
5. Multi-scale derivatives: 
implementations

Three people were at work on a construction site. All were doing the same job, but when each was asked what the 
job was, the answers varied. "Breaking rocks," the first replied. "Earning my living," the second said. "Helping to 

build a cathedral," said the third.
 -Peter Schultz

In  order  to  get  a  good  feeling  for  the  interactive  use  of  Mathematica,  we  discuss  in  this
section  three  implementations  of  convolution  with  a  Gaussian  derivative  kernel  (in  2D)  in
detail:
1. implementation in the spatial domain with a 2D kernel;
2. through two sequential 1D kernel convolutions (exploiting the separability property);
3. implementation in the Fourier domain.
Just  blurring  is  done  through  convolution  with  the  zero  order  Gaussian  derivative,  i.e.  the
Gaussian kernel itself.

5.1 Implementation in the spatial domain

Mathematica  4  has  a  fast  implementation  of  a  convolution:   ListConvolve[kernel,
list]  forms  the  convolution  of  the  kernel  kernel  with  list.  This  function  is  N-
dimensional,  and is internally optimized  for speed.  It can take  any Mathematica  expression,
but  its  greatest  speed  is  for  Real  (floating)  numbers.  We  first  define  the  1D  Gaussian
function gauss[x,s]:

<< FrontEndVision`FEV`;
Unprotect@gaussD;
gauss@x_, s_ ê; s > 0D :=

1
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2 s2 ;

We explain in detail what happens here:
The  function  gauss[x_, s_]  is  defined  for  the  variables  x_  and s_.  The  underscore  _
means  that  x_  is  a Pattern  with  the name  x,  it  can  be anything.  This  is  one  of the  most
powerful  features  in  Mathematica:  it  allows  pattern  matching.  In the  appendix  a  number  of
examples  are given. The variable  s_  has the condition  (indicated  with /;)  that s should  be
positive.  If  this  condition  is  not  met,  the  function  will  not  be  evaluated.  The  function  is
defined with delayed assignment (:= in stead of = for direct assignment).  In this way it will
be evaluated  only when  it  is called.  The semicolon is the separator  between statements,  and
in general prevents output to the screen, a handy feature when working on images. 

The function gDc[im,nx,ny,s]  implements the same function in the spatial domain. The
parameters  are  the  same  as  above.  This  function  is  much  faster,  as  it  exploits  the  internal
function ListConvolve, and applies Gaussian derivative kernels with a width truncated to
+/- 4 standard deviations, which of course can freely be changed.
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The function gDc[im,nx,ny,s]  implements the same function in the spatial domain. The
parameters  are  the  same  as  above.  This  function  is  much  faster,  as  it  exploits  the  internal
function ListConvolve, and applies Gaussian derivative kernels with a width truncated to
+/- 4 standard deviations, which of course can freely be changed.

gDc@im_, nx_, ny_, s_ ê; s > 0D := Module@8x, y, kernel<,
kernel = N@Table@Evaluate@

D@gauss@x, sD * gauss@y, sD, 8x, nx<, 8y, ny<DD,8y, -4 * s, 4 * s<, 8x, -4 * s, 4 * s<DD;
ListConvolve@kernel, im, Ceiling@Dimensions@kernelD ê 2DDD;

Module[{vars},  ...]  is  a  construct  to  make  a  block  of  code  where  the  vars  are
shielded  from  the  global  variable  environment.  The  derivative  of  the  function  gauss[]  is
taken  with  D[f,{x,nx},{y,ny}]  where  nx  is  the  number  of  differentiations  to  x  and
ny  the  number  of differentiations  to  y.  The  variable  kernel  is  a  List,  generated  by  the
Table  command,  which  tabulates  the  function  gauss[]  over  the  range  ±  4s  for  both  x
and  y.  The  derivative  function  must  be  evaluated  with  Evaluate[]  before  it  can  be
tabulated. The function N[] makes the result a numerical value, a Real number. 

ListConvolve  is an optimized internal  Mathematica  command,  that cyclically  convolves
the  kernel  kernel  with  the  image  im.  The  Dimensions[]  of  the  kernel  are  a  List
containing the x- and y-dimension of the square kernel matrix. Finally, the upwards rounded
(Ceiling) list of dimensions is used by ListConvolve  to fix that the kernel starts at the
first element of im and returns an output image with the same dimension as the input image. 

im = Table@If@x2 + y2 < 7000, 100, 0D, 8x, -128, 127<, 8y, -128, 127<D;
Block@8$DisplayFunction = Identity<,
p1 = ListDensityPlot@#D & êü 8im, gDc@im, 1, 0, 1D<D;

Show@GraphicsArray@p1D, ImageSize -> 350D;

Figure 5.1 The derivative to x  (right) at scale s = 1 pixel on a 2562  image of a circle (left).

The wider  the  kernel,  the  more  points  we  include  for calculation  of  the  convolution,  so  the
more computational  burden we get. When the kernel becomes wider than half of the domain
of  the  image,  it  becomes  more  efficient  to  apply  the  Fourier  implementation  discussed
below. This trade-off has been worked out in detail by Florack [Florack2000a].
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5.2 Separable implementation

The  fastest  implementation  exploits  the  separability  of  the  Gaussian  kernel,  and  this
implementation is mainly used in the sequel:

Options@gDD = 8kernelSampleRange Ø 8-6, 6<<;
gD@im_List, nx_, ny_, s_, Hopts___L?OptionQD :=
Module@8x, y, kpleft, kpright, kx, ky, mid, tmp<,8kpleft, kpright< = kernelSampleRange ê. 8opts< ê. Options@gDD;
kx = N@Table@Evaluate@D@gauss@x, sD, 8x, nx<DD,8x, kpleft* s, kpright* s<DD;
ky =
If@nx == ny, kx, N@Table@Evaluate@D@gauss@y, sD, 8y, ny<DD,8y, kpleft* s, kpright* s<DDD; mid = Ceiling@Length@#1D ê 2D & ;

tmp =
Transpose@ListConvolve@8kx<, im, 881, mid@kxD<, 81, mid@kxD<<DD;

Transpose@ListConvolve@8ky<, tmp, 881, mid@kyD<, 81, mid@kyD<<DDD;
The function gD[im, nx, ny, s, options]  implements first a convolution per row,
then transposes the matrix of the image, and does the convolution on the rows again, thereby
effectively convolving the columns of the original image. A second Transpose returns the
image  back  to  its  original  orientation.  This  is  the  default  implementation  of  multi-scale
Gaussian derivatives and will be used throughout his book.

im = Table@If@x2 + y2 < 7000, 100, 0D, 8x, -128, 127<, 8y, -128, 127<D;
Timing@imx = gD@im, 0, 1, 2DD@@1DD
0.031 Second

Block@8$DisplayFunction = Identity<,
p1 = ListDensityPlot@#D & êü 8im, imx<D;

Show@GraphicsArray@p1D, ImageSize -> 260D;

Figure 5.2 The derivative to y  (right) at scale s = 2 pixels on a 2562  image of a circle (left).

Ú Task  5.1  Write  a  Mathematica  function  of  the  separable  Gaussian  derivative
kernel  implementation  for  3D. Test   the functionality  on a 3D test image,  e.g. a
sphere.
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5.3 Some examples

Convolving  an  image  with  a  single  point  (a  delta  function)  with  the  Gaussian  derivative
kernels,  gives  the  kernels  themselves.,  i.e.  the  pointspread  function.  E.g.  here  is  the  well
known series of all Cartesian partial Gaussian derivatives to 5th  order:

spike = Table@0., 8128<, 8128<D; spike@@64, 64DD = 1.;
Block@8$DisplayFunction = Identity<,
array = Table@Table@ListDensityPlot@gD@spike, m - n, n, 20D,

PlotLabel -> "∑x=" <> ToString@m - nD <> ", ∑y=" <> ToString@nDD,8n, 0, m<D, 8m, 0, 5<DD;
Show@GraphicsArray@arrayD, ImageSize Ø 330D;

∑x=5, ∑y=0 ∑x=4, ∑y=1 ∑x=3, ∑y=2 ∑x=2, ∑y=3 ∑x=1, ∑y=4 ∑x=0, ∑y=5

∑x=4, ∑y=0 ∑x=3, ∑y=1 ∑x=2, ∑y=2 ∑x=1, ∑y=3 ∑x=0, ∑y=4

∑x=3, ∑y=0 ∑x=2, ∑y=1 ∑x=1, ∑y=2 ∑x=0, ∑y=3

∑x=2, ∑y=0 ∑x=1, ∑y=1 ∑x=0, ∑y=2

∑x=1, ∑y=0 ∑x=0, ∑y=1

∑x=0, ∑y=0

Figure 5.3 Gaussian partial derivative kernels up to 5th  order.

$DisplayFunction  is  the  internal  variable  that  determines  how  things  should  be
displayed. Its normal state (it default has the value Display[$Display,#1]&) is to send
PostScript  to  the  output  cell.  Its  value  is  temporarily  set  to  Identity,  which  means:  no
output. This is necessary to calculate but not display the plots.

We  read  an  image  with  Import  and  only  use  the  first  element  [[1,1]]  of  the  returned
structure as this contains the pixeldata.

im = Import@"mr128.gif"D@@1, 1DD;
We start with just blurring at a scale of s = 3 pixels and show the result as 2D image and 3D
height plot:
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DisplayTogetherArray@8ListDensityPlot@gD@im, 0, 0, 3DD, ListPlot3D@gD@im, 0, 0, 3D,
Mesh -> False, BoxRatios Ø 81, 1, 1<D<, ImageSize Ø 500D;

Figure  5.4  Left:  a  blurred  MR  image,  resolution  1282 ,  sblur = 3  pixels.  Right:  The  intensity
surface as a height surface shows the blurring of the surfaces.

A movie  of  a  (in  this  example)  logarithmically  sampled  intensity  scale-space  is  made  with
the  Table  command.  Close  the  group  of  cells  with  images  by  double-clicking  the  group
bracket. Double-clicking one of the resulting images starts the animation. Controls are on the
bottom windowbar.

ss = Table@ListDensityPlot@gDf@im, 0, 0, Et D, ImageSize -> 150D,8t, 0, 2.5, .25<D;

Figure 5.5 Animation of a blurring sequence, with exponential scale parametrization. Double-
click the image to start the animation (only in the electronic version).  Controls appear at the
lower window bar. 

This animation is only available in the electronic version. Here are the images:
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Show@GraphicsArray@Partition@ss, 5DD, ImageSize -> 450D;

Figure 5.6 Frames of the animation of a blurring sequence above.

The sequence can be saved as an animated GIF movie (e.g. for use in webpages) with:

Export@"c:\\scalespace.gif", ss, "GIF"D;
The gradient of an image is defined as "####################Lx

2 + Ly
2 . On a scale s = 0.5 pixel for a 2562  CT

image of chronic cocaine abuse (EuroRAD teaching file case #1472, www.eurorad.org):

im = Import@"Cocaine septum.gif"D@@1, 1DD;
DisplayTogetherArrayA9ListDensityPlot@imD,

grad = ListDensityPlotA"#####################################################################################
gD@im, 1, 0, .5D2 + gD@im, 0, 1, .5D2 E=,

ImageSize -> 370E;

Figure  5.7  The  gradient  at  a  small  scale  s = 0.5  pixels.  Due  to  the  letters  R  and  L  in  the
image  with  steep  gradients  the  gradient  image  is  not  properly  scaled  in  intensity.  Note  the
completely missing septum in this patient (From www.eurorad.org, EuroRAD authors:  D. De
Vuyst, A.M. De Schepper, P.M. Parizel, 2002).

To  change  the  window/level  (contrast/brightness)  settings  one  can  change  the  displayed
range of intensity values:
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Show@grad, PlotRange Ø 80, 20<,
DisplayFunction -> $DisplayFunction, ImageSize -> 150D;

Figure 5.8 The gradient  at  a  small  scale  s = 0.5  pixels,  now with  an  intensity  window of  0
(black) to 30 (white).

We  can  also  transfer  the  image  into  its  histogram  equalized  version,  by  substituting  its
grayvalues by the values given by its cumulative lookup table:

Unprotect@heqD;
heq@im_ListD := Module@8min, max, freq, cf, lcf, maxcf, lut, int<,

min = Min@imD; max = Max@imD;
freq = BinCounts@Flatten@imD, 8min, max, Hmax - minL ê 256<D;
cf = FoldList@Plus, First@freqD, Drop@freq, 1DD;
maxcf = Max@cfD; lcf = Length@cfD;
lut = Table@N@8Hi - 1L ê lcf, cf@@iDD ê maxcf<D, 8i, 1, lcf<D;
lut@@lcfDD = 81., 1.<;
int = Interpolation@lutD; max int@Him - minL ê Hmax - minLDD;

ListDensityPlotA
heqA"#####################################################################################

gD@im, 1, 0, .5D2 + gD@im, 0, 1, .5D2 E, ImageSize -> 150E;

Figure 5.9  Histogram equalization  of  the gradient  image  of  figure  5.7.  By many  radiologists
this is  considered  too much enhancement.  'Clipped'  adaptive  histogram equalization  admits
different levels of enhancement tuning [Pizer1987].

The cumulative lookup table is applied for the intensity transform. Small contrasts have been
stretched  to  larger  contrasts,  and  reverse.  We  next  compare  the  histograms  of  the  gradient
image with the histogram of the histogram-equalized  gradient  image. The total histogram of
this image is indeed reasonably flat now.
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grad =
"#####################################################################################
gD@im, 1, 0, .5D2 + gD@im, 0, 1, .5D2 ; DisplayTogetherArray@

Histogram@Flatten@#DD & êü 8grad, heq@gradD<, ImageSize Ø 380D;
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Figure  5.10  Left:  Histogram  of  the  gradient  image  of  figure  5.7.  Right:  Histogram  of  the
histogram-equalized  gradient  image.  Note  the  equalizing  or  marked  stretching  of  the
histogram.

To conclude this introduction to multi-scale derivatives, let us look at some edges detected at
different  scales.  It  is  clear  from  the  examples  below  that  the  larger  scale  edges  denote  the
more 'important' edges, describing the coarser, hierarchically higher structure:

im = Import@"Utrecht256.gif"D@@1, 1DD;
DisplayTogetherArrayA
ListDensityPlotA"######################################################################################

gD@im, 1, 0, #D2 + gD@im, 0, 1, #D2 E & êü 8.5, 2, 5<,
ImageSize -> 400E;

Figure  5.11  Gradient  edges  detected  at  different  scales  (s = 0.5, 2, 5  pixels  resp.).  The
coarser edges (right) indicate hierarchically more 'important' edges. 

Other sources of different scales for edges are shadows and diffuse boundaries [Elder1996].

5.4 N-dim Gaussian derivative operator implementation

One of the  powerful  capabilities  of  Mathematica  as  a  programming  language  is the  relative
ease  to  write  numerical  functions  on  N-dimensional  data.  In  scale-space  theory  often  high
dimensional  data  occur:  3D  and  3D-time  medical  images,  such  as  3D  cardiovascular  time
sequences,  orientation  bundles  (see  chapter  16  where  an  extra  dimension  emerges  from the
inclusion of orientation as the output of measurements  by oriented filters),  high dimensional
feature  spaces  for  texture  analysis,  etc.  Here  is  the  separable  implementation  for  N-
dimensions:

78 5.3 Some examples



Unprotect@gDnD; gDn@im_, orderlist_, slist_, opts___?OptionQD :=

ModuleA8gaussd, dim = Length@Dimensions@imDD, out = N@imD, l, r, gder, x,
kernel, cat, mid, lc, tl, td<, td = Dimensionsêü 8orderlist, slist<;

tl = Length êü td; 8l, r< = kernelSampleRangeê. 8opts< ê. Options@gDD;
gaussd =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
#2 è!!!!!!!2 p

 
ikjjjjj-
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- x2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 #22 &;

gder = Table@N@gaussd@#1, #2DD, 8x, Floor@l #2D, Ceiling@r #2D<D &;
kernel = RotateRight@MapThread@gder, 8orderlist, slist<DD;
mid = HCeiling@Length@#1D ê 2D &L êü kernel;
cnt = Append@Table@1, 8dim - 1<D, midP#1TD &;
lc =
Transpose@ListConvolve@Nest@List, kernelP#2T, dim - 1D, #1, 8cnt@#2D, cnt@#2D<D,
RotateRight@Range@dimDDD &; Do@out = lc@out, iD, 8i, dim<D; outE

The  function  makes  use  of  the  possibility  to  Nest  functions  to  large  depth,  and  the
universality  of the ListConvolve  function.  The function is fast. Note the specification of
orders  and  scales  as  lists,  and  note  the  specific,  Mathematica-intrinsic  ordering  with  the
fastest running variable last: {z,y,x}.

Example:  gDn[im,{0,2,1},{2,2,2}]  calculates  ∑3 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y2  of  the  input  image  im  at  an
isotropic scale of sz = sy = sx = 2 pixels.

Here  is  the  time  it  takes  to  calculate  the  first  order  derivative  in  3  directions  at  scales  of  1
pixel of a 1283  random array (more than 2 million pixels, 1.7 GHz, 512 MB, Windows XP):

im = Table@Random@D, 8128<, 8128<, 8128<D;
Timing@gDn@im, 81, 1, 1<, 81, 1, 1<DD êê First

5.094 Second

This gives help on how to call the function:

? gDn

gDn@im,8...,ny,nx<,8...,sy,sx<,optionsD calculates the Gaussian
derivative of an N-dimensional image by approximated spatial
convolution. It is optimized for speed by 1D convolutions per
dimension. The image is considered cyclic in each direction.
Note the order of the dimensions in the parameter lists.

im = N-dimensional input image @ListD
nx = order of differentiation to x @Integer, nx ¥ 0D
sx = scale in x-dimension @in pixels, s > 0D
options = <optional> kernelSampleRange: range of kernel

sampled in multiples of s. Default: kernelSampleRange->8-6,6<
Example: gDn@im,80,0,1<,82,2,2<D calculates the x-
derivative of a 3D image at an isotropic scale of sz=sy=sx=2.

5.5 Implementation in the Fourier domain

The spatial  convolutions  are  not  exact.  The Gaussian  kernel  is  truncated.  In this  section  we
discuss the implementation of the convolution operation in the Fourier domain.

In  appendix  B  we  have  seen  that  a  convolution  of  two  functions  in  the  spatial  domain  is  a
multiplication  of the Fourier transforms of the functions in the Fourier domain, and take the
inverse  Fourier  transform  to  come  back  to  the  spatial  domain.  We  recall  the  processing
scheme (e.g. with 1D functions):
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In  appendix  B  we  have  seen  that  a  convolution  of  two  functions  in  the  spatial  domain  is  a
multiplication  of the Fourier transforms of the functions in the Fourier domain, and take the
inverse  Fourier  transform  to  come  back  to  the  spatial  domain.  We  recall  the  processing
scheme (e.g. with 1D functions):

fHxL = hHxL ≈ gHxL
ò ò ò

FHwL = HHwL . GHwL
The  ò  indicates  the  Fourier  transform  in  the  downwards  direction  and  the  inverse  Fourier
transform  in  the  upwards  direction.  f HxL  is  the  convolved  function,  hHxL  the  input  function,
and gHxL  the convolution kernel.

The  function  gDf[im,nx,ny,s]  implements  the  convolution  of  the  2D  image  with  the
Gaussian derivative for 2D discrete data in the Fourier domain. This is an exact function, no
approximations  other  than  the  finite  periodic  window  in  both  the  x -  and  y -direction.  We
explicitly  give  the  code  of the  functions  here,  so  you  see how  it  is  implemented,  the  reader
may  make  modifications  as  required.  All  information  on  (always  capitalized)  internal
functions  is on  board of the Mathematica  program in the  Help Browser  (highlight+key  F1),
as well as on the 'the Mathematica book' internet pages of Wolfram Inc.

Variables: im = 2D image (as a List structure)
nx, ny = order of differentiation to x resp. y
s = scale of the Gaussian derivative kernel, in pixels

The  underscore  in  e.g.  im_  means  Blank[im]  and stands  for  anything  (a  single  element)
which  we  name  im.  im_List  means  that  im  is  tested  if  it  is  a  List.  If  not,  the  function
gDf will not be evaluated.

Unprotect@gDfD; Remove@gDfD;
gDf@im_List, nx_, ny_, s_D :=

ModuleA8xres, yres, gdkernel<,8yres, xres< = Dimensions@imD;
gdkernel =

NATableAEvaluateADA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

ExpA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E, 8x, nx<, 8y, ny<EE, 8y,
-Hyres - 1L ê 2, Hyres - 1L ê 2<, 8x, -Hxres - 1L ê 2, Hxres - 1L ê 2<EE;
ChopANAè!!!!!!!!!!!!!!!!!!!!!!xres yres InverseFourier@Fourier@imD
Fourier@RotateLeft@gdkernel, 8yres ê 2, xresê 2<DDDEEE;
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A  Module[{vars},  ...code...]  is  a  scope  construct,  where  the  vars  are  private
variables.  The  last  line  determines  what  is  returned.  The  assignment  with  :=  is  a  delayed
assignment,  i.e.  the  function  is  only  evaluated  when  called.  The  dimensions  of  the  input
image  are  extracted  (note  the  order!)  and  the  Gaussian  kernel  is  differentiated  with  the
function  D[gauss,{x,nx},{y,ny}]  and  symmetrically  tabulated  over  the  x-  and  y -
dimensions to get a kernel image with the same dimensions as the input image. 

We  have  now  a  2D  List  with  the  kernel  in  the  center.  We  shift  gdkernel  with
RotateLeft  over  half  the  dimensions  in  x -  and  y-direction  in  order  to  put  the  kernel's
center  at  the  origin  at  {0,0}.  We  could  equally  have  shifted  in  this  symmetric  case  with
RotateRight.  We  then  take  the  Fourier  transform  of  both  the  image  and  the  kernel,
multiply them (indicated by a space) and take the InverseFourier transform. 

Because we have a finite Fourier transform, we normalize over the domain through the factorè!!!!!!!!!!!!!!!!!!!!!!
xres yres .  The  function  N[]  makes  all  output  numerical,  and  the  function  Chop[]

removes everything that is smaller then 10-10 , so to remove very small round-off errors.

im = Import@"mr256.gif"D@@1, 1DD; imx = gDf@im, 1, 0, 1D;
ListDensityPlot@imx, ImageSize -> 240D;

Figure 5.12 First order Gaussian derivative with respect to x  at scale s = 1  pixel, calculated
through the Fourier domain. Resolution 2562  pixels.

The  Mathematica  function  Fourier  is  highly  optimized  for  any  size  of  the  data,  and  uses
sophisticated bases when the number of pixels is not a power of 2.

This  function  is  somewhat  slower  that  the  spatial  implementation,  but  is  exact.  Here  is  a
vertical edge with a lot of additive uniform noise. The edge detection at very small scale only
reveals  the 'edges  of the noise'.  Only  at the larger  scales we discern  the true edge,  i.e.  when
the scale of the operator applied is at 'the scale of the edge'.
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im5 = Table@If@x > 128, 1, 0D + 13 Random@D, 8y, 256<, 8x, 256<D;
DisplayTogetherArrayA
PrependAListDensityPlotA"################################################################################################

gDf@im5, 1, 0, #D2 + gDf@im5, 0, 1, #D2 E & êü82, 6, 12<, ListDensityPlot@im5DE, ImageSize -> 500E;

Figure 5.13 Detection of a very low contrast step-edge in noise. Left: original image, the step-
edge is barely visible. At small scales (second image, s = 2 pixels) the edge is not detected.
We see the edges of the noise itself, cluttering the edge of the step-edge. Only at large scale
(right, s = 12  pixels) the edge is clearly found. At this scale the large scale structure of the
edge emerges from the small scale structure of the noise. 

Ú Task  5.2  The  Fourier  implementation  takes  the  Fourier  transform  of  the  image
and  the  Fourier  transform  of  a  calculated  kernel.  This  seems  a  waste  of
calculating time, as we know the analytical  expression  for the Fourier  transform
of  the  Gaussian  kernel.  Write  a  new  Mathematica  function  that  takes  this  into
account, and check if there is a real speed increase. 

Ú Task  5.3  The  spatial  implementation  has  different  speed  for  different  size
kernels.  With  increasing  kernel  size  the  number  of  operations  increases
substantially. How?

Ú Task  5.4  Compare  for  what  kernel  size  the  choice  of  implementation  is
computationally  more  effective:  Fourier  or  spatial  domain  implementation.  See
also [Florack 2000a].

There are two concerns  we discuss  next:  what  to do at  the boundaries?  And:  the function is
slow, so how to speed it up?
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5.6 Boundaries
DisplayTogetherArray@
Show êü Import êü 8"Magritte painting boundary.gif", "Magritte.jpg"<,
ImageSize -> 340D;

Figure 5.14 It  is important to consider what happens at the boundaries of images. It matters
what we model outside our image. Painting by René Magritte (right: self-portrait, 1898-1967).

At  the  boundary  of  the  image  artefacts  may  appear  when  we  do  convolutions  with  (by
nature)  extended  kernels.  Here  is  an  example:  two  linear  intensity  ramps  give  a  constant
output when we calculate the first derivative to x , but we see both at the left- and right-hand
side  strong  edge  responses,  for  the  Fourier  implementation  as  well  as  for  the  spatial
implementation:

im = Table@If@y > 64, x - 64, 64 - xD, 8y, 128<, 8x, 128<D;
DisplayTogetherArray@ListDensityPlot@#D & êü8im, gDf@im, 1, 0, 3D, gD@im, 1, 0, 3D<, ImageSize -> 400D;

Figure 5.15 Boundary effects due to the periodicity of the Fourier domain.

This is due to the fact that both in the Fourier domain as the spatial  domain implementation
of  the  convolution  function  the  image  is  regarded  as  repetitive.  A  Fourier  transform  is  a
cyclic  function,  i.e.  ! HwL = ! Hw + n 2 pL .  In 2D: ! Hwx , wy L = ! Hwx + nx 2 p, w + ny 2 pL .
The  boundary  effects  in  the  image  above  are  due  to  the  strong  edge  created  by  the
neighboring  pixels  at  both  ends. One can  regard  the  domain  of the  image  as a window  cut-
out from an infinite  tiling  of the  plane with 2D functions.  Figure 4.1 shows a tiling  with 20
images, each 642  pixels:
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im = Import@"mr64.gif"D@@1, 1DD;
tiles = Join üü Table@MapThread@Join, Table@im, 85<DD, 84<D;
ListDensityPlot@tiles, ImageSize -> 280D;

Figure 5.16 A section from the infinite tiling of  images when we consider  a cyclic  operation.
The Mathematica function MapThread maps the function Join on the rows of the horizontal
row of 5 images to concatenate them into long rows, the function Join is then applied (with
Apply  or  @@)  on  a  table  of  4  such  resulting  long  rows  to  concatenate  them  into  a  long
vertical image. 

Clear@a, b, c, d, e, f, hD;
MapThread@h, 88a, b, c<, 8d, e, f<<D8h@a, dD, h@b, eD, h@c, fD<
Apply@h, 88a, b, c<, 8d, e, f<<D
h@8a, b, c<, 8d, e, f<D
h üü 88a, b, c<, 8d, e, f<<
h@8a, b, c<, 8d, e, f<D

It is important to realize that there is no way out to deal with the boundaries.  Convolution is
an operation with  an extended  kernel,  so at  boundaries  there is always  a choice to be made.
The most common decision is on repetitive tiling of the domain to infinity, but other choices
are just as valid. One could extend the image with zero's, or mirror the neighboring image at
all  sides  in  order  to  minimize  the  edge  artefacts.  In  all  cases  information  is  put  at  places
where there was no original observation. This is no problem, as long as we carefully describe
how our choice has been made. Here is an example of mirrored tiling:
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im = Import@"mr128.gif"D@@1, 1DD; Off@General::spellD;
imv = Reverse@imD; imh = Reverse êü im; imhv = Reverse êü Reverse@imD;
mirrored = Join üü

ikjjjjjjjMapThread@Join, #D & êü
ikjjjjjjj imhv imv imhv
imh im imh
imhv imv imhv

y{zzzzzzzy{zzzzzzz;
ListDensityPlot@mirrored, ImageSize -> 270D;

Figure  5.17  A  section  from  the  infinite  tiling  of  images  when  we  consider  a  mirroring
operation. Note the rather complex mirroring and concatenation routines for these 2D images.

Ú Task  5.5  Rachid  Deriche  [Deriche  1992]  describes  a  fast  recursive
implementation of the Gaussian kernel and its derivatives.  Make a Mathematica
routine for recursive implementation.

Ú Task  5.6 A  small  truncated  kernel  size  involves  less  computations,  and  is  thus
faster. Blurring with a large kernel can also be accomplished by a concatenation
of small kernels, e.g. a blurring step with s = 3  pixels followed by a blurring step
with s = 4  pixels gives the same result as a single blurring step with s = 5 pixels
(s1

2 + s2
2 = snew

2 ).  What  is  faster,  a  large  kernel,  or  a  cascade  series  of
smaller kernels? Where is the trade-off?

5.7 Advanced topic: speed concerns in Mathematica 

This section can be skipped at first reading.

Mathematica  is an interpreter,  working with symbolic  elements,  and arbitrary precision.  For
this  reason,  care  must  be  taken  that  computation  times  do  not  explode  for  large  datasets.
When proper  measures are  taken, Mathematica  can be fast,  close  to compiled  C++ code.  In
this  section  we  discuss  some  examples  of  increasing  the  speed  of  the  operations  on  larger
datasets.
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Mathematica  is an interpreter,  working with symbolic  elements,  and arbitrary precision.  For
this  reason,  care  must  be  taken  that  computation  times  do  not  explode  for  large  datasets.
When proper  measures are  taken, Mathematica  can be fast,  close  to compiled  C++ code.  In
this  section  we  discuss  some  examples  of  increasing  the  speed  of  the  operations  on  larger
datasets.

It pays off to work numerically, and to compile a function when it is a repetitive operation of
simple functions. Mathematica's internal commands are optimized for speed, so the gain here
will  be less.  We discuss  the issue with the  example of the generation  of a discrete Gaussian
derivative  kernel.  The  timings  given  are  for  a  1.7  GHz  512  MB  PC  and  Mathematica  4.1
under Windows XP.

First of  all, exact calculations  are slow. Most internal Mathematica  functions can work both
with symbolic  and numerical  data.  These internal  functions  are fully optimized  with respect
to speed and memory resources for numerical input. Here is a simple example:

s = 1; m = TableAExpA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E, 8x, -4, 4<, 8y, -4, 4<E;
Timing@Eigenvalues@mDD
Timing@Eigenvalues@N@mDDD
Timing@Chop@Eigenvalues@N@mDDDD93.156 Second, 90, 0, 0, 0, 0, 0, 0, 0, 1 +

2
ÅÅÅÅÅÅÅÅ
‰16 +

2
ÅÅÅÅÅÅÅ
‰9 +

2
ÅÅÅÅÅÅÅ
‰4 +

2
ÅÅÅÅ
‰

==80. Second, 81.77264, 5.59373µ 10-17, -4.27232µ 10-17, -1.82978µ10-18,
3.22688µ 10-22, -6.5072µ 10-24, -7.47864µ 10-34, 1.05492µ10-35, 0.<<80. Second, 81.77264, 0, 0, 0, 0, 0, 0, 0, 0<<

In the sequel we will develop a very fast implementation  for the convolution of a 2D image
with a Gaussian derivative in the Fourier domain (see section 4.3). Most of the time is spent
in the creation of the 2D Gaussian kernel, e.g. for 2562 :8xres, yres< = 8256, 256<; s = 3;

TimingA
kernel = TableA 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

ExpA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E, 8y, -Hyres - 1L ê 2, Hyres - 1L ê 2<,8x, -Hxres - 1L ê 2, Hxres - 1L ê 2<EE@@1DD
4.859 Second

Mathematica  keeps  values  as  long  as  possible  in  an  exact  representation.  Here  is  the
pixelvalue at H30, 47L : 

kernel@@30, 47DD
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ18 ‰32689ê36 p

An additional  disadvantage  is  that  the  Fourier  transform on such  symbolic  expressions  also
takes a long time:

Timing@fft = Fourier@kernelDD êê First

8. Second
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It doesn't make much difference when we enter the data as Real values (to be done with the
insertion of a decimal point in a number, or through the function N):8xres, yres< = 8256., 256.<; s = 3.; pi = N@pD;

TimingA
gdkernel = TableA 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

ExpA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E, 8y, -Hyres - 1L ê 2, Hyres - 1L ê 2<,8x, -Hxres - 1L ê 2, Hxres - 1L ê 2<EE@@1DD
5.797 Second

The output is now a number, not a symbolic expression:

gdkernel@@30, 48DD
6.379323933059µ 10-393

But  still,  we  have  no  gain  in  speed.  This  is  because  the  internal  representation  is  still  in
'arbitrary  precision'  mode.  The  smallest  and  largest  number  that  can  be  represented  as  a
Real is:

$MinMachineNumber
$MaxMachineNumber

2.22507µ 10-308

1.79769µ 10308

We have smaller  values in our pixels! As soon as Mathematica  encounters a number smaller
or  larger  then  the  dynamic  range for  Real  numbers,  it  turns  into  arbitrary  precision  mode,
which  is  slow.  A  good  improvement  in  speed   is  therefore  gained  through  restricting  the
output to be in this dynamic range. In our example the parameter for the exponential function
Exp should be constrained:8xres, yres< = 8256., 256.<; s = 3.; pi = N@pD;

TimingAgdkernel = TableA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

ExpAIfA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

< -100, -100, -
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

EE,8y, -Hyres - 1L ê 2, Hyres - 1L ê 2<,8x, -Hxres - 1L ê 2, Hxres - 1L ê 2<EE êê First

2.594 Second

Most of the internal commands of Mathematica do a very good job on real numbers.

A further substantial  improvement  in speed can be obtained by compilation  of the code into
fast  internal  assembler  code  with  the  function  Compile[{args},  ...code...,
{decl}].  This  generates  a  pure  function,  that  can  be  called  with  the  arguments  {args}.
This  function  generates  optimized  code  based  on  an  idealized  register  machine.  It  assumes
approximate  real  or  inter  numbers,  or  matrices  of  these.  The  arguments  in  the  argumentlist
need  to  have  the  proper  assignment  (_Real,  _Integer,  _Complex  or  True/False).
The  assignment  _Real  is  default  and  may  be  omitted,  so  8x, _Real<  is  equivalent  to8x< . An example to calculate the factorial of a sum of two real numbers:
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A further substantial  improvement  in speed can be obtained by compilation  of the code into
fast  internal  assembler  code  with  the  function  Compile[{args},  ...code...,
{decl}].  This  generates  a  pure  function,  that  can  be  called  with  the  arguments  {args}.
This  function  generates  optimized  code  based  on  an  idealized  register  machine.  It  assumes
approximate  real  or  inter  numbers,  or  matrices  of  these.  The  arguments  in  the  argumentlist
need  to  have  the  proper  assignment  (_Real,  _Integer,  _Complex  or  True/False).
The  assignment  _Real  is  default  and  may  be  omitted,  so  8x, _Real<  is  equivalent  to8x< . An example to calculate the factorial of a sum of two real numbers:

gammasum = Compile@88x, _Real<, 8y, _Real<<, Hx + yL!D
CompiledFunction@8x, y<, Hx + yL!, -CompiledCode-D
gammasum@3, 5D
40320.

We now check if the compiled code of our Gaussian kernel gives a speed improvement:

gdkernel = CompileA8xres, yres, s<, xresh =
xres - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
; yresh =

yres - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
;

p = TableA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

ExpAIfA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

< -100, -100, -
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

EE,8y, -yresh, yresh<, 8x, -xresh, xresh<E, 88x, _Real<,8y, _Real<, 8xresh, _Real<, 8yresh, _Real<, 8p, _Real, 2<<E;
Timing@gdkernel@256, 256, 3DD êê First

2.532 Second

In  version  4.2  of  Mathematica  we  see  no  improvement,  running  the  example  above,  the
kernel has been optimized for these calculations. In earlier versions you will encounter some
60%  improvement  with  the  strategy  above.  See  the  Help  browser  (shift-F1)  for  speed
examples of the  Compile function. We now add the symbolic operation of taking derivatives
of the kernel. We force direct generation of the polynomials in the Gaussian derivatives with
the  Hermite  polynomials,  generated  with  HermiteH.  The  symbolic  functions  are  first
evaluated through the use of the function Evaluate, then compiled code is made:

gdkernel = CompileA8xres, yres, s, 8nx, _Integer<, 8ny, _Integer<<,
xresh =

xres - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
; yresh =

yres - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
;

p = TableAEvaluateAikjjjjj -1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 

è!!!!
2

y{zzzzznx+ny

HermiteHAnx, x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 

è!!!!
2

E HermiteHAny, y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 

è!!!!
2

E 

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s2  2 p

 ExpAIfA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

< -100, -100, -
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

EEE,8y, -yresh, yresh<, 8x, -xresh, xresh<E, 88x, _Real<,8y, _Real<, 8xresh, _Real<, 8yresh, _Real<, 8p, _Real, 2<<E;
Timing@gdkernel@256, 256, 3, 10, 10DD êê First

4.25 Second

Larger kernels are now no problem anymore, e.g. for 5122 :
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Timing@t = gdkernel@512, 512, 3, 2, 1DD êê First

7.593 Second

We adopt  this  function  for  our  final  implementation.  Because  the  output  is  a  matrix  of  real
numbers, also the Fourier transform is very fast. This is the time needed for the Fast Fourier
Transform on the 5122  kernel just generated:

Timing@Fourier@tDD êê First

0.172 Second

To complete this section we present the final implementation,  available throughout the book
in the context FEV`, which is loaded by default in each chapter. 

In the compiled function also complex arrays emerge, such as the result of Fourier[] and
InverseFourier[].  The  compiler  is  told  by  the  declarations  at  the  end  that  anything
with  the  name  Fourier  and  InverseFourier  working  on  something  (_)  should  be
stored  in a  complex array  with tensorrank  2,  i.e.  a 2D array. Study the  rest  of the  details  of
the implementation yourself:

Unprotect@gDfD; gDf@im_, nx_, ny_, s_D :=
Module@8<, 8xres, yres< = Dimensions@imD; gf@im, nx, ny, s, xres, yresDD;
gf =

CompileA88im, _Real, 2<, 8nx, _Integer<, 8ny, _Integer<, s, xres, yres<,
ModuleA8x, y<, xresh =

xres - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
; yresh =

yres - 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
;

p = RotateLeftATableA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

 EvaluateAikjjjjj-
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

è!!!!
2

y{zzzzznx+ny

HermiteHAnx,
x

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

è!!!!2 E HermiteHAny, y
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

è!!!!2 E ‰IfA- x2 +y2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

<-200,-200,- x2 +y2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E E,
8y, -yresh, yresh<, 8x, -xresh, xresh<E, 9 xres

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

,
yres
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

=EE;è!!!!!!!!!!!!!!!!!!!!!!xres yres Chop@Re@InverseFourier@Fourier@imD Fourier@pDDDD,88x, _Real<, 8y, _Real<, 8xresh, _Real<, 8yresh, _Real<, 8p, _Real, 2<,8Fourier@_D, _Complex, 2<, 8InverseFourier@_D, _Complex, 2<<E;
5.8 Summary of this chapter

Mathematica is fast when:
-  it  can  use  its  internal  kernel  routines  as  much  as  possible.  They  have  been  optimized  for
speed and memory use;
-  it  can  calculate  on numerical  data.  Use the  function  N[...]  to convert  infinite  precision
representations like Sin[3/7] to numerical data;
-  it  is  working  in  the  representation  range  of  real  numbers.  Otherwise  it  enters  the  infinite
precision mode again;
- the function is compiled with the function Compile[...];
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