
5. Multi-scale derivatives:
implementations

Three people were at work on a construction site. All were doing the same job, but when each was asked what the
job was, the answers varied. "Breaking rocks," the first replied. "Earning my living," the second said. "Helping to

build a cathedral," said the third.
 -Peter Schultz

In order to get a good feeling for the interactive use of Mathematica, we discuss in this
section three implementations of convolution with a Gaussian derivative kernel (in 2D) in
detail:
1. implementation in the spatial domain with a 2D kernel;
2. through two sequential 1D kernel convolutions (exploiting the separability property);
3. implementation in the Fourier domain.
Just blurring is done through convolution with the zero order Gaussian derivative, i.e. the
Gaussian kernel itself.

5.1 Implementation in the spatial domain

Mathematica 4 has a fast implementation of a convolution: ListConvolve[kernel,
list] forms the convolution of the kernel kernel with list. This function is N-
dimensional, and is internally optimized for speed. It can take any Mathematica expression,
but its greatest speed is for Real (floating) numbers. We first define the 1D Gaussian
function gauss[x,s]:

<< FrontEndVision`FEV`;
Unprotect@gaussD;
gauss@x_, s_ ê; s > 0D :=

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

è!!!!!!!2 p
 ‰- x2ÅÅÅÅÅÅÅÅÅÅÅ

2 s2 ;

We explain in detail what happens here:
The function gauss[x_, s_] is defined for the variables x_ and s_. The underscore _
means that x_ is a Pattern with the name x, it can be anything. This is one of the most
powerful features in Mathematica: it allows pattern matching. In the appendix a number of
examples are given. The variable s_ has the condition (indicated with /;) that s should be
positive. If this condition is not met, the function will not be evaluated. The function is
defined with delayed assignment (:= in stead of = for direct assignment). In this way it will
be evaluated only when it is called. The semicolon is the separator between statements, and
in general prevents output to the screen, a handy feature when working on images.

The function gDc[im,nx,ny,s] implements the same function in the spatial domain. The
parameters are the same as above. This function is much faster, as it exploits the internal
function ListConvolve, and applies Gaussian derivative kernels with a width truncated to
+/- 4 standard deviations, which of course can freely be changed.

5. Multi-scale derivatives: implementations 71

The function gDc[im,nx,ny,s] implements the same function in the spatial domain. The
parameters are the same as above. This function is much faster, as it exploits the internal
function ListConvolve, and applies Gaussian derivative kernels with a width truncated to
+/- 4 standard deviations, which of course can freely be changed.

gDc@im_, nx_, ny_, s_ ê; s > 0D := Module@8x, y, kernel<,
kernel = N@Table@Evaluate@

D@gauss@x, sD * gauss@y, sD, 8x, nx<, 8y, ny<DD,8y, -4 * s, 4 * s<, 8x, -4 * s, 4 * s<DD;
ListConvolve@kernel, im, Ceiling@Dimensions@kernelD ê 2DDD;

Module[{vars}, ...] is a construct to make a block of code where the vars are
shielded from the global variable environment. The derivative of the function gauss[] is
taken with D[f,{x,nx},{y,ny}] where nx is the number of differentiations to x and
ny the number of differentiations to y. The variable kernel is a List, generated by the
Table command, which tabulates the function gauss[] over the range ± 4s for both x
and y. The derivative function must be evaluated with Evaluate[] before it can be
tabulated. The function N[] makes the result a numerical value, a Real number.

ListConvolve is an optimized internal Mathematica command, that cyclically convolves
the kernel kernel with the image im. The Dimensions[] of the kernel are a List
containing the x- and y-dimension of the square kernel matrix. Finally, the upwards rounded
(Ceiling) list of dimensions is used by ListConvolve to fix that the kernel starts at the
first element of im and returns an output image with the same dimension as the input image.

im = Table@If@x2 + y2 < 7000, 100, 0D, 8x, -128, 127<, 8y, -128, 127<D;
Block@8$DisplayFunction = Identity<,
p1 = ListDensityPlot@#D & êü 8im, gDc@im, 1, 0, 1D<D;

Show@GraphicsArray@p1D, ImageSize -> 350D;

Figure 5.1 The derivative to x (right) at scale s = 1 pixel on a 2562 image of a circle (left).

The wider the kernel, the more points we include for calculation of the convolution, so the
more computational burden we get. When the kernel becomes wider than half of the domain
of the image, it becomes more efficient to apply the Fourier implementation discussed
below. This trade-off has been worked out in detail by Florack [Florack2000a].

72 5.1 Implementation in the spatial domain

5.2 Separable implementation

The fastest implementation exploits the separability of the Gaussian kernel, and this
implementation is mainly used in the sequel:

Options@gDD = 8kernelSampleRange Ø 8-6, 6<<;
gD@im_List, nx_, ny_, s_, Hopts___L?OptionQD :=
Module@8x, y, kpleft, kpright, kx, ky, mid, tmp<,8kpleft, kpright< = kernelSampleRange ê. 8opts< ê. Options@gDD;
kx = N@Table@Evaluate@D@gauss@x, sD, 8x, nx<DD,8x, kpleft* s, kpright* s<DD;
ky =
If@nx == ny, kx, N@Table@Evaluate@D@gauss@y, sD, 8y, ny<DD,8y, kpleft* s, kpright* s<DDD; mid = Ceiling@Length@#1D ê 2D & ;

tmp =
Transpose@ListConvolve@8kx<, im, 881, mid@kxD<, 81, mid@kxD<<DD;

Transpose@ListConvolve@8ky<, tmp, 881, mid@kyD<, 81, mid@kyD<<DDD;
The function gD[im, nx, ny, s, options] implements first a convolution per row,
then transposes the matrix of the image, and does the convolution on the rows again, thereby
effectively convolving the columns of the original image. A second Transpose returns the
image back to its original orientation. This is the default implementation of multi-scale
Gaussian derivatives and will be used throughout his book.

im = Table@If@x2 + y2 < 7000, 100, 0D, 8x, -128, 127<, 8y, -128, 127<D;
Timing@imx = gD@im, 0, 1, 2DD@@1DD
0.031 Second

Block@8$DisplayFunction = Identity<,
p1 = ListDensityPlot@#D & êü 8im, imx<D;

Show@GraphicsArray@p1D, ImageSize -> 260D;

Figure 5.2 The derivative to y (right) at scale s = 2 pixels on a 2562 image of a circle (left).

Ú Task 5.1 Write a Mathematica function of the separable Gaussian derivative
kernel implementation for 3D. Test the functionality on a 3D test image, e.g. a
sphere.

5. Multi-scale derivatives: implementations 73

5.3 Some examples

Convolving an image with a single point (a delta function) with the Gaussian derivative
kernels, gives the kernels themselves., i.e. the pointspread function. E.g. here is the well
known series of all Cartesian partial Gaussian derivatives to 5th order:

spike = Table@0., 8128<, 8128<D; spike@@64, 64DD = 1.;
Block@8$DisplayFunction = Identity<,
array = Table@Table@ListDensityPlot@gD@spike, m - n, n, 20D,

PlotLabel -> "∑x=" <> ToString@m - nD <> ", ∑y=" <> ToString@nDD,8n, 0, m<D, 8m, 0, 5<DD;
Show@GraphicsArray@arrayD, ImageSize Ø 330D;

∑x=5, ∑y=0 ∑x=4, ∑y=1 ∑x=3, ∑y=2 ∑x=2, ∑y=3 ∑x=1, ∑y=4 ∑x=0, ∑y=5

∑x=4, ∑y=0 ∑x=3, ∑y=1 ∑x=2, ∑y=2 ∑x=1, ∑y=3 ∑x=0, ∑y=4

∑x=3, ∑y=0 ∑x=2, ∑y=1 ∑x=1, ∑y=2 ∑x=0, ∑y=3

∑x=2, ∑y=0 ∑x=1, ∑y=1 ∑x=0, ∑y=2

∑x=1, ∑y=0 ∑x=0, ∑y=1

∑x=0, ∑y=0

Figure 5.3 Gaussian partial derivative kernels up to 5th order.

$DisplayFunction is the internal variable that determines how things should be
displayed. Its normal state (it default has the value Display[$Display,#1]&) is to send
PostScript to the output cell. Its value is temporarily set to Identity, which means: no
output. This is necessary to calculate but not display the plots.

We read an image with Import and only use the first element [[1,1]] of the returned
structure as this contains the pixeldata.

im = Import@"mr128.gif"D@@1, 1DD;
We start with just blurring at a scale of s = 3 pixels and show the result as 2D image and 3D
height plot:

74 5.3 Some examples

DisplayTogetherArray@8ListDensityPlot@gD@im, 0, 0, 3DD, ListPlot3D@gD@im, 0, 0, 3D,
Mesh -> False, BoxRatios Ø 81, 1, 1<D<, ImageSize Ø 500D;

Figure 5.4 Left: a blurred MR image, resolution 1282 , sblur = 3 pixels. Right: The intensity
surface as a height surface shows the blurring of the surfaces.

A movie of a (in this example) logarithmically sampled intensity scale-space is made with
the Table command. Close the group of cells with images by double-clicking the group
bracket. Double-clicking one of the resulting images starts the animation. Controls are on the
bottom windowbar.

ss = Table@ListDensityPlot@gDf@im, 0, 0, Et D, ImageSize -> 150D,8t, 0, 2.5, .25<D;

Figure 5.5 Animation of a blurring sequence, with exponential scale parametrization. Double-
click the image to start the animation (only in the electronic version). Controls appear at the
lower window bar.

This animation is only available in the electronic version. Here are the images:

5. Multi-scale derivatives: implementations 75

Show@GraphicsArray@Partition@ss, 5DD, ImageSize -> 450D;

Figure 5.6 Frames of the animation of a blurring sequence above.

The sequence can be saved as an animated GIF movie (e.g. for use in webpages) with:

Export@"c:\\scalespace.gif", ss, "GIF"D;
The gradient of an image is defined as "####################Lx

2 + Ly
2 . On a scale s = 0.5 pixel for a 2562 CT

image of chronic cocaine abuse (EuroRAD teaching file case #1472, www.eurorad.org):

im = Import@"Cocaine septum.gif"D@@1, 1DD;
DisplayTogetherArrayA9ListDensityPlot@imD,

grad = ListDensityPlotA"###
gD@im, 1, 0, .5D2 + gD@im, 0, 1, .5D2 E=,

ImageSize -> 370E;

Figure 5.7 The gradient at a small scale s = 0.5 pixels. Due to the letters R and L in the
image with steep gradients the gradient image is not properly scaled in intensity. Note the
completely missing septum in this patient (From www.eurorad.org, EuroRAD authors: D. De
Vuyst, A.M. De Schepper, P.M. Parizel, 2002).

To change the window/level (contrast/brightness) settings one can change the displayed
range of intensity values:

76 5.3 Some examples

Show@grad, PlotRange Ø 80, 20<,
DisplayFunction -> $DisplayFunction, ImageSize -> 150D;

Figure 5.8 The gradient at a small scale s = 0.5 pixels, now with an intensity window of 0
(black) to 30 (white).

We can also transfer the image into its histogram equalized version, by substituting its
grayvalues by the values given by its cumulative lookup table:

Unprotect@heqD;
heq@im_ListD := Module@8min, max, freq, cf, lcf, maxcf, lut, int<,

min = Min@imD; max = Max@imD;
freq = BinCounts@Flatten@imD, 8min, max, Hmax - minL ê 256<D;
cf = FoldList@Plus, First@freqD, Drop@freq, 1DD;
maxcf = Max@cfD; lcf = Length@cfD;
lut = Table@N@8Hi - 1L ê lcf, cf@@iDD ê maxcf<D, 8i, 1, lcf<D;
lut@@lcfDD = 81., 1.<;
int = Interpolation@lutD; max int@Him - minL ê Hmax - minLDD;

ListDensityPlotA
heqA"###

gD@im, 1, 0, .5D2 + gD@im, 0, 1, .5D2 E, ImageSize -> 150E;

Figure 5.9 Histogram equalization of the gradient image of figure 5.7. By many radiologists
this is considered too much enhancement. 'Clipped' adaptive histogram equalization admits
different levels of enhancement tuning [Pizer1987].

The cumulative lookup table is applied for the intensity transform. Small contrasts have been
stretched to larger contrasts, and reverse. We next compare the histograms of the gradient
image with the histogram of the histogram-equalized gradient image. The total histogram of
this image is indeed reasonably flat now.

5. Multi-scale derivatives: implementations 77

grad =
"###
gD@im, 1, 0, .5D2 + gD@im, 0, 1, .5D2 ; DisplayTogetherArray@

Histogram@Flatten@#DD & êü 8grad, heq@gradD<, ImageSize Ø 380D;

20 40 60 80 100 120

5000

10000

15000

20000

25000

20 40 60 80 100 120

2000

4000

6000

8000

10000

12000

Figure 5.10 Left: Histogram of the gradient image of figure 5.7. Right: Histogram of the
histogram-equalized gradient image. Note the equalizing or marked stretching of the
histogram.

To conclude this introduction to multi-scale derivatives, let us look at some edges detected at
different scales. It is clear from the examples below that the larger scale edges denote the
more 'important' edges, describing the coarser, hierarchically higher structure:

im = Import@"Utrecht256.gif"D@@1, 1DD;
DisplayTogetherArrayA
ListDensityPlotA"##

gD@im, 1, 0, #D2 + gD@im, 0, 1, #D2 E & êü 8.5, 2, 5<,
ImageSize -> 400E;

Figure 5.11 Gradient edges detected at different scales (s = 0.5, 2, 5 pixels resp.). The
coarser edges (right) indicate hierarchically more 'important' edges.

Other sources of different scales for edges are shadows and diffuse boundaries [Elder1996].

5.4 N-dim Gaussian derivative operator implementation

One of the powerful capabilities of Mathematica as a programming language is the relative
ease to write numerical functions on N-dimensional data. In scale-space theory often high
dimensional data occur: 3D and 3D-time medical images, such as 3D cardiovascular time
sequences, orientation bundles (see chapter 16 where an extra dimension emerges from the
inclusion of orientation as the output of measurements by oriented filters), high dimensional
feature spaces for texture analysis, etc. Here is the separable implementation for N-
dimensions:

78 5.3 Some examples

Unprotect@gDnD; gDn@im_, orderlist_, slist_, opts___?OptionQD :=

ModuleA8gaussd, dim = Length@Dimensions@imDD, out = N@imD, l, r, gder, x,
kernel, cat, mid, lc, tl, td<, td = Dimensionsêü 8orderlist, slist<;

tl = Length êü td; 8l, r< = kernelSampleRangeê. 8opts< ê. Options@gDD;
gaussd =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
#2 è!!!!!!!2 p

ikjjjjj-

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
#2 è!!!!2 y{zzzzz#1 HermiteHA#1, x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
#2 è!!!!2 E ‰

- x2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 #22 &;

gder = Table@N@gaussd@#1, #2DD, 8x, Floor@l #2D, Ceiling@r #2D<D &;
kernel = RotateRight@MapThread@gder, 8orderlist, slist<DD;
mid = HCeiling@Length@#1D ê 2D &L êü kernel;
cnt = Append@Table@1, 8dim - 1<D, midP#1TD &;
lc =
Transpose@ListConvolve@Nest@List, kernelP#2T, dim - 1D, #1, 8cnt@#2D, cnt@#2D<D,
RotateRight@Range@dimDDD &; Do@out = lc@out, iD, 8i, dim<D; outE

The function makes use of the possibility to Nest functions to large depth, and the
universality of the ListConvolve function. The function is fast. Note the specification of
orders and scales as lists, and note the specific, Mathematica-intrinsic ordering with the
fastest running variable last: {z,y,x}.

Example: gDn[im,{0,2,1},{2,2,2}] calculates ∑3 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y2 of the input image im at an
isotropic scale of sz = sy = sx = 2 pixels.

Here is the time it takes to calculate the first order derivative in 3 directions at scales of 1
pixel of a 1283 random array (more than 2 million pixels, 1.7 GHz, 512 MB, Windows XP):

im = Table@Random@D, 8128<, 8128<, 8128<D;
Timing@gDn@im, 81, 1, 1<, 81, 1, 1<DD êê First

5.094 Second

This gives help on how to call the function:

? gDn

gDn@im,8...,ny,nx<,8...,sy,sx<,optionsD calculates the Gaussian
derivative of an N-dimensional image by approximated spatial
convolution. It is optimized for speed by 1D convolutions per
dimension. The image is considered cyclic in each direction.
Note the order of the dimensions in the parameter lists.

im = N-dimensional input image @ListD
nx = order of differentiation to x @Integer, nx ¥ 0D
sx = scale in x-dimension @in pixels, s > 0D
options = <optional> kernelSampleRange: range of kernel

sampled in multiples of s. Default: kernelSampleRange->8-6,6<
Example: gDn@im,80,0,1<,82,2,2<D calculates the x-
derivative of a 3D image at an isotropic scale of sz=sy=sx=2.

5.5 Implementation in the Fourier domain

The spatial convolutions are not exact. The Gaussian kernel is truncated. In this section we
discuss the implementation of the convolution operation in the Fourier domain.

In appendix B we have seen that a convolution of two functions in the spatial domain is a
multiplication of the Fourier transforms of the functions in the Fourier domain, and take the
inverse Fourier transform to come back to the spatial domain. We recall the processing
scheme (e.g. with 1D functions):

5. Multi-scale derivatives: implementations 79

In appendix B we have seen that a convolution of two functions in the spatial domain is a
multiplication of the Fourier transforms of the functions in the Fourier domain, and take the
inverse Fourier transform to come back to the spatial domain. We recall the processing
scheme (e.g. with 1D functions):

fHxL = hHxL ≈ gHxL
ò ò ò

FHwL = HHwL . GHwL
The ò indicates the Fourier transform in the downwards direction and the inverse Fourier
transform in the upwards direction. f HxL is the convolved function, hHxL the input function,
and gHxL the convolution kernel.

The function gDf[im,nx,ny,s] implements the convolution of the 2D image with the
Gaussian derivative for 2D discrete data in the Fourier domain. This is an exact function, no
approximations other than the finite periodic window in both the x - and y -direction. We
explicitly give the code of the functions here, so you see how it is implemented, the reader
may make modifications as required. All information on (always capitalized) internal
functions is on board of the Mathematica program in the Help Browser (highlight+key F1),
as well as on the 'the Mathematica book' internet pages of Wolfram Inc.

Variables: im = 2D image (as a List structure)
nx, ny = order of differentiation to x resp. y
s = scale of the Gaussian derivative kernel, in pixels

The underscore in e.g. im_ means Blank[im] and stands for anything (a single element)
which we name im. im_List means that im is tested if it is a List. If not, the function
gDf will not be evaluated.

Unprotect@gDfD; Remove@gDfD;
gDf@im_List, nx_, ny_, s_D :=

ModuleA8xres, yres, gdkernel<,8yres, xres< = Dimensions@imD;
gdkernel =

NATableAEvaluateADA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

ExpA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E, 8x, nx<, 8y, ny<EE, 8y,
-Hyres - 1L ê 2, Hyres - 1L ê 2<, 8x, -Hxres - 1L ê 2, Hxres - 1L ê 2<EE;
ChopANAè!!!!!!!!!!!!!!!!!!!!!!xres yres InverseFourier@Fourier@imD
Fourier@RotateLeft@gdkernel, 8yres ê 2, xresê 2<DDDEEE;

80 5.5 Implementation in the Fourier domain

A Module[{vars}, ...code...] is a scope construct, where the vars are private
variables. The last line determines what is returned. The assignment with := is a delayed
assignment, i.e. the function is only evaluated when called. The dimensions of the input
image are extracted (note the order!) and the Gaussian kernel is differentiated with the
function D[gauss,{x,nx},{y,ny}] and symmetrically tabulated over the x- and y -
dimensions to get a kernel image with the same dimensions as the input image.

We have now a 2D List with the kernel in the center. We shift gdkernel with
RotateLeft over half the dimensions in x - and y-direction in order to put the kernel's
center at the origin at {0,0}. We could equally have shifted in this symmetric case with
RotateRight. We then take the Fourier transform of both the image and the kernel,
multiply them (indicated by a space) and take the InverseFourier transform.

Because we have a finite Fourier transform, we normalize over the domain through the factorè!!!!!!!!!!!!!!!!!!!!!!
xres yres . The function N[] makes all output numerical, and the function Chop[]

removes everything that is smaller then 10-10 , so to remove very small round-off errors.

im = Import@"mr256.gif"D@@1, 1DD; imx = gDf@im, 1, 0, 1D;
ListDensityPlot@imx, ImageSize -> 240D;

Figure 5.12 First order Gaussian derivative with respect to x at scale s = 1 pixel, calculated
through the Fourier domain. Resolution 2562 pixels.

The Mathematica function Fourier is highly optimized for any size of the data, and uses
sophisticated bases when the number of pixels is not a power of 2.

This function is somewhat slower that the spatial implementation, but is exact. Here is a
vertical edge with a lot of additive uniform noise. The edge detection at very small scale only
reveals the 'edges of the noise'. Only at the larger scales we discern the true edge, i.e. when
the scale of the operator applied is at 'the scale of the edge'.

5. Multi-scale derivatives: implementations 81

im5 = Table@If@x > 128, 1, 0D + 13 Random@D, 8y, 256<, 8x, 256<D;
DisplayTogetherArrayA
PrependAListDensityPlotA"##

gDf@im5, 1, 0, #D2 + gDf@im5, 0, 1, #D2 E & êü82, 6, 12<, ListDensityPlot@im5DE, ImageSize -> 500E;

Figure 5.13 Detection of a very low contrast step-edge in noise. Left: original image, the step-
edge is barely visible. At small scales (second image, s = 2 pixels) the edge is not detected.
We see the edges of the noise itself, cluttering the edge of the step-edge. Only at large scale
(right, s = 12 pixels) the edge is clearly found. At this scale the large scale structure of the
edge emerges from the small scale structure of the noise.

Ú Task 5.2 The Fourier implementation takes the Fourier transform of the image
and the Fourier transform of a calculated kernel. This seems a waste of
calculating time, as we know the analytical expression for the Fourier transform
of the Gaussian kernel. Write a new Mathematica function that takes this into
account, and check if there is a real speed increase.

Ú Task 5.3 The spatial implementation has different speed for different size
kernels. With increasing kernel size the number of operations increases
substantially. How?

Ú Task 5.4 Compare for what kernel size the choice of implementation is
computationally more effective: Fourier or spatial domain implementation. See
also [Florack 2000a].

There are two concerns we discuss next: what to do at the boundaries? And: the function is
slow, so how to speed it up?

82 5.5 Implementation in the Fourier domain

5.6 Boundaries
DisplayTogetherArray@
Show êü Import êü 8"Magritte painting boundary.gif", "Magritte.jpg"<,
ImageSize -> 340D;

Figure 5.14 It is important to consider what happens at the boundaries of images. It matters
what we model outside our image. Painting by René Magritte (right: self-portrait, 1898-1967).

At the boundary of the image artefacts may appear when we do convolutions with (by
nature) extended kernels. Here is an example: two linear intensity ramps give a constant
output when we calculate the first derivative to x , but we see both at the left- and right-hand
side strong edge responses, for the Fourier implementation as well as for the spatial
implementation:

im = Table@If@y > 64, x - 64, 64 - xD, 8y, 128<, 8x, 128<D;
DisplayTogetherArray@ListDensityPlot@#D & êü8im, gDf@im, 1, 0, 3D, gD@im, 1, 0, 3D<, ImageSize -> 400D;

Figure 5.15 Boundary effects due to the periodicity of the Fourier domain.

This is due to the fact that both in the Fourier domain as the spatial domain implementation
of the convolution function the image is regarded as repetitive. A Fourier transform is a
cyclic function, i.e. ! HwL = ! Hw + n 2 pL . In 2D: ! Hwx , wy L = ! Hwx + nx 2 p, w + ny 2 pL .
The boundary effects in the image above are due to the strong edge created by the
neighboring pixels at both ends. One can regard the domain of the image as a window cut-
out from an infinite tiling of the plane with 2D functions. Figure 4.1 shows a tiling with 20
images, each 642 pixels:

5. Multi-scale derivatives: implementations 83

im = Import@"mr64.gif"D@@1, 1DD;
tiles = Join üü Table@MapThread@Join, Table@im, 85<DD, 84<D;
ListDensityPlot@tiles, ImageSize -> 280D;

Figure 5.16 A section from the infinite tiling of images when we consider a cyclic operation.
The Mathematica function MapThread maps the function Join on the rows of the horizontal
row of 5 images to concatenate them into long rows, the function Join is then applied (with
Apply or @@) on a table of 4 such resulting long rows to concatenate them into a long
vertical image.

Clear@a, b, c, d, e, f, hD;
MapThread@h, 88a, b, c<, 8d, e, f<<D8h@a, dD, h@b, eD, h@c, fD<
Apply@h, 88a, b, c<, 8d, e, f<<D
h@8a, b, c<, 8d, e, f<D
h üü 88a, b, c<, 8d, e, f<<
h@8a, b, c<, 8d, e, f<D

It is important to realize that there is no way out to deal with the boundaries. Convolution is
an operation with an extended kernel, so at boundaries there is always a choice to be made.
The most common decision is on repetitive tiling of the domain to infinity, but other choices
are just as valid. One could extend the image with zero's, or mirror the neighboring image at
all sides in order to minimize the edge artefacts. In all cases information is put at places
where there was no original observation. This is no problem, as long as we carefully describe
how our choice has been made. Here is an example of mirrored tiling:

84 5.6 Boundaries

im = Import@"mr128.gif"D@@1, 1DD; Off@General::spellD;
imv = Reverse@imD; imh = Reverse êü im; imhv = Reverse êü Reverse@imD;
mirrored = Join üü

ikjjjjjjjMapThread@Join, #D & êü
ikjjjjjjj imhv imv imhv
imh im imh
imhv imv imhv

y{zzzzzzzy{zzzzzzz;
ListDensityPlot@mirrored, ImageSize -> 270D;

Figure 5.17 A section from the infinite tiling of images when we consider a mirroring
operation. Note the rather complex mirroring and concatenation routines for these 2D images.

Ú Task 5.5 Rachid Deriche [Deriche 1992] describes a fast recursive
implementation of the Gaussian kernel and its derivatives. Make a Mathematica
routine for recursive implementation.

Ú Task 5.6 A small truncated kernel size involves less computations, and is thus
faster. Blurring with a large kernel can also be accomplished by a concatenation
of small kernels, e.g. a blurring step with s = 3 pixels followed by a blurring step
with s = 4 pixels gives the same result as a single blurring step with s = 5 pixels
(s1

2 + s2
2 = snew

2). What is faster, a large kernel, or a cascade series of
smaller kernels? Where is the trade-off?

5.7 Advanced topic: speed concerns in Mathematica

This section can be skipped at first reading.

Mathematica is an interpreter, working with symbolic elements, and arbitrary precision. For
this reason, care must be taken that computation times do not explode for large datasets.
When proper measures are taken, Mathematica can be fast, close to compiled C++ code. In
this section we discuss some examples of increasing the speed of the operations on larger
datasets.

5. Multi-scale derivatives: implementations 85

Mathematica is an interpreter, working with symbolic elements, and arbitrary precision. For
this reason, care must be taken that computation times do not explode for large datasets.
When proper measures are taken, Mathematica can be fast, close to compiled C++ code. In
this section we discuss some examples of increasing the speed of the operations on larger
datasets.

It pays off to work numerically, and to compile a function when it is a repetitive operation of
simple functions. Mathematica's internal commands are optimized for speed, so the gain here
will be less. We discuss the issue with the example of the generation of a discrete Gaussian
derivative kernel. The timings given are for a 1.7 GHz 512 MB PC and Mathematica 4.1
under Windows XP.

First of all, exact calculations are slow. Most internal Mathematica functions can work both
with symbolic and numerical data. These internal functions are fully optimized with respect
to speed and memory resources for numerical input. Here is a simple example:

s = 1; m = TableAExpA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E, 8x, -4, 4<, 8y, -4, 4<E;
Timing@Eigenvalues@mDD
Timing@Eigenvalues@N@mDDD
Timing@Chop@Eigenvalues@N@mDDDD93.156 Second, 90, 0, 0, 0, 0, 0, 0, 0, 1 +

2
ÅÅÅÅÅÅÅÅ
‰16 +

2
ÅÅÅÅÅÅÅ
‰9 +

2
ÅÅÅÅÅÅÅ
‰4 +

2
ÅÅÅÅ
‰

==80. Second, 81.77264, 5.59373µ 10-17, -4.27232µ 10-17, -1.82978µ10-18,
3.22688µ 10-22, -6.5072µ 10-24, -7.47864µ 10-34, 1.05492µ10-35, 0.<<80. Second, 81.77264, 0, 0, 0, 0, 0, 0, 0, 0<<

In the sequel we will develop a very fast implementation for the convolution of a 2D image
with a Gaussian derivative in the Fourier domain (see section 4.3). Most of the time is spent
in the creation of the 2D Gaussian kernel, e.g. for 2562 :8xres, yres< = 8256, 256<; s = 3;

TimingA
kernel = TableA 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

ExpA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E, 8y, -Hyres - 1L ê 2, Hyres - 1L ê 2<,8x, -Hxres - 1L ê 2, Hxres - 1L ê 2<EE@@1DD
4.859 Second

Mathematica keeps values as long as possible in an exact representation. Here is the
pixelvalue at H30, 47L :

kernel@@30, 47DD
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ18 ‰32689ê36 p

An additional disadvantage is that the Fourier transform on such symbolic expressions also
takes a long time:

Timing@fft = Fourier@kernelDD êê First

8. Second

86

It doesn't make much difference when we enter the data as Real values (to be done with the
insertion of a decimal point in a number, or through the function N):8xres, yres< = 8256., 256.<; s = 3.; pi = N@pD;

TimingA
gdkernel = TableA 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

ExpA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E, 8y, -Hyres - 1L ê 2, Hyres - 1L ê 2<,8x, -Hxres - 1L ê 2, Hxres - 1L ê 2<EE@@1DD
5.797 Second

The output is now a number, not a symbolic expression:

gdkernel@@30, 48DD
6.379323933059µ 10-393

But still, we have no gain in speed. This is because the internal representation is still in
'arbitrary precision' mode. The smallest and largest number that can be represented as a
Real is:

$MinMachineNumber
$MaxMachineNumber

2.22507µ 10-308

1.79769µ 10308

We have smaller values in our pixels! As soon as Mathematica encounters a number smaller
or larger then the dynamic range for Real numbers, it turns into arbitrary precision mode,
which is slow. A good improvement in speed is therefore gained through restricting the
output to be in this dynamic range. In our example the parameter for the exponential function
Exp should be constrained:8xres, yres< = 8256., 256.<; s = 3.; pi = N@pD;

TimingAgdkernel = TableA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

ExpAIfA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

< -100, -100, -
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

EE,8y, -Hyres - 1L ê 2, Hyres - 1L ê 2<,8x, -Hxres - 1L ê 2, Hxres - 1L ê 2<EE êê First

2.594 Second

Most of the internal commands of Mathematica do a very good job on real numbers.

A further substantial improvement in speed can be obtained by compilation of the code into
fast internal assembler code with the function Compile[{args}, ...code...,
{decl}]. This generates a pure function, that can be called with the arguments {args}.
This function generates optimized code based on an idealized register machine. It assumes
approximate real or inter numbers, or matrices of these. The arguments in the argumentlist
need to have the proper assignment (_Real, _Integer, _Complex or True/False).
The assignment _Real is default and may be omitted, so 8x, _Real< is equivalent to8x< . An example to calculate the factorial of a sum of two real numbers:

5. Multi-scale derivatives: implementations 87

A further substantial improvement in speed can be obtained by compilation of the code into
fast internal assembler code with the function Compile[{args}, ...code...,
{decl}]. This generates a pure function, that can be called with the arguments {args}.
This function generates optimized code based on an idealized register machine. It assumes
approximate real or inter numbers, or matrices of these. The arguments in the argumentlist
need to have the proper assignment (_Real, _Integer, _Complex or True/False).
The assignment _Real is default and may be omitted, so 8x, _Real< is equivalent to8x< . An example to calculate the factorial of a sum of two real numbers:

gammasum = Compile@88x, _Real<, 8y, _Real<<, Hx + yL!D
CompiledFunction@8x, y<, Hx + yL!, -CompiledCode-D
gammasum@3, 5D
40320.

We now check if the compiled code of our Gaussian kernel gives a speed improvement:

gdkernel = CompileA8xres, yres, s<, xresh =
xres - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
; yresh =

yres - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
;

p = TableA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

ExpAIfA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

< -100, -100, -
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

EE,8y, -yresh, yresh<, 8x, -xresh, xresh<E, 88x, _Real<,8y, _Real<, 8xresh, _Real<, 8yresh, _Real<, 8p, _Real, 2<<E;
Timing@gdkernel@256, 256, 3DD êê First

2.532 Second

In version 4.2 of Mathematica we see no improvement, running the example above, the
kernel has been optimized for these calculations. In earlier versions you will encounter some
60% improvement with the strategy above. See the Help browser (shift-F1) for speed
examples of the Compile function. We now add the symbolic operation of taking derivatives
of the kernel. We force direct generation of the polynomials in the Gaussian derivatives with
the Hermite polynomials, generated with HermiteH. The symbolic functions are first
evaluated through the use of the function Evaluate, then compiled code is made:

gdkernel = CompileA8xres, yres, s, 8nx, _Integer<, 8ny, _Integer<<,
xresh =

xres - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
; yresh =

yres - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
;

p = TableAEvaluateAikjjjjj -1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

è!!!!
2

y{zzzzznx+ny

HermiteHAnx, x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

è!!!!
2

E HermiteHAny, y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

è!!!!
2

E

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s2 2 p

 ExpAIfA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

< -100, -100, -
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

EEE,8y, -yresh, yresh<, 8x, -xresh, xresh<E, 88x, _Real<,8y, _Real<, 8xresh, _Real<, 8yresh, _Real<, 8p, _Real, 2<<E;
Timing@gdkernel@256, 256, 3, 10, 10DD êê First

4.25 Second

Larger kernels are now no problem anymore, e.g. for 5122 :

88

Timing@t = gdkernel@512, 512, 3, 2, 1DD êê First

7.593 Second

We adopt this function for our final implementation. Because the output is a matrix of real
numbers, also the Fourier transform is very fast. This is the time needed for the Fast Fourier
Transform on the 5122 kernel just generated:

Timing@Fourier@tDD êê First

0.172 Second

To complete this section we present the final implementation, available throughout the book
in the context FEV`, which is loaded by default in each chapter.

In the compiled function also complex arrays emerge, such as the result of Fourier[] and
InverseFourier[]. The compiler is told by the declarations at the end that anything
with the name Fourier and InverseFourier working on something (_) should be
stored in a complex array with tensorrank 2, i.e. a 2D array. Study the rest of the details of
the implementation yourself:

Unprotect@gDfD; gDf@im_, nx_, ny_, s_D :=
Module@8<, 8xres, yres< = Dimensions@imD; gf@im, nx, ny, s, xres, yresDD;
gf =

CompileA88im, _Real, 2<, 8nx, _Integer<, 8ny, _Integer<, s, xres, yres<,
ModuleA8x, y<, xresh =

xres - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
; yresh =

yres - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
;

p = RotateLeftATableA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

 EvaluateAikjjjjj-
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

è!!!!
2

y{zzzzznx+ny

HermiteHAnx,
x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

è!!!!2 E HermiteHAny, y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

è!!!!2 E ‰IfA- x2 +y2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

<-200,-200,- x2 +y2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E E,
8y, -yresh, yresh<, 8x, -xresh, xresh<E, 9 xres

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

,
yres
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

=EE;è!!!!!!!!!!!!!!!!!!!!!!xres yres Chop@Re@InverseFourier@Fourier@imD Fourier@pDDDD,88x, _Real<, 8y, _Real<, 8xresh, _Real<, 8yresh, _Real<, 8p, _Real, 2<,8Fourier@_D, _Complex, 2<, 8InverseFourier@_D, _Complex, 2<<E;
5.8 Summary of this chapter

Mathematica is fast when:
- it can use its internal kernel routines as much as possible. They have been optimized for
speed and memory use;
- it can calculate on numerical data. Use the function N[...] to convert infinite precision
representations like Sin[3/7] to numerical data;
- it is working in the representation range of real numbers. Otherwise it enters the infinite
precision mode again;
- the function is compiled with the function Compile[...];

5. Multi-scale derivatives: implementations 89

