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Aperture and the notion of
scale

Figure 1.1 A cloud observed at different scales, simulated by the blurring of a random set of
points, the 'drops'. Adapted from [Koenderink1992a].

 Resulting measurement strongly depends on the size
of the measurement aperture

* Need to develop criteria: Aperture size to apply



1.2 Mathematics, physics and

vision
Mathematics Physics
e Objects can have e Measurement with
no size instrument at
e Points, lines with certain scale
zero width e Smallest scale:
o Inner scale

(?malles)t sampling

T J (41— f(x) element

J () Ty h e Choice of sample
size depends on
task (tree vs. leafs)

e Any physical

observation is done
through aperture




Figure 1.3 Selection of pictures from the journey through scale from the book
[Morrison1985], where each page zooms in a factor of ten. Starting at a cosmic scale, with
clusters of galaxies, we zoom in to the solar system, the earth (see the selection above), to a
picknicking couple in a park in Chicago. Here we reach the 'human’ (antropometric) scales
which are so familiar to us. We then travel further into cellular and molecular structures in the
hand, ending up in the quark structure of the nuclear particles. For the movie see:
hitp:/fwww_micro.magnet_fsu_edu/primer/java/scienceopticsu/powersof10/index_html.



We blur by looking

Figure 1.4 Dithering is the representation of grayvalues through sparse printing of black dots
on paper. In this way a tonal image can be produced with a laserprinter, which is only able o
print miniscule identical single small high contrast dots. Left: the image as we observe it, with
grayscales and no dithering. Right: Floyd-3ieinberg dithering with random dot placemenis.
[From http://sevilleta.unm.edu/~bmilne/khoros/hitml-dip/c3/s7/front-page.html].
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Visual Front End: Multitude

of aperture sizes
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simultaneously

Objects come in all sizes,
all equally important at
front-end

Mosaic: Multi-resolution
perceptual effect

Multi-scale observation

Aperture size: Continuous
measurement dimension

Scale: addl. parameter



Multi-scale

e Specific reasons to not only look at the
highest resolution

e New possibilities if all sizes
simultaneously, whole range of
sharpness




Different information at
difference resolutions
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Figure 1.10 At different resclutions we see different information. The meaningful information ir ‘ - ' -

this image is at a larger scale then the dots of which it is made. Look at the image from about .. . . '
2 meters. Source: dr. Bob Duin, Pattern Recognition Group, Delft University, the Netherlands. P ‘




Multiple Scales

) ) |
Figure 2.9 A scale-space is a stack of images at a range of scales. Top row: Gaussian blur scale-space of a

sagittal Magnetic Resonance image, resolution 128%, exponential scale range from o = e° tot o = &2-*.
Bottom row: Laplacian scale-space of the same image, same scale range.




Pyramids (Hong, Shneier,
Rosenfeld)

e recursive subsampling
o f(k-1) = REDUCE[f(K]
o 2Kk x 2k images: k+1 scales

- -

8x8 4 x4 2X2 1x1




Pyramids ctd.

e to avoid aliasing: low-pass filtering
before subsampling (blur — subsample -
blur - subsample - blur - ...)

e Advantages: rapidly decreasing image
size
e Disadvantages: coarse quantization
along scale direction




We assume model...

e Jagged or straight
contours?

e We think is looks
like square, but
we use model!




1.5 Summary

Observations necessarily done through a
finite aperture.

Visual system: exploits a wide range of
such observation apertures in the front-
end simultaneously, in order to
capture the information at all scales.

Observed noise is part of the
observation.

Aperture can't take any form: Pixel
squares are wrong and create ‘spurious’
resolution (wrong edge information) -
choose appropriate kernel.




2.0 Foundations of Scale Space




Aperture function: Operator

e Unconstrained front-end: Unique
solution to aperture function is
Gaussian kernel

e Many derivations, all leading to
Gaussian kernel
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Figure 2.1 The Gaussian kernel with unit standard deviation in 1D.




AXioms

Linearity (nonlinearities at this stage)

Spatial shift invariance (no preferred
location)

Isotropy (no preferred orientation)

Scale invariance (no preferred size, or
scale of the aperture)




Convolution

L(x. y) = Lo(x. ») ®G(x. y) = |__Lo(u. v) Glx —u. y —v) dudyv

In the Fourier domain, a convolution of functions translates to a regular product between the
Fourier transforms of the functions: L(w, . w,) = Ly(w,. w,) . Glw,. w,)



Linear Diffusion

e Gaussian kernel is

1 =+y . Green’s function
7o ) of linear, isotropic
diffusion equation

oL

=207




Gaussian Derivatives

Figure 2.10 Upper left: the Gaussian kernel G(x.y.c) as the zeroth order point operator; uppe

. . . 2 2 .
right: 22 ; lower left: =22 ; lower right: the Laplacian £ + <% of the Gaussian kernel.
X ax Ay dxl dyl

All partial derivatives of the Gaussian
kernel are solutions too of the
diffusion equation



Linearity

Derivative of: L() (x, y) X G(JC, V, O-)
Given by: % {LO (X, y) X G(X, v, O-)}

Rewrittenas: [y (X, V) ® ™ G(x V. o)

Differentiation and observation is done in one single step:
Convolution with Gaussian derivative kernel.




Application to images

We can apply differentiation to sampled
image data

Convolution with appropriate Gaussian
derivative kernel

Scale-space: Choice of multiple Gaussian
widths o

What are appropriate derivatives?




dges: Sudden change of
intensity L

Figure 2.11 The first order derivative of an image gives edges. Left: original test image
al

Lix, ¥), resolution 2562 . Second: the derivative with respect to x: == at scale o =1 pixel.
al

Note the positive and negative edges. Third: the derivative with respect to y. <= at scale

ay




Digital Images



Digital Images




Digital Images




Digital Images




Scale-space stack

Un-committed front
end: Take all scales

Family of kernels
applied to image

Simulates visual
system




Scale-space
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Scale iIs parameterized in an exponential
fashion (see 2.8 sampling of scale axis)



2.9 Summary

Unique solution for uncommitted front-end:
Gaussian kernel

Differentiation of discrete data: Convolution
with derivative of observation kernel:
Integration

Differentiation of discrete data now
possible: Convolution with finite kernel

Differentiation can NEVER be done without
blurring (see later Ch. 14)

Family of kernels, scale parametrized in an
exponential fashion
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