Modelling Appearance

Cootes, Edwards, Taylor University of Manchester

Lessons learned

- ASM is relatively fast
- ASM too simplistic; not robust when new images are introduced
- May not converge to good solution
- Key insight: ASM does not incorporate all gray-level information in parameters

Combined Appearance Models

- Combine shape and gray-level variation in single statistical appearance model
- Goals:
 - Model has better representational power
 - Model inherits appearance models benefits
 - Model has comparable performance

How to generate a AAM

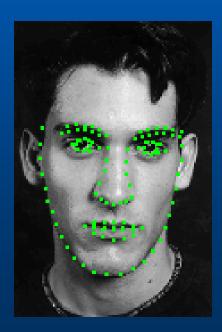
- Label training set with landmark points representing positions of key features
- Represent these landmarks as a vector x
- Perform PCA on these landmark vectors

Appearance Models

- Statistical models of shape and texture
- Generative models
 - general
 - specific
 - compact (~100 params)

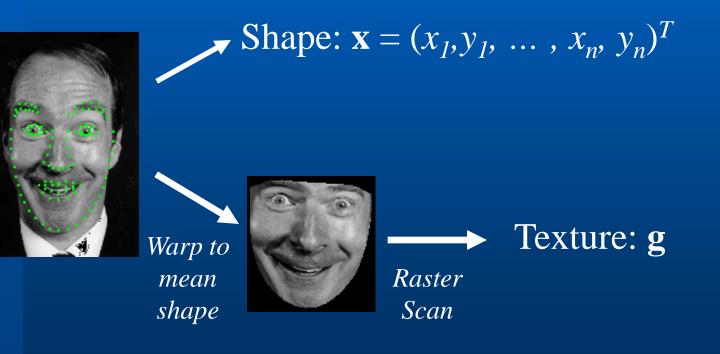
Building an Appearance Model

Labelled training images – landmarks represent correspondences



Building an Appearance Model

For each example



Building an Appearance Model

- Principal component analysis
 - shape model: $\mathbf{x} = \overline{\mathbf{x}} + \overline{\mathbf{P}}_{s}\mathbf{b}_{s}$
 - texture model: $\mathbf{g} = \overline{\mathbf{g}} + \mathbf{P}_{g}\mathbf{b}_{g}$
- Columns of \mathbf{P}_r form shape and texture bases
- Parameters \mathbf{b}_r control modes of variation

Shape and Texture Modes

Shape variation (texture fixed)

Texture variation (shape fixed)

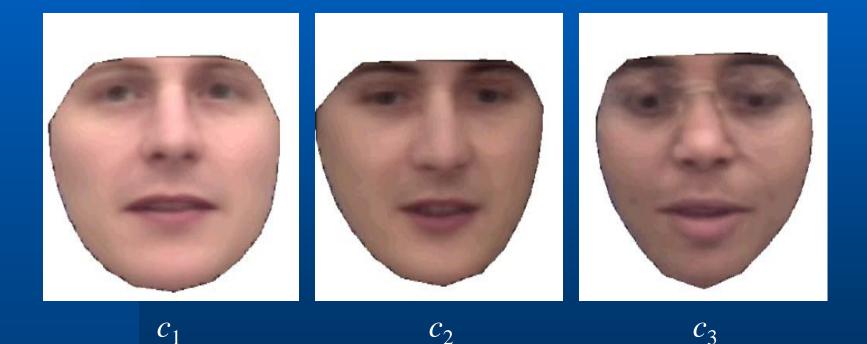
Combined Appearance Model

Shape and texture may be correlated

- PCA of
$$\begin{pmatrix} \mathbf{b}_s \\ \mathbf{b}_g \end{pmatrix} \implies \begin{pmatrix} \mathbf{x} \\ \mathbf{g} \end{pmatrix} = \begin{pmatrix} \overline{\mathbf{x}} \\ \overline{\mathbf{g}} \end{pmatrix} + \begin{pmatrix} \mathbf{Q}_x \\ \mathbf{Q}_g \end{pmatrix} \mathbf{c}$$

Varying appearance vector **c**

Colour Appearance Model



AAM Properties

 Combines shape and gray-level variations in one model

- No need for separate models
- Compared to separate models, in general, needs fewer parameters
- Uses all available information

AAM Properties (cont.)

Inherits appearance model benefits

- Able to represent any face within bounds of the training set
- Robust interpretation

Model parameters characterize facial features

AAM Properties (cont.)

 Obtain parameters for inter and intra class variation (identity and residual parameters) – "explains" face

AAM Properties (cont.)

Useful for tracking and identification

- Refer to: G.J.Edwards, C.J.Taylor, T.F.Cootes. "Learning to Identify and Track Faces in Image Sequences". Int. Conf. on Face and Gesture Recognition, p. 260-265, 1998.
- Note: shape and gray-level variations are correlated

Features
Identity
Expression
Pose
Lighting

Practical Applications

Face Tracking

Original

Tracking

Car Model

Main Mode of Variation

Original

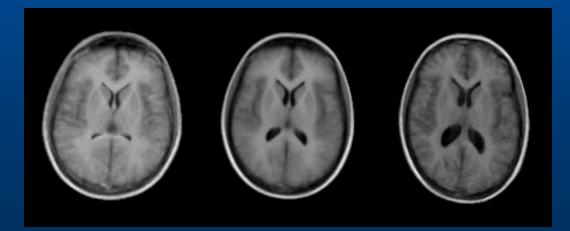
Search

MR Brain Slice

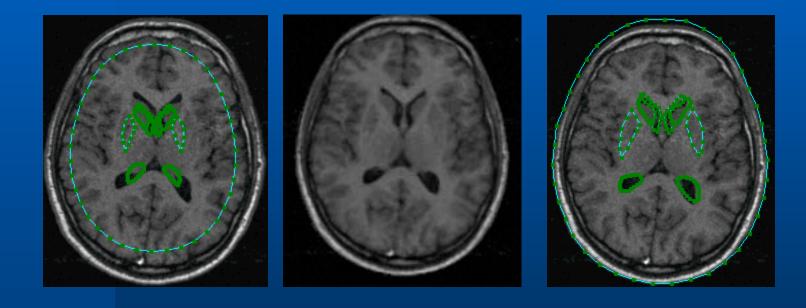
Combined Mode 1



Combined Mode 2



MR Brain Slice - Search



MR Knee Cartilage

- Generic approach analysis by synthesis
- Robust image interpretation
- Labelled structure
 - segmentation, measurement
- Recognition
 - parametric description
- Practical applications

Constrained AAMs

Model results rely on starting approximation

- Want a method to improve influence from starting approximation
- Incorporate priors/user input on unseen image

MAP formulation

Constrained AAMs

Assume:

- Gray-scale errors are uniform gaussian with variance σ_r^2
- Model parameters are gaussian with diagonal covariance
- Prior estimates of some of \mathbf{S}_p^2 positions in the image along with covariances

Constrained AAMs (cont.)

• We get update equation:

$$\mathbf{A}_1 \delta \mathbf{p} = -\mathbf{a}_1$$

where:

$$\mathbf{A}_{1} = \left(\sigma_{r}^{-2} \frac{\partial \mathbf{r}}{\partial \mathbf{p}}^{T} \frac{\partial \mathbf{r}}{\partial \mathbf{p}} + \mathbf{S}_{p}^{-1} + \frac{\partial \mathbf{d}}{\partial \mathbf{p}}^{T} \mathbf{S}_{X}^{-1} \frac{\partial \mathbf{d}}{\partial \mathbf{p}} \right)$$

$$\mathbf{a}_{1} = \left(\sigma_{r}^{-2} \frac{\partial \mathbf{r}}{\partial \mathbf{p}}^{T} \mathbf{r}(\mathbf{p}) + \mathbf{S}_{p}^{-1} \mathbf{p} + \frac{\partial \mathbf{d}}{\partial \mathbf{p}}^{T} \mathbf{S}_{X}^{-1} \mathbf{d} \right)$$

Constrained AAMs

 Comparison of constrained and unconstrained AAM search

a) Initial position for model on new .mage

b) Result of unconstrained AAM search

c) Right eye centre constrained

d) Right eye centre and left eyebrow point fixed

Mode. Points

Conclusions

- Combined Appearance Models provide an effective means to separate identity and intraclass variation
 - Can be used for tracking and face classification
- Active Appearance Models enables us to effectively and efficiently update the model parameters

Conclusions (cont.)

- Approach dependent on starting approximation
- Cannot directly handle cases well outside of the training set (e.g. occlusions, extremely deformable objects)

www.isbe.ac.uk