
cij:Sij/)\j/ ,t=1,...,n;5=1,...,p.
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Mouse vertebra example: (PC1 = 69%)

Procrustes registration for display

Vs
\N

,

-06 -04 -02 0.0 02 04 06
-06 -04 -02 0.0 02 04 06

06 04 -02 00 02 04 06 06 04 02 00 02 04 06
(a) (b)
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Mouse vertebra example: (PC1 = 69%)

Bookstein registration for display
e Important:

If using Bookstein superimposition to calcuate S, then

: 4 : strong correlations can be induced.....can lead to mis-
3 5148 3 leading PCs
4 -
§ g No problem with Procrustes registration, Kent and Mar-
3 e 3 - dia (1997)
-0.6 -04 -0.2 0.0 0.2 0.4 0.6 -0.6 -04 -0.2 0.0 0.2 04 0.6
(a) (b)
79 80
T2 small vertebra outlines PC1: 65%
. SIS I IR Y B B
N o 8“ T S“ T ;m,“ Frared S“ T zm T SN T 2“ T
2 o1 oo o o2
RMS(dp) = 0.07 PC2: 9%

81 82



-02 -01 00 01 02 03

-0.3

0.0 0.2

-0.2

-02 -01 00 01 02 03

-0.3

0.3 -02 01 00 01 02 03 0.3 -02 01 00 01 02 03
(a) (b)

0.2 0.0 0.2 0.2 0.0 0.2
€Y (b)

83

85

-03 -02 -01 00 01 02 03

«
o
o
ﬁ ? c
S
o ? %
N i i
S S %,
7 2 +++"+ :}
< K ottty
o
<
@
<

-03 -02 -01 00 01 02 03

[CY

Pairwise plots:

-03 -0.2 -0.1 00 01 02 03

(b)

Size, shape distance, PC scores 1, 2, 3
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Pairwise plots:
Digit 3 data

Size, shape distance, PC1: 50%, PC2: 15%, PC3:

5 ) g 2 HIS : 3 E % H % 13%, PC4: 8%, PC5: 4%
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HIGHER DIMENSIONS

Ordinary Procrustes analysis (match X7 to X5 - cen-
tred)....Minimize:

2
D3 p4(X1,X2) = || X2 — BX1T — Ly T |I°,
Solution:
7=0
F=uv’
where

X5 X1 = || X1 |X2/lVAUT, U,V € SO(m)
with A a diagonal m x m matrix. Furthermore,
5= trace(XJ X11)

trace(X{ X1)

The minimized sum of squares is:

0SS(X1, X2) = || X2||?dr(X1, X2)?
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Male macaques

PERTURBATION MODEL:

X; = Bi(u+ BT+ 117"

Can estimate the shape of u by GPA (generalized Pro-
crustes analysis): by minimizing

3 dp(Xi,p)?

=1

Least squares approach. Iterative algorithm needed
for m > 2 dimensions
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Pre-shape ‘

‘ Size-and-shape

remove rotation

| s |

remove reflection

Reflection shape

remove scale

remove reflection

‘ Reflection size-and-shap%
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PC1 (47%) for Males: +/- 9 s.d.
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Different approaches to inference:

1. Marginal/offset distributions

2. Conditional distributions

3. Directly specified in shape space

4. Distributions in a tangent space

5. Structural models in the tangent space
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Preshape distributions (2D)

2D - complex notation: z = (z1,...,2z;)T where
172 =0,2*2 = 1 [z* = (2)7]

e complex Bingham (Kent, 1994)

f(z) = c(A) exp(2*Az)

A is Hermitian. NB: f(z) = f(e'’z) so suitable for
shape analysis.

NB: MLE of modal shape is identical to the PROCRUSTES
(least squares) mean

e complex Watson (special case of c. Bingham)

f(2) = (k) exp(k2"pp*z)
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Offset normal density (wrt uniform measure) (Mardia
and Dryden, 1989; Dryden and Mardia, 1991, 1992)

Ly_o(—r(1+cos2p(X, u))exp(—r(1l—cos2p(X,u)))

where k = Size(u)?/(402),
Size(u)? =¥ |u; — il? and
Li(—z) =Y_ ({)f—: is the Laguerre polynomial.

Parameters:

Shape(u): 2k-4 mean shape parameters
K. concentration parameter.
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Shape distributions: offset normal approach

(a) (b)

Mean triangle p with independent isotropic zero mean

normal perturbations with variance 2.
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DIFFUSIONS AND DISTRIBUTIONS

Diffusion of points in Euclidean shape (WS Kendall):

dXidei—gXidt L i=1,...,t

Ornstein-Uhlenbeck process for Euclidean points

— independent size and shape diffusions [with ran-
dom time change for shape: dr = dt/(size)2]. Com-
puter algebra package Itovsn3 developed through this
work.

Size and shape, and shape diffusions in 27’% (Le).

Shape density at time ¢: (from previous slide).
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Maximum likelihood based inference

!
t
5
g
3
.‘
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Schizophrenia study (Bookstein, 1996;

Dryden and Mardia, 1998)

k = 13 landmarks in 2D: ny = 14 Controls and
no = 14 Schizophrenia patients

Isotropic offset normal model: independent individu-
als
Inference: maximum likelihood

05

x
s¢ &£

sC

10

10 05 0.0 05 10

LR test P(x3, > 43.124) = 0.005.
Monte Carlo permutation test, p-value: 0.038.
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Controls:

103

INFERENCE: Multivariate normal model in the tan-
gent space (to pooled mean)

Hotelling's T2 test

v~ N(§1,%) wj ~ N(&2,3),
t=1,...,n1;7 = 1,...,no, all mutually indepen-
dent and common covariance matrices

v, w - sample means
Sv, Sw - Sample covariance matrices

Mahalanobis distance squared:
D? = (5 -w)" S, (v—w),
where Sy, = (nlsy + ngSw)/(nl +no — 2)

Under Hg equal mean shapes...

_ mng(ny +np— M —1) D2
(n1 +n2)(n1 +nop —2)M

~ FMong+no—M—1
under Hq. [M = dimension of the shape space]
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Gorilla (female/male):

k = 8 landmarks in m = 2 dimensions
n1 = 30,no = 29

M=2k—-4=12

The test statistic is F = 26.47
and P(F12’46 > 4.47) = 0.0001
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Goodall’s F test:

If > « I then

-2 — —~
_ ,:il—-l_—iiQTQ—Id%(Ml, i)

XM d2( X, i) + X024 d2(Y;, i)
Under Hg: F' ~ FM,(n1+n2—2)M

e Schizophrenia data:

k = 13 landmarks in m = 2 dimensions
ny = 14,ny = 14

M =2k —-4=22

F =1.89, and P(Fa2 572 > 1.89) ~ 0.01
Permutation test: p-value = 0.04

e Hotelling’s T2 test

p-value = 0.66
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Pairwise plots:

Size, shape distance, PC scores in direction of mean
difference
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Comparing several groups: ANOVA

Balanced analysis of variance with independent ran-
dom samples (Xj1,..., X;n)T, j = 1,..,ng from
n¢ groups, each of size n.

Let 1; be the group full Procrustes means and f is the
overall pooled full Procrustes mean shape. A suitable
test statistic is

Sigy dip (A, )
(ng — 1) X581 Sy da(Xji, i)
Under Hy : equal mean shapes:

F =n(n—1)ng

F~Foo 1)Muag(n-1)M
and reject Hy, for large values of the statistic.
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Complex Watson inference:

Two independent random samples z1, ...
and y1, ...
tween

, zn from CW (u, k)
,ym from CW (v, k). We wish to test be-

Ho : [p]=[v] and Hj :[u] # [v],

where [p] = {e“u : 0 < a < 27}, (i.e. [u] rep-
resents the shape corresponding to the modal pre-
shape u. For large « it follows that

Zsm p(zz,u)+z sin? p(y;,v) ~ _X(Qk 4)(n4m)
Jj=

and we also have

Z sin? p(z;, 1)+ Z sin? p(y;, ) ~

X(Qk 4)(n+m—2)
2_1 J_

110

Therefore, under Hpy we have
(n+m-2)B

Fr =
>n_, sin? p(zi, 1) + 2T sin 2p(yj, )

R Fop_4 (2k—4)(n+m—2)
and so we reject Hg for large values of F». Using
Taylor series expansions for large concentrations

Bx(n~t+m 1" tsin? p(, ),

and so for large « the test statistic F» is equivalent to
the two sample test statistic of Goodall (1991).

By analogy with analysis of variance we can write

Z sin? p(z;, i) + Z sin? p(yj, i) =

=1 =

Z sin? p(z;, i) + Z sin? p(y;,7) + B
=1 j=1

where i is the overall MLE of p if the two groups are
pooled, and B is analogous to the between sum of
squares. Since,

lem p(zi, 1)+ lem p(yj, ) ~ _X(Qk 4)(n4+m—1)
1= J=

it follows that

B = Z sin? p(z;, i) + Z sin? p(y;, i) —
=1 j=1

Z sin® p(z;, i) — Z sin? p(y;, 7) ~ sz 4
=1 Jj=1
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Bayesian approach to inference
(O, X|ut,...,un) =

L(ui,...,un; ©,2)7(60,X)
[L(ug, o un; ©,5)m(©,5)dOdE.

e.g. Data z; ~ complex Watson(u, < known )
Prior i ~ complex Bingham (A known)

7T(N|zla coyzn) o< w(p)L(z1, .-, 2n)

n
o< exp {u*Au + K Z z;uu*zi}

i=1
= exp{p* (kS + A)u},

Conjugate prior
MAP: dominant eigenvector of S + A/k
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The smoothed Procrustes mean of the T2 Small data:
(Top left) A = 0, (top right) A = 0.1, (bottom left)
A = 1.0, (bottom right) A = 100.
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EDMA-I test (Lele and Richtsmeier, 1991)
Form ratio distance matrix
D;i(X,Y) = F;(X)/Fy(Y). (5)
Test statistic:
T = rTl]?.XDij(ﬁ, ﬁ)/n;'ijnDij(ﬁ, v), (6)
Use bootstrap procedures.
115

EDMA (Euclidean distance matrix analysis) [Lele, 91+,
Stoyan, 91]

F(X): form distance matrix (k x k matrix of pairs of
inter-landmark distances (ILDs))

Estimate F'(u): population form distance matrix

(zj,y;) ~ N((1j,v;),0212),5 = 1,..., k. Then
(zr—25)?+(yr—ys)® = D7y ~ 0°x5(575/02), (4)
6725 = (pr — ,Us)2 + (v — VS)Q'

Moment estimator

6?5 = {E(Dgs)}z - Var(DTQ's :

Removes bias.

Estimate of mean reflection size-and-shape
[MDS>(A)] , (A)rs = STS,
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EDMA-II (Lele and Cole, 1995)

F,, and F), estimates of average form distance matrix
for each group

Scale by group size measure

T = Largest entry in arithmetic difference of scaled
matrices

More powerful than EDMA-I
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Rao and Suryawanshi (1996)
G(X) : form log-distance matrix

shape log-distance matrix is
G*(X) = G(X) — G117,

2 k-1 k

G = m; jzal(G(X))ij.

Average form log-distance matrix is

~ 1&
G(ll’) = ; Z log di(hlahQ)a
=1

where d;(h1, hp) is the distance between landmarks
h1 and ho for the ith object Xj;.

Average reflection size-and-shape

[MDSm(exp(G(i)))].
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For small variations estimates of mean shape or size-
and-shape are all very similar...(Kent, 1994)

Distance based (+):

Landmarks not necessarily needed (eg. maximum
breadth)

Consistent estimation under general normal models
Distance based (-):

Invariant under reflections

Visualization not straightforward

A choice of metric for averaging needs to be made

118

Average reflection shape

[MDSm(exp(G*(@))].

e SIZE-AND-SHAPE
Invariance under translation and rotation (not scale)

Perturbation model:

o ALLOMETRY

The relationship of shape given size
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Bookstein’s (1996) Microfossils Microfossils:

slog :i
% v
o 87 A% *D
® ® o e e T 0 TGk ok ugg
o™ Regression:
) - U=oa1+p1109S, V=ay+Blog8sS
< Tthe fitted values (with standard errors) are
% o % a1 = 0.77(0.20), 81 = —0.04(0.02),

ap = —1.47(0.32) and 3> = 0.24(0.04)

_ B _ /B
V=VZversusU =U" +1/2 Significant linear relationship between log S and V..
120 121

T2 Small mouse vertebrae data

Shapes package in R:

' e http://www.cran-r-project.org

Library of shape analysis routines.

Also see:

L s http://www.maths.nott.ac.uk/~ild/shapes

NB: Approx. linear relationship between PC 1 and
centroid size.

122 123



Session lll:

o Deformations

e Shape in images
e Temporal shape

e Shape Regression
e Discussion
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where tis (2x1),s(t) = (o(t—t1),...,0(t—tx)) T, (kx

1) and

_ [ InlR10g (IR, 1Al > O,
"(”)—{o, | =o0.

The 2k 4+ 6 parameters of the mapping are c¢(2 x
1), A(2 x 2) and W(k x 2). There are 2k interpola-
tion constraints in Equation (7), and we introduce six
more constraints in order for the bending energy in
Equation (14) below to be defined:

1fw=o0, T'W=o0. (10)

The pair of thin-plate splines which satisfy the con-
straints of Equation (10) are called natural thin-plate
splines. Equations (7) and (10) can be re-written in
matrix form

S 1, TV [W Y
17 o of|cT|=|0], (11)
TT 0 o] AT 0

DEFORMATIONS AND THIN-PLATE SPLINES

The thin-plate spline is the most natural interpolant in
two dimensions because it minimizes the amount of
bending in transforming between two configurations,
which can also be considered a roughness penalty.
The theory of which was developed by Duchon (1976)
and Meinguet (1979). Consider the (2x 1) landmarks
tj,j = 1,...,k, on the first figure mapped exactly
into y;,2 = 1,...,k, on the second figure, i.e. there
are 2k interpolation constraints,

(yj)’f‘:ch(tj)a r=12, j= 1,...,k, (7)
and we write ®(t;) = (®1(t;), Pa(t;) T, i =1,..
for the two dimensional deformation. Let
T=1[t;1 to 1T Y =1[y1 y2 .- wl'
so that T"and Y are both (k x 2) matrices.

A pair of thin-plate splines (PTPS) is given by the
bivariate function

D) = (1(t), P2(t)T
c+ At + W Ts(t), (8)
125

where (S);; = o(t; — t;) and 1 is the k-vector of
ones. The matrix

S 1, T
r=1{1f o o
TT 0 0

is symmetric positive definite and so the inverse ex-
ists, provided the inverse of S exists. Hence,

W s 1, T17 'y Y
=17 0 o ol=r"tlo],
AT T 0 0 0 0

say. Writing the partition of T—1 as

1 rll r12
r - |—21 r22 ’

where M1 is k x k, it follows that
w = rity

e’ 3. A 21
[AT} = [B1,B2] =T, 12)

giving the parameter values for the mapping. If S—1

',k’



exists, then we have
I—ll — S—l _ S_]'Q(QTS_]‘Q)_IQTS_I,
|—21 — (QTS_lQ)_lQTS_l — (I—12)T, (13)
|—22 — —(QTS_]'Q)_]',

where Q = [1;, T, using for example Rao (1973,p39).

Using Equations (12) and (13) we see that 51 and 35

are generalized least squares estimators, and
cov((B1,B2) ") = -2

Mardia et al. (1991) gave the expressions for the case

when S is singular.

The k& x k matrix Be is called the bending energy
matrix where

Be =11 (14)

There are three constraints on the bending energy
matrix

1/Be=0, T"Be=0

Early transformation grids of human profiles
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and so the rank of the bending energy matrix is k — 3.

It can be proved that the transformation of Equation
(8) minimizes the total bending energy of all possible
interpolating functions mapping from 7' to Y, where
the total bending energy is given by

J(P) =
02 o 02d; 2+ 82, Qd .
Z //]R2 < ) <8x3y> ( oy? ) ey
(15)

A simple proof is given by Kent and Mardia (1994a).
The minimized total bending energy is given by,

J(®) = trace(W ' SW) = trace(Y 'r1ly).
(16)

In calculating a deformation grid we do not want to
see any more bending locally than is necessary and
also do not want to see bending where there are no
data.

e g 1y v

T
L vy

ceaigy g RE AR TRRYTIRYY

LT Wo
a b P 4 . j

Early transformation grids modelling six stages through
life (from Medawar, 1944).
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TRANSFORMATION GRIDS

Following from the original ideas of D’Arcy Thompson
(1917) we can produce similar transformation grids,
using a pair of thin-plate splines for the deformation
from configuration matrices T'to Y.

\\ /
R P eeamet|
‘, S T
\_‘-\\_) %
o 1 2 3 4 5
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Considedescribinghesquareo kite transformationwhich

wasconsideredby Bookstein(1989)andMardiaandGoodall

(1993).Givenk = 4 pointsin m = 2 dimensionghema-
tricesT andY aregivenby

0 1 0 0.75
-1 0 -1 0.25
r= 0o -1 , Y= 0 —1.25
1 0 1 0.25
We have here
0O a b a
g — a 0 a b ,
b a 0 a
a b a O

wherea = o(4/2) = 0.6931 andb = o(2) =
2.7726. In this casethebendingenegy matrixis

1 -1 1 -1
-1 1 -1 1
1 -1 1 -1
-1 1 -1 1

B. =11 =0.1803

129

A regular square grid is drawn over the first figure and
at each point where two lines on the grid meet ¢; the
corresponding position in the second figure is calcu-
lated using a pair of thin-plate splines transformation
y; = P(t;),¢ = 1,...,ng, where ny is the number
of junctions or crossing points on the grid. The junc-
tion points are joined with lines in the same order as
in the first figure, to give a deformed grid over the sec-
ond figure. The pair of thin-plate splines can be used
to produce a transformation grid, say from a regular
square grid on the first figure to a deformed grid on
the second figure. The resulting interpolant produces
transformation grids that ‘bend’ as little as possible.
We can think of each square in the deformation as be-
ing deformed into a quadrilateral (with four shape pa-
rameters). The PTPS minimizes the local variation of
these small quadrilaterals with respect to their neigh-
bours.

It is foundthat

wT — 0 0 0 0
— | —0.1803 0.1803 —0.1803 0.1803

[ 0, A= IQ

andso the pair of thin-platesplinesis givenby & (t) =
(®1(8), P2(t)) T, where

®1(t) = t[1], (18)

4 .
Do(t) = t[2] +0.1803 > (—1) o (||t —¢t4])).
j=1

Notethat Equation(18) is asexpectedbecauséehereis no

changein the ¢[1] direction. The affine part of the defor
mationis theidentity transformation.

{17)



2 1.0 1 2

2 10 1 2

2 1.0 1 2

210 1 2

Transformationgrids for the square(left column)to kite
(right column) (after Bookstein,1989). In the secondrow
thesamdiguresasin thefirstrow have beerrotatedoy 45°
andthedeformedgrid doeslook different,eventhoughthe
transformations thesame.

We considefThompson-like gridsfor thisexample(abore).
A regular squaregrid is placedon thefirst figure andde-
formedinto the curved grid on the kite figure. We seethat
thetop andbottommaostpointsaremoved dovnwardswith
respecto the othertwo points. If theregulargrid is dravn

g

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-06 -04 -0.2 0.0 0.2 0.4 06

-0.6-0.4-02 0.0 0.2 0.4 0.6 -0.6-04-02 0.0 02 04 06
(@ (b)

A thin-plate spline transformation grid between the con-
trol mean shape estimate and the schizophrenia mean
shape estimate.

(left) We see a square grid drawn on the estimate of
mean shape for the Control group in the schizophrenia
study. Here there are ng = 30 x 29 = 870 junctions
and there are £k = 13 landmarks. (right) we see the
schizophrenia mean shape estimate and the grid of
new points obtained from the PTPS transformation.
It is quite clear that there is a shape change in the
centre of the brain, around landmarks 1, 9 and 13.
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on the first figure at a different orientation,then the de-
formed grid doesappearto be different, even thoughthe
transformations thesame.This effectis seenn theFigure
wherebothfigureshave beenrotatedclockwiseby 45° in
thesecondow.

A series of grids showing the shape changes in the
skull of some sooty mangabey monkeys
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PRINCIPAL AND PARTIAL WARPS

Bookstein (1989, 1991)’s principal and partial warps
are useful for decomposing the thin-plate spline trans-
formations into a series of large scale and small scale
components.

Consider the pair of thin-plate splines transformation
from t € IR? to y € R?, which interpolates the k
points T'to Y (kx 2) matrices. An eigen-decomposition
of the k x k bending energy matrix B, of Equation (14)

has non-zero eigenvalues A1 < Ay < ... < A3
with corresponding eigenvectors 1, v2, - . ., Y—3- The
eigenvectors 1,72, ...,7s—3 are called the princi-

pal warp eigenvectors and the eigenvalues are called
the bending energies. The functions,

Pj(t):’YJTS(t) ) j:]-:"'ak_sa

are the principal warps, where s(t) = (o (t—t1),...,0(t—
)7
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and so there are two scores for each partial warp.

Since

k-3
wTs(t) = Y R;(b),

j=1
we see that the non-affine part of the pair of thin-plate
splines transformation can be decomposed into the
sum of the partial warps. The jth partial warp cor-
responds largely to the movement of the landmarks
which are the most highly weighted in the jth prin-
cipal warp. The jth partial warp scores indicate the
contribution of the jth principal warp to the deforma-
tion from the source T to the target Y, in each of the
Cartesian axes.

Here we have labelled the eigenvalues and eigenvec-
tors in this order (with A1 as the smallest eigenvalue
corresponding to the first principal warp) to follow Book-
stein’s (1996b) labelling of the order of the warps. The
principal warps do not depend on the second figure Y.
The principal warps will be used to construct an or-
thogonal basis for re-expressing the thin-plate spline
transformations. The principal warp deformations are
univariate functions of two dimensional ¢, and so could
be displayed as surfaces above the plane or as con-
tour maps. Alternatively one could plot the transfor-
mation grids from ¢ to y = t + (c1P;(t), coPj(¢)) T
for each j, for particular values of ¢; and c». Note that
the principal warps are orthonormal.

The partial warps are defined as the set of £ — 3
bivariate functions R;(t),j = 1, ...,k — 3, where

Rj(t) = YT)\j’)/ij(t) = YT/\j'yj'ijs(t).

The jth partial warp scores for Y (from T') are de-
fined as

(pjlaij)T = YT’YJ y J= 1,...,k-3,

The five principal warps for the the pooled mean shape
of the gorillas
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A thin-plate spline transformation grid between a fe-
male and a male gorilla skull midline.
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Affine scores and the partial warp scores for female
() and male (m) gorilla skulls.
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Affine and partial warps for Gorilla (Female to male
mean shapes)
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RELATIVE WARPS

Principal component analysis with non-Euclidean met-
rics

Define the pseudo-metric space (IR?, d 4) as the real
p-vectors with pseudo-metric given by

da(z1,22) = \/(1‘1 —22)TA (21 — 22),
where z1 and z, are p-vectors, and A~ is a gener-
alized inverse (or inverse if it exists) of the positive
semi-definite matrix A.

The Moore—Penrose inverse is a suitable choice of
generalized inverse. If A is the population covariance
matrix of z1 and x5, then d4(z1,z2) is the Maha-
lanobis distance. The norm of a vector x in the metric
space is

2]l 4 = da(@,0) = (&7 A"2) /2.

We could carry out statistical inference in the metric
space rather than in the usual Euclidean (A = I)

137



space (after Bookstein, 1995, 1996b; Kent, personal
communication; Mardia, 1977, 1995). A simple way
to proceed is to transform from z € (RP,d4) toy €
(A™)1/2z in Euclidean space. For example, consider
principal component analysis (PCA) of n centred p-
vectors z1, ...,z in the metric space. Transform-
ing to y; = (A~)/2z; the principal component (PC)
loadings are the eigenvectors of

13 T
Sy==>" viy; -
ni=1

Denote the eigenvectors (p-vectors) of Sy as v,;,j =
1,...,p (assuming p < n — 1), with corresponding
eigenvalues \y;,j = 1,...,p. The principal com-
ponent scores for the jth PC on the ith individual are

rij = V¥ = (WJj(A_)l/Q)CEi’ i=1,...,p
So, the (unnormalized) PC loadings on the original
data are (A~)1/2y,; which are the eigenvectors of
(A7)Y/28,(A™)/?, where Sy = 150 22T (us-
ing standard linear algebra, e.g. Mardia et al., 1979,

a 2k — 2-vector), where the pole p is chosen to be an
average pre-shape such as from the full Procrustes
mean. The sample covariance matrix in the tangent
plane is denoted by S, and the sample covariance
matrix of the centred tangent coordinates z; = (I> ®
HM)v;, i=1,...,nis denoted by S. (2k x 2k).
In our examples we have used the covariance matrix
of the Procrustes fit coordinates. The bending energy
matrix is calculated for the average shape B and then
the tensor product is taken to give Bp = I» ® Be,
which is a 2k x 2k matrix of rank 2k — 6. We write
B, for a generalized inverse of B> (e.g. the Moore—
Penrose generalized inverse).

We consider PCA in the tangent space with respect
to a power of the bending energy matrix, in particular
with respect to BZ.

Let the non-zero eigenvalues of (B5)®/2S.(B5)*/?

bely,...,lo,_g With corresponding eigenvectors f1, ..., forp—

and
2k—6 —a/2
(B5)Y2 = 3 A%y,

r=1

Appendix). The first few PCs in the metric space (with
loadings given by the eigenvectors of

(A)1/28,(A)1/2

) can be useful for interpretation, emphasizing a dif-
ferent aspect of the sample variability than the usual
PCA in Euclidean space. If our analysis is carried out
in the pseudo-metric space, then we say the our anal-
ysis has been carried out with respect to A.

If a random sample of shapes is available, then one
may wish to examine the structure of the within group
variability in the tangent space to shape space. We
have already seen PCA with respect to the Euclidean

metric, but an alternative is the method of relative warps.

Relative warps are PCs with respect to the bending
energy or inverse bending energy metrics in the shape
tangent space.

Consider a random sample of n shapes represented
by Procrustes tangent coordinates v1, ..., v, (each is

with A1,..., Aop_g the eigenvalues of By with corre-
sponding eigenvectors ~1, ..., vor_g- The eigenvec-
tors f1, ..., fop_g are called the relative warps. The
relative warp scores are

a; = ()T (B3)?x;, j=1,...,2k=6, i=1,...

Important remark: The relative warps and the rel-
ative warp scores are useful tools for describing the
non-linear shape variation in a dataset. In particular
the effect of the jth relative warp can be viewed by
plotting

af2

HT pt cBY? 1122

j )
for various values of ¢, where
2k—6
/2 a/2 T
B3/2 = 3 A2y

r=1

The procedure for PCA with respect to the bending
energy requires « = 41 and emphasizes large scale



variability. PCA with respect to the inverse bend-
ing energy requires a = —1 and emphasizes small
scale variability. If o = 0, then we take BS = I,
as the 2k x 2k identity matrix and the procedure is
exactly the same as PCA of the Procrustes tangent
coordinates. Bookstein (1996b) has called the o = 0
case PCA with respect to the Procrustes metric.
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Deformation grids for the two uniform/affine vectors
for the gorilla data.
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Geometrical object description =
SHAPE + REGISTRATION

where REGISTRATION =
LOCATION, ROTATION and SCALE

iNun
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e Use training data to estimate any parameters
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Relative warps: a = 0
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e Deformable templates:
Grenander and colleagues

e Point distribution models (PDM) Cootes, Taylor, et
al.
CASE STUDY:

e Bayesian approach . . .
Object recognition: face images

- Prior model for object shape and registration using

SHAPE ANALYSIS [example from Mardia, McCulloch, Dryden and John-

son, 1997]

- Likelihood for features measuring goodness-of-fit (fea-
ture density)

Bayes Theorem — Posterior inference
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LANDMARKS or FEATURES
e Grey level image I(z,y)

e Scale space features (e.g. Val Johnson, Duke; Stephen
Pizer et al, UNC Chapel Hill, USA)

Convolution of image with isotropic bivariate Gaussian
kernel at a succession of ‘scales’ (o)

928 (z,y; o) n 92S(z,y; o)

me(a) + Lyy(a) - 8.’1)2 3y2

S(z,y,0) =

2
/I(a:—hl,y ho)y g€ 7 223 gy

Use 2D FFT

e ‘Medialness’ : Laplacian of blurred scale space im-
age

144

e Feature density (likelihood)

Pilot study - Face Identification: Choose k = 9 land-
marks on the medialness image at scales 8, 11, 13

k 1
L(image|configuration) oc [ e2"i(FeieitLuiv)
i=1

e Johnson et al. (1997) motivate this as mimicking a
human observer.

0 50 100 150 200 250

0 50 100 150 200 250

0 50 100 150 200 250 0 50 100 150 200 250

)

e Features are treated as independent

e High medialness at feature — high density

e Treat non-feature grey levels as independent, uni-
formly distributed (like a human observer ignoring those
pixels).

0 50 100 150 200 250

0 50 100 150 200 250

Vg

0 50 100 150 200 250 0 50 100 150 200 250

e Parameters k; need to be specified
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Registration parameters

e Location Original raw face data

pa ~ N (P, U%)

Hy ~ N(d’y#ﬁ?)
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fad
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e Rotation e .
1 2
5 -8 .5
6 7
0 ~ N (¢4, 01) i e
e |sotropic scale °
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ﬂNN('l/)bao-}?)

Hyperparameters vz, oz, ¥y, oy, ¥t, 0, Y3, op €Stimated
from training data (10 faces)
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Bookstein registered data

200

e Least squares Procrustes approach
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e First five PCs (explaining 54.4, 29.9, 6.0, 3.7, 2.7%
of variability in shape).

Y X Y R S R
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e .... FACE PRIOR
Assume registration and shape independent
Multivariate normal prior model (configuration density):

w(configuration) = w(ug, py, 0, B,¢1,--.,¢p)

Tt

2 )2 | (0-y)2 | (B—1p)>
(gt g O O )
x e T Yy b

Bayes theorem — Posterior density:

w(configuration|image)

o w(configuration) L(image|configuration)
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e Vector plot from mean to 3 S.D.s for first three PCs
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152

e Draw samples from posterior using MCMC

e Object recognition: maximize posterior to obtain most
likely configuration given the image

e Straightforward Metropolis-Hastings algorithm
Proposal distribution: independent normal centred on
current observation, with varying variance (linearly de-

creasing over 5 iterations, then jumping back up)

Update each parameter one at a time
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Results: MCMC output for face 2 (in training set): Pos-

terior, Prior, Likelihood

PC3,...,.PC8

(Lt Ao e T i
LA A e TN o]
L o A T e |
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Translations, scale, rotation, PC1, PC2

MAP estimate overlaid on scale 8
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Shape distance to training set.... Procrustes distance
p and Mahalanobis

IMAGE REGISTRATION

Procrustes

s

00 005 010 0.15 0.20
o

2 a 6 8 10

image no.

Mahalanobis

t
0123456
©
8
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IMAGE AVERAGING

Consider a random sample of images f1, ..., fn con-
taining landmark configuration X+, ..., Xy, from a pop-
ulation mean image f with a population mean config-
uration . We wish to estimate p and f up to arbitrary
Euclidean similarity transformations. The shape of u
can be estimated by the full Procrustes mean of the
landmark configurations X1q,..., X,. Let ®F be the
deformation obtained from the estimated mean shape
[2] to the ith configuration. The average image has
the grey level at pixel location ¢ given by

HOEEDSPACHOI (19
=1

1=
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An average T1 vertebra image obtained from five ver-
tebrae images.
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(c) (d)

Images of five first thoracic (T1) mouse vertebrae.
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SHAPE TEMPORAL MODELS

Stochastic modelling of size and shape of molecules
over time: HIGH DIMENSIONAL.

e Practical aim: to estimate entropy. Use tangent
space modelling.

G:

’ G Gy
g AG, AGy
sl
! Gy
i
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e Temporal correlation models for the principal com-
ponent (PC) scores of size and shape. [AR(2)]

e Non-separable model - different temporal covariance
structure for each PC but constant eigenvectors over
time.

e Improved entropy estimator based on MLE, interval
estimators.

e Properties of estimators under general correlation
structures, including long-range dependence.

e Temporal shape modelling directly in shape space.

SMOOQOTHING SPLINES

Smoothing spline fitting through ‘unrolling’ and ‘un-
wrapping’ the shape space 5.

On the Procrustes tangent space at time ¢, the shape
space is rolled without slipping or twisting along the
continuous piecewise geodesic curve in Z’g. The piece-
wise linear path in the tangent space is the unrolled
path.

A point off the curve is unwrapped onto the tangent
plane.

k ‘ "
7 ﬁ 3 v
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REGRESSION

The minimal geodesic in shape space between the
shapes of X and Y where 0 < sg = p(X,Y) [Rie-
mannian distance] is given by:

1
sin SO

g9(s) =

where RTyY X7 is symmetric (i.e. RT is the optimal
Procrustes rotation of Y on X).

Practical regression models: tangent space regres-
sion through origin = fitting geodesics in shape space.
167

Spline fitting in 2’5: unrolling the spline to the tangent
space at tq is the corresponding cubic spline fitted to
the unwrapped data.

Le (2002, Bull.London Math.Soc.), Kume et al. (2003).

Piecewise linear spline — piecewise geodesic curve
in >k
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{Xsin(so —s)+ RTy sin s}, 0<s<sg



NONPARAMETRIC INFERENCE

e The full Procrustes mean [ is a consistent estima-
tor of ‘extrinsic mean shape’ (Patrangenaru and Bhat-
tacharya, 2003)

e Central limit theorem for i and a limiting x2 distribu-
tion for a pivotal test statistic — confidence regions.

e Bootstrap confidence interval for mean shape based
on a pivotal statistic - NEEDS CARE in a non-Euclidean
space.

e Coverage accuracy of bootstrap confidence region
O(n=2).

e Bootstrap k sample hypothesis test (not necessary
to have equal covariance matrices in each group).
e Need to simulate from the null hypothesis of equal
mean shapes, and so the individual samples are moved
along a geodesic to the pooled mean without chang-
ing the inter-sample shape distances.
e Simulation studies indicate accurate observed sig-
nificance levels and good power.
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DISCUSSION

e At all stages geometrical information always avail-
able

o Statistical shape analysis of wide use in many disci-
plines.

e Great scope for further application in image analy-
sis, e.g. medical imaging.

e Non-landmark - curve - data
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