
3. The Gaussian kernel
Of all things, man is the measure.

Protagoras the Sophist (480-411 B.C.)

3.1 The Gaussian kernel

The  Gaussian  (better  Gaußian)  kernel  is  named  after  Carl  Friedrich  Gauß  (1777-1855),  a
brilliant  German  mathematician.  This  chapter  discusses  many  of  the  attractive  and  special
properties of the Gaussian kernel.

<< FrontEndVision`FEV`; Show@Import@"Gauss10DM.gif"D, ImageSize -> 280D;

Figure 3.1 The Gaussian kernel is apparent on every German banknote of DM 10,- where it
is  depicted  next  to  its  famous  inventor  when  he  was 55  years  old.  The  new Euro  replaces
these banknotes. See also: http://scienceworld.wolfram.com/biography/Gauss.html.

The Gaussian kernel is defined in 1-D, 2D and N-D respectively as
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The  s  determines  the  width  of  the  Gaussian  kernel.  In  statistics,  when  we  consider  the
Gaussian probability density function it is called the standard deviation, and the square of it,
s2 ,  the  variance.  In  the  rest  of  this  book,  when  we  consider  the  Gaussian  as  an  aperture
function of some observation, we will refer to s as the inner scale or shortly scale.

In  the  whole  of  this  book  the  scale  can  only  take  positive  values,  s > 0 .  In  the  process  of
observation s can never become zero. For, this would imply making an observation through
an  infinitesimally  small  aperture,  which  is  impossible.  The  factor  of  2  in  the  exponent  is  a
matter of convention,  because we then have a 'cleaner' formula for the diffusion equation, as
we  will  see  later  on.  The  semicolon  between  the  spatial  and  scale  parameters  is
conventionally put there to make the difference between these parameters explicit. 
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The scale-dimension  is  not  just  another  spatial  dimension,  as we  will  thoroughly  discuss  in
the remainder of this book.

The  half  width  at  half  maximum  (s = 2 
è!!!!!!!!!!!2 ln 2 )  is  often  used  to  approximate  s ,  but  it  is

somewhat larger: 
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3.2 Normalization

The  term  1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
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 in  front  of  the  one-dimensional  Gaussian  kernel  is  the  normalization
constant.  It  comes  from the  fact  that  the  integral  over  the  exponential  function is  not  unity:Ÿ-¶

¶
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2 p  s .  With  the  normalization  constant  this  Gaussian  kernel  is  a
normalized kernel, i.e. its integral over its full domain is unity for every s. 

This  means  that  increasing  the  s  of  the  kernel  reduces  the  amplitude  substantially.  Let  us
look  at  the  graphs  of  the  normalized  kernels  for  s = 0.3 ,  s = 1  and  s = 2  plotted  on  the
same axes:

Unprotect@gaussD; gauss@x_, s_D :=
1
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E;
Block@8$DisplayFunction = Identity<, 8p1, p2, p3< =

Plot@gauss@x, s = #D, 8x, -5, 5<, PlotRange -> 80, 1.4<D & êü8.3, 1, 2<D;
Show@GraphicsArray@8p1, p2, p3<D, ImageSize -> 400D;
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Figure  3.2  The  Gaussian  function  at  scales  s = .3 ,  s = 1  and  s = 2 .  The  kernel  is
normalized, so the total area under the curve is always unity.

The  normalization  ensures  that  the  average  graylevel  of  the  image  remains  the  same  when
we blur the image with this kernel. This is known as average grey level invariance.
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3.3 Cascade property, selfsimilarity

The  shape  of  the  kernel  remains  the  same,  irrespective  of  the  s.  When  we  convolve  two
Gaussian  kernels  we get  a  new wider Gaussian  with  a variance s2  which  is the  sum of the
variances of the constituting Gaussians: gnew Hx”; s1

2 + s2
2L = g1 Hx”; s1

2 L ≈ g2 Hx”; s2
2 L . 

s =.; SimplifyA‡
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This  phenomenon,  i.e.  that  a  new  function  emerges  that  is  similar  to  the  constituting
functions, is called self-similarity. 

The Gaussian is a self-similar function. Convolution with a Gaussian is a linear operation, so
a  convolution  with  a  Gaussian  kernel  followed  by  a  convolution  with  again  a  Gaussian
kernel  is equivalent  to convolution  with the  broader kernel.  Note  that the  squares  of s  add,
not the  s's themselves.  Of course we can concatenate  as many blurring steps  as we want to
create  a  larger  blurring  step.  With  analogy  to  a  cascade  of  waterfalls  spanning  the  same
height  as  the  total  waterfall,  this  phenomenon  is  also  known  as  the  cascade  smoothing
property.
Famous  examples  of  self-similar  functions  are  fractals.  This  shows  the  famous  Mandelbrot
fractal:

cMandelbrot = Compile@88c, _Complex<<, -Length@
FixedPointList@#2 + c &, c, 50, SameTest -> HAbs@#2D > 2.0 &LDDD;

ListDensityPlot@ -Table@cMandelbrot@a + b ID, 8b, -1.1, 1.1, 0.0114<,8a, -2.0, 0.5, 0.0142<D, Mesh -> False, AspectRatio -> Automatic,
Frame -> False, ColorFunction -> Hue, ImageSize -> 170D;

Figure  3.3  The  Mandelbrot  fractal  is  a  famous  example  of  a  self-similar  function.  Source:
www.mathforum.org. See also  mathworld.wolfram.com/MandelbrotSet.html.
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3.4 The scale parameter

In  order  to  avoid  the  summing  of  squares,  one  often  uses  the  following  parametrization:
2 s2 Ø t ,  so  the  Gaussian  kernel  get  a  particular  short  form.  In  N
dimensions:GND Hx”, tL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHp tLN ê2  e- x2

ÅÅÅÅÅÅÅÅt . 

It is this t  that emerges in the diffusion equation ∑LÅÅÅÅÅÅÅ∑t = ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2 + ∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2 + ∑2 LÅÅÅÅÅÅÅÅÅÅ∑z2 . It is often referred
to as 'scale' (like in: differentiation to scale, ∑LÅÅÅÅÅÅÅ∑t ), but a better name is variance.

To  make  the  self-similarity  of  the  Gaussian  kernel  explicit,  we  can  introduce  a  new
dimensionless  spatial  parameter,  xè = xÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s 
è!!!!

2
.  We say that  we have reparametrized  the x-axis.

Now  the  Gaussian  kernel  becomes:  gn Hxè; sL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
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 e-xè2  ,  or  gn Hxè ; tL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHp tLNê2  e-xè2 .  In

other  words:  if  we walk  along the  spatial  axis  in footsteps  expressed in scale-units  (s's), all
kernels are of equal size or 'width' (but due to the normalization constraint not necessarily of
the  same  amplitude).  We  now  have  a  'natural'  size  of  footstep  to  walk  over  the  spatial
coordinate:  a unit step in x  is now s è!!!!

2 , so in more blurred images we make bigger steps.
We call this basic Gaussian kernel the natural Gaussian kernel gn Hxè; sL . The new coordinate
xè = xÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s 
è!!!!

2
is  called  the  natural  coordinate.  It  eliminates  the  scale  factor  s  from  the  spatial

coordinates,  i.e.  it  makes  the  Gaussian  kernels  similar,  despite  their  different  inner  scales.
We will encounter natural coordinates many times hereafter.

The  spatial  extent  of  the  Gaussian  kernel  ranges  from  -¶  to  +¶,  but  in  practice  it  has
negligible values for x larger then a few (say 5) s. The numerical value at x=5s, and the area
under the curve from x=5s to infinity (recall that the total area is 1):

gauss@5, 1D êê N
Integrate@gauss@x, 1D, 8x, 5, Infinity<D êê N

1.48672µ 10-6

2.86652µ 10-7

The larger we make the standard deviation s, the more the image gets blurred. In the limit to
infinity,  the  image  becomes  homogenous  in  intensity.  The  final  intensity  is  the  average
intensity  of  the  image.  This  is  true  for  an  image with  infinite  extent,  which  in  practice  will
never  occur,  of  course.  The  boundary  has  to  be  taken  into  account.  Actually,  one  can  take
many  choices  what  to  do  at  the  boundary,  it  is  a  matter  of  consensus.  Boundaries  are
discussed  in  detail  in  chapter  5,  where  practical  issues  of  computer  implementation  are
discussed.

3.5 Relation to generalized functions

The  Gaussian  kernel  is  the  physical  equivalent  of  the  mathematical  point.  It  is  not  strictly
local,  like  the  mathematical  point,  but  semi-local.  It  has  a  Gaussian  weighted  extent,
indicated by its inner scale s. 

Because scale-space theory is revolving around the Gaussian function and its derivatives as a
physical  differential  operator  (in  more  detail  explained  in  the  next  chapter),  we  will  focus
here  on  some  mathematical  notions  that  are  directly  related,  i.e.  the  mathematical  notions
underlying sampling of values from functions and their derivatives at selected points (i.e. that
is  why  it  is  referred  to  as  sampling).  The  mathematical  functions  involved  are  the
generalized  functions,  i.e.  the  Delta-Dirac  function,  the  Heaviside  function  and  the  error
function. In the next section we study these functions in detail.
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Because scale-space theory is revolving around the Gaussian function and its derivatives as a
physical  differential  operator  (in  more  detail  explained  in  the  next  chapter),  we  will  focus
here  on  some  mathematical  notions  that  are  directly  related,  i.e.  the  mathematical  notions
underlying sampling of values from functions and their derivatives at selected points (i.e. that
is  why  it  is  referred  to  as  sampling).  The  mathematical  functions  involved  are  the
generalized  functions,  i.e.  the  Delta-Dirac  function,  the  Heaviside  function  and  the  error
function. In the next section we study these functions in detail.

When we take the limit as the inner scale goes down to zero (remember that s can only take
positive values  for a  physically  realistic  system),  we get the  mathematical  delta  function,  or
Dirac  delta  function,  d(x).  This  function  is  everywhere  zero  except  in  x  =  0,  where  it  has
infinite amplitude and zero width, its area is unity.

lims∞0 J 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p  s

 e- x2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2 N = dHxL.

d(x)  is  called  the  sampling  function  in  mathematics,  because  the  Dirac  delta  function
adequately  samples  just one point  out of a function when integrated.  It is assumed that f HxL
is continuous at x = a:

‡
-¶

¶

DiracDelta@x - aD f@xD „x

f@aD
The sampling property of derivatives of the Dirac delta function is shown below:

‡
-¶

¶

D@DiracDelta@xD, 8x, 2<D f@xD „x

f££ @0D
The delta  function was originally  proposed by the eccentric  Victorian  mathematician  Oliver
Heaviside  (1880-1925,  see also  [Pickover1998]).  Story goes  that  mathematicians  called this
function  a  "monstrosity",  but  it  did  work!  Around  1950  physicist  Paul  Dirac  (1902-1984)
gave  it  new  light.  Mathematician  Laurent  Schwartz  (1915-)  proved  it  in  1951  with  his
famous  "theory  of  distributions"  (we  discuss  this  theory  in  chapter  8).  And  today it's  called
"the Dirac delta function". 

The integral of the Gaussian kernel from -¶ to x is a famous function as well. It is the error
function, or cumulative Gaussian function, and is defined as:

s =.; err@x_, s_D = ‡
0

x 1
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The y  in  the  integral  above  is  just  a  dummy integration  variable,  and  is  integrated  out.  The
Mathematica error function is Erf[x]. 

In  our  integral  of  the  Gaussian  function  we  need  to  do  the  reparametrization  x Ø xÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 

è!!!!
2

.
Again  we  recognize  the  natural  coordinates.  The  factor  1ÅÅÅÅ2 is  due  to  the  fact  that  integration
starts halfway, in x = 0.

s = 1.; PlotA 1
ÅÅÅÅ
2

 ErfA x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
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2

E, 8x, -4, 4<, AspectRatio -> .3,

AxesLabel -> 8"x", "Erf@xD"<, ImageSize -> 200E;
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Figure 3.4 The error function Erf[x] is the cumulative Gaussian function.

When the inner scale s of the error function goes to zero, we get in the limiting case the so-
called  Heavyside  function  or  unitstep  function.  The  derivative  of  the  Heavyside  function  is
the Delta-Dirac function, just as the derivative of the error function of the Gaussian kernel.

s = .1; PlotA 1
ÅÅÅÅ
2

 ErfA x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s 
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E, 8x, -4, 4<, AspectRatio -> .3,

AxesLabel -> 8"x", "Erf@xD"<, ImageSize -> 270E;
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Figure 3.5 For decreasing s  the Error function begins to look like a step function.  The Error
function is the Gaussian blurred step-edge. 

Plot@UnitStep@xD, 8x, -4, 4<, DisplayFunction -> $DisplayFunction,
AspectRatio -> .3, AxesLabel -> 8"x", "Heavyside@xD, UnitStep@xD"<,
PlotStyle -> Thickness@.015D, ImageSize -> 270D;
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Figure 3.6 The Heavyside function is the generalized unit stepfunction. It is the limiting case
of the Error function for lim s Ø 0 .

The derivative of the Heavyside step function is the Delta function again:
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D@UnitStep@xD, xD
DiracDelta@xD

3.6 Separability

The  Gaussian  kernel  for  dimensions  higher  than  one,  say  N,  can  be  described  as  a  regular
product  of  N  one-dimensional  kernels.  Example:  g2 DHx, y; s1

2 + s2
2L  =  g1 D Hx; s1

2 L
g1 D Hy; s2

2 L  where  the  space  in  between  is  the  product  operator.  The  regular  product  also
explains the exponent N in the normalization constant for N-dimensional Gaussian kernels in
(0).  Because  higher  dimensional  Gaussian  kernels  are  regular  products  of  one-dimensional
Gaussians, they are called separable. We will use quite often this property of separability.

DisplayTogetherArray@8Plot@gauss@x, s = 1D, 8x, -3, 3<D,
Plot3D@gauss@x, s = 1D gauss@y, s = 1D, 8x, -3, 3<, 8y, -3, 3<D<,
ImageSize -> 440D;
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Figure  3.7  A  product  of  Gaussian  functions  gives  a  higher  dimensional  Gaussian  function.
This is a consequence of the separability.

An important application is the speed improvement when implementing numerical separable
convolution.  In chapter  5 we explain  in detail  how the convolution  with  a 2D (or better: N-
dimensional)  Gaussian  kernel  can be replaced by a cascade  of 1D convolutions,  making the
process  much  more  efficient  because  convolution  with  the  1D  kernels  requires  far  fewer
multiplications.

3.7 Relation to binomial coefficients

Another  place  where  the  Gaussian  function  emerges  is  in  expansions  of  powers  of
polynomials. Here is an example:

Expand@Hx + yL30D
x30 + 30 x29 y + 435 x28 y2 + 4060 x27 y3 + 27405 x26 y4 + 142506 x25 y5 +
593775 x24 y6 + 2035800 x23 y7 + 5852925 x22 y8 + 14307150 x21 y9 +

30045015 x20 y10 + 54627300 x19 y11 + 86493225 x18 y12 + 119759850 x17 y13 +
145422675 x16 y14 + 155117520 x15 y15 + 145422675 x14 y16 +

119759850 x13 y17 + 86493225 x12 y18 + 54627300 x11 y19 + 30045015 x10 y20 +
14307150 x9 y21 + 5852925 x8 y22 + 2035800 x7 y23 + 593775 x6 y24 +
142506 x5 y25 + 27405 x4 y26 + 4060 x3 y27 + 435 x2 y28 + 30 x y29 + y30

The coefficients of this expansion are the binomial coefficients Hm
n L  ('n over m'):
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ListPlot@Table@Binomial@30, nD, 8n, 1, 30<D,
PlotStyle -> 8PointSize@.015D<, AspectRatio -> .3D;
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Figure 3.8 Binomial coefficients approximate a Gaussian distribution for increasing order.

And here in two dimensions:

BarChart3D@Table@Binomial@30, nD Binomial@30, mD, 8n, 1, 30<, 8m, 1, 30<D,
ImageSize -> 180D;
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Figure  3.9  Binomial  coefficients  approximate  a  Gaussian  distribution  for  increasing  order.
Here in 2 dimensions we see separability again.

3.8 The Fourier transform of the Gaussian kernel

We  will  regularly  do  our  calculations  in  the  Fourier  domain,  as  this  often  turns  out  to  be
analytically  convenient  or  computationally  efficient.  The  basis  functions  of  the  Fourier
transform !  are  the  sinusoidal  functions  eiwx .  The  definitions  for the  Fourier  transform and
its inverse are:

the Fourier transform:  FHwL = !  8 f HxL< = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

 Ÿ-¶

¶
f HxL ei w x  „ x

the inverse Fourier transform: ! -1  8FHwL< = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

 Ÿ-¶

¶
FHwL e-i w x  „ w

s =.; !gauss@w_, s_D =

SimplifyA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

 IntegrateA 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

è!!!!!!!
2 p

 ExpA-
x2

ÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E Exp@I w xD, 8x, -¶, ¶<E,8s > 0, Im@sD == 0<E
‰- 1ÅÅÅÅ2 s2 w2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p
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The Fourier transform is a standard Mathematica command:

Simplify@FourierTransform@gauss@x, sD, x, wD, s > 0D
‰- 1ÅÅÅÅ2 s2 w2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p

Note  that  different  communities  (mathematicians,  computer  scientists,  engineers)  have
different definitions for the Fourier transform. From the Mathematica help function:

With  the  setting FourierParametersØ{a,b}  the  discrete  Fourier  transform computed
by  FourierTransform  is  "##############»b»ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH2 pL1-a  Ÿ-¶

¶ f HtL ei b w t  „ t .  Some  common  choices  for  {a,b}
are {0,1} (default), {-1,1} (data analysis), {1,-1} (signal processing).

In this book we consistently use the default definition. 

So the  Fourier  transform of the  Gaussian  function  is again  a Gaussian  function,  but  now of
the frequency w. The Gaussian function is the only function with this property.  Note that the
scale s now appears as a multiplication with the frequency. We recognize a well-known fact:
a smaller  kernel  in the  spatial  domain  gives  a wider  kernel  in  the  Fourier  domain,  and vice
versa. Here we plot 3 Gaussian kernels with their Fourier transform beneath each plot:

Block@8$DisplayFunction = Identity<,
p1 = Table@Plot@gauss@x, sD, 8x, -10, 10<, PlotRange -> All,

PlotLabel -> "gauss@x," <> ToString@sD <> "D"D, 8s, 1, 3<D;
p2 = Table@Plot@!gauss@w, sD, 8w, -3, 3<, PlotRange -> All,

PlotLabel -> "!gauss@x," <> ToString@sD <> "D"D, 8s, 1, 3<DD;
Show@GraphicsArray@8p1, p2<D, ImageSize -> 400D;
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Figure  3.10  Top  row:  Gaussian  function  at  scales  s=1,  s=2  and  s=3.  Bottom  row:  Fourier
transform  of  the  Gaussian  function  above  it.  Note  that  for  wider  Gaussian  its  Fourier
transform  gets  narrower  and  vice  versa,  a  well  known  phenomenon  with  the  Fourier
transform.  Also  note  by checking the amplitudes  that  the kernel  is normalized  in the spatial
domain only.

There  are  many  names  for  the  Fourier  transform  ! gHw; sL  of  gHx; sL :  when  the  kernel
gHx; sL  is  considered  to  be  the  point  spread  function,  ! gHw; sL  is  referred  to  as  the
modulation transfer function. When the kernel g(x;s) is considered to be a signal, ! gHw; sL
is referred to as the spectrum. When applied to a signal, it operates as a lowpass filter. Let us
plot  the  spectra  of  a  series  of  such  filters  (with  a  logarithmic  increase  in  scale)  on  double
logarithmic paper:
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There  are  many  names  for  the  Fourier  transform  ! gHw; sL  of  gHx; sL :  when  the  kernel
gHx; sL  is  considered  to  be  the  point  spread  function,  ! gHw; sL  is  referred  to  as  the
modulation transfer function. When the kernel g(x;s) is considered to be a signal, ! gHw; sL
is referred to as the spectrum. When applied to a signal, it operates as a lowpass filter. Let us
plot  the  spectra  of  a  series  of  such  filters  (with  a  logarithmic  increase  in  scale)  on  double
logarithmic paper:

scales = N@Table@ Exp@t ê 3D, 8t, 0, 8<DD
spectra = LogLinearPlot@!gauss@w, #D,8w, .01, 10<, DisplayFunction -> IdentityD & êü scales;
Show@spectra, DisplayFunction -> $DisplayFunction, AspectRatio -> .4,
PlotRange -> All, AxesLabel -> 8"w", "Amplitude"<, ImageSize -> 300D;81., 1.39561, 1.94773, 2.71828,
3.79367, 5.29449, 7.38906, 10.3123, 14.3919<
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Figure 3.11  Fourier  spectra  of  the Gaussian  kernel  for  an  exponential  range of  scales  s  =  1

(most right graph) to s = 14.39 (most left graph). The frequency w  is on a logarithmic scale.
The Gaussian kernels are seen to act as low-pass filters.

Due to this behaviour the role of receptive fields as lowpass filters has long persisted. But the
retina does not measure a Fourier transform of the incoming image, as we will discuss in the
chapters on the visual system (chapters 9-12).

3.9 Central limit theorem

We  see  in  the  paragraph  above  the  relation  with  the  central  limit  theorem:  any  repetitive
operator  goes  in  the  limit  to  a  Gaussian  function.  Later,  when  we  study  the  discrete
implementation  of  the  Gaussian  kernel  and  discrete  sampled  data,  we  will  see  the  relation
between  interpolation  schemes  and  the  binomial  coefficients.  We  study  a  repeated
convolution of two blockfunctions with each other:

f@x_D := UnitStep@1ê 2 + xD + UnitStep@1ê 2 - xD - 1;
g@x_D := UnitStep@1ê 2 + xD + UnitStep@1ê 2 - xD - 1;

Plot@f@xD, 8x, -3, 3<, ImageSize -> 140D;
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Figure 3.12 The analytical blockfunction is a combination of two Heavyside unitstep functions.

We calculate analytically the convolution integral
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h1 = Integrate@f@xD g@x - x1D, 8x, -¶, ¶<D
1
ÅÅÅÅ2 H-1 + 2 UnitStep@1 - x1D - 2 x1 UnitStep@1 - x1D - 2 x1 UnitStep@x1DL +

1
ÅÅÅÅ2 H-1 + 2 x1 UnitStep@-x1D + 2 UnitStep@1 + x1D + 2 x1 UnitStep@1 + x1DL

Plot@h1, 8x1, -3, 3<, PlotRange -> All, ImageSize -> 150D;
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Figure  3.13  One  times  a  convolution  of  a  blockfunction  with  the  same  blockfunction  gives  a
triangle function.

The next convolution is this function convolved with the block function again:

h2 = Integrate@Hh1 ê. x1 -> xL g@x - x1D, 8x, -¶, ¶<D
-1 +

1
ÅÅÅÅ8 H1 - 2 x1L2 +

1
ÅÅÅÅ8 H1 + 2 x1L2 +

1
ÅÅÅÅ8 H3 - 4 x1 - 4 x12L +

1
ÅÅÅÅ8 H3 + 4 x1 - 4 x12L +

1
ÅÅÅÅ8J-4 + 9 UnitStepA 3

ÅÅÅÅ2 - x1E - 12 x1 UnitStepA 3
ÅÅÅÅ2 - x1E + 4 x12 UnitStepA 3

ÅÅÅÅ2 - x1E +

UnitStepA-
1
ÅÅÅÅ2 + x1E - 4 x1 UnitStepA-

1
ÅÅÅÅ2 + x1E + 4 x12 UnitStepA-

1
ÅÅÅÅ2 + x1EN +

1
ÅÅÅÅ4 J-UnitStepA 1

ÅÅÅÅ2 - x1E + 4 x1 UnitStepA 1
ÅÅÅÅ2 - x1E - 4 x12 UnitStepA 1

ÅÅÅÅ2 - x1E -

UnitStepA 1
ÅÅÅÅ2 + x1E - 4 x1 UnitStepA 1

ÅÅÅÅ2 + x1E - 4 x12 UnitStepA 1
ÅÅÅÅ2 + x1EN +

1
ÅÅÅÅ8 J-4 + UnitStepA-

1
ÅÅÅÅ2 - x1E + 4 x1 UnitStepA-

1
ÅÅÅÅ2 - x1E +

4 x12 UnitStepA-
1
ÅÅÅÅ2 - x1E + 9 UnitStepA 3

ÅÅÅÅ2 + x1E +

12 x1 UnitStepA 3
ÅÅÅÅ2 + x1E + 4 x12 UnitStepA 3

ÅÅÅÅ2 + x1EN
-1 +

1
ÅÅÅÅ8 H1 - 2 x1L2 +

1
ÅÅÅÅ8 H1 + 2 x1L2 +

1
ÅÅÅÅ8 H3 - 4 x1 - 4 x12L +

1
ÅÅÅÅ8 H3 + 4 x1 - 4 x12L +

1
ÅÅÅÅ8 J-4 + 9 UnitStepA 3

ÅÅÅÅ2 - x1E - 12 x1 UnitStepA 3
ÅÅÅÅ2 - x1E + 4 x12 UnitStepA 3

ÅÅÅÅ2 - x1E +

UnitStepA-
1
ÅÅÅÅ2 + x1E - 4 x1 UnitStepA-

1
ÅÅÅÅ2 + x1E + 4 x12 UnitStepA-

1
ÅÅÅÅ2 + x1EN +

1
ÅÅÅÅÅ4J-UnitStepA 1

ÅÅÅÅ2 - x1E + 4 x1 UnitStepA 1
ÅÅÅÅ2 - x1E - 4 x12 UnitStepA 1

ÅÅÅÅ2 - x1E -

UnitStepA 1
ÅÅÅÅ2 + x1E - 4 x1 UnitStepA 1

ÅÅÅÅ2 + x1E - 4 x12 UnitStepA 1
ÅÅÅÅ2 + x1EN +

1
ÅÅÅÅ8 J-4 + UnitStepA-

1
ÅÅÅÅ2 - x1E + 4 x1 UnitStepA-

1
ÅÅÅÅ2 - x1E + 4 x12 UnitStepA-

1
ÅÅÅÅ2 - x1E +

9 UnitStepA 3
ÅÅÅÅ2 + x1E + 12 x1 UnitStepA 3

ÅÅÅÅ2 + x1E + 4 x12 UnitStepA 3
ÅÅÅÅ2 + x1EN

We see that we get a result that begins to look more towards a Gaussian:
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Plot@8h2, gauss@x1, .5D<, 8x1, -3, 3<, PlotRange -> All,
PlotStyle -> 8Dashing@8<D, Dashing@80.02, 0.02<D<, ImageSize -> 150D;
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Figure  3.14  Two  times  a  convolution  of  a  blockfunction  with  the  same  blockfunction  gives  a
function that rapidly begins to look like a Gaussian function. A Gaussian kernel with s = 0.5
is drawn (dotted)  for comparison.

The real  Gaussian  is  reached  when  we  apply  an  infinite  number  of these  convolutions  with
the  same  function.  It  is  remarkable  that  this  result  applies  for  the  infinite  repetition  of  any
convolution kernel. This is the central limit theorem.

Ú Task  3.1  Show  the  central  limit  theorem  in  practice  for  a  number  of  other
arbitrary kernels.

3.10 Anisotropy
PlotGradientField@-gauss@x, 1D gauss@y, 1D,8x, -3, 3<, 8y, -3, 3<, PlotPoints -> 20, ImageSize -> 140D;

Figure 3.15 The slope of an isotropic Gaussian function is indicated by arrows here. There are
circularly  symmetric,  i.e.  in  all  directions  the  same,  from  which  the  name  isotropic  derives.
The  arrows  are  in  the  direction  of  the  normal  of  the  intensity  landscape,  and  are  called
gradient vectors.

The Gaussian  kernel  as specified  above  is  isotropic,  which  means  that  the  behaviour  of  the
function is in any direction the same. For 2D this means the Gaussian function is circular, for
3D it looks like a fuzzy sphere.

It  is  of  no  use  to  speak  of  isotropy  in  1-D.  When  the  standard  deviations  in  the  different
dimensions  are  not  equal,  we  call  the  Gaussian  function  anisotropic.  An  example  is  the
pointspreadfunction of an astigmatic eye, where differences in curvature of the cornea/lens in
different  directions  occur.  This  show  an  anisotropic  Gaussian  with  anisotropy  ratio  of  2Hsx ê sy = 2L :
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Unprotect@gaussD;
gauss@x_, y_, sx_, sy_D :=

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p sx sy

 ExpA-
ikjjjj x2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 sx2

+
y2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 sy2

y{zzzzE;
sx = 2; sy = 1; Block@8$DisplayFunction = Identity<,
p1 = DensityPlot@gauss@x, y, sx, syD,8x, -10, 10<, 8y, -10, 10<, PlotPoints -> 50D;
p2 = Plot3D@gauss@x, y, sx, syD, 8x, -10, 10<,8y, -10, 10<, Shading -> TrueD;
p3 = ContourPlot@gauss@x, y, sx, syD, 8x, -5, 5<, 8y, -10, 10<DD;
Show@GraphicsArray@8p1, p2, p3<D, ImageSize -> 400D;
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Figure  3.16  An  anisotropic  Gaussian  kernel  with  anisotropy  ratio  sx ê sy = 2  in  three
appearances. Left: DensityPlot, middle: Plot3D, right: ContourPlot.

3.11 The diffusion equation

The  Gaussian  function  is  the  solution  of  several  differential  equations.  It  is  the  solution  of
d yÅÅÅÅÅÅÅÅd x = yHm-xLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅs2 , because d yÅÅÅÅÅÅÅÅy = Hm-xLÅÅÅÅÅÅÅÅÅÅÅÅÅÅs2  d x , from which we find by integration lnI yÅÅÅÅÅÅÅy0

M = - Hm-xL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 s2

and thus y = y0  e- Hx-mL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s2 .

It is the solution of the linear diffusion equation, ∑LÅÅÅÅÅÅÅ∑t = ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2 + ∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2 = D L . 

This  is  a  partial  differential  equation,  stating  that  the  first  derivative  of  the  (luminance)
function LHx, yL  to the parameter t  (time, or variance) is equal to the sum of the second order
spatial  derivatives.  The  right  hand  side  is  also  known  as  the  Laplacian  (indicated  by  D  for
any  dimension,  we  call  D  the  Laplacian  operator),  or  the  trace  of  the  Hessian  matrix  of
second order derivatives:

hessian2D = ikjjj Lxx Lxy
Lxy Lyy

y{zzz; Tr@hessian2DD
Lxx + Lyy

hessian3D =
ikjjjjjjjj
Lxx Lxy Lxz
Lyx Lyy Lyz
Lzx Lyz Lzz

y{zzzzzzzz; Tr@hessian3DD
Lxx + Lyy + Lzz

The diffusion equation ∑uÅÅÅÅÅÅÅ∑t = D u  is one of some of the most famous differential equations in
physics.  It  is  often  referred  to  as  the  heat  equation.  It  belongs  in  the  row  of  other  famous
equations  like  the  Laplace  equation  D u = 0 ,  the  wave  equation  ∑2 uÅÅÅÅÅÅÅÅÅ∑t2 = D u  and  the
Schrödinger equation ∑uÅÅÅÅÅÅÅ∑t = i D u .
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The diffusion equation ∑uÅÅÅÅÅÅÅ∑t = D u  is one of some of the most famous differential equations in
physics.  It  is  often  referred  to  as  the  heat  equation.  It  belongs  in  the  row  of  other  famous
equations  like  the  Laplace  equation  D u = 0 ,  the  wave  equation  ∑2 uÅÅÅÅÅÅÅÅÅ∑t2 = D u  and  the
Schrödinger equation ∑uÅÅÅÅÅÅÅ∑t = i D u .

The  diffusion  equation  ∑uÅÅÅÅÅÅÅ∑t = D u  is  a  linear  equation.  It  consists  of  just  linearly  combined
derivative terms, no nonlinear exponents or functions of derivatives.

The  diffused  entity  is  the  intensity  in  the  images.  The  role  of  time is  taken  by the  variance
t = 2 s2 .  The intensity  is diffused over time (in our case over scale) in all  directions in the
same way (this is called isotropic).  E.g.  in 3D one can think of the example  of the intensity
of an inkdrop in water, diffusing in all directions.

The  diffusion  equation  can  be  derived  from  physical  principles:  the  luminance  can  be
considered  a  flow,  that  is  pushed  away  from  a  certain  location  by  a  force  equal  to  the
gradient.  The divergence  of this  gradient  gives  how much the total  entity (luminance  in our
case) diminishes with time.

<< Calculus`VectorAnalysis`
SetCoordinates@Cartesian@x, y, zDD;
Div@ Grad@L@x, y, zDDD
LH0,0,2L @x, y, zD + LH0,2,0L @x, y, zD + LH2,0,0L @x, y, zD

A  very  important  feature  of  the  diffusion  process  is  that  it  satisfies  a  maximum  principle
[Hummel1987b]:  the  amplitude  of  local  maxima  are  always  decreasing  when  we  go  to
coarser  scale,  and  vice  versa,  the  amplitude  of  local  minima  always  increase  for  coarser
scale.  This  argument  was  the  principal  reasoning  in  the  derivation  of the  diffusion  equation
as the generating equation for scale-space by Koenderink [Koenderink1984a].

3.12 Summary of this chapter

The normalized  Gaussian  kernel  has  an  area under  the  curve  of unity,  i.e.  as  a filter  it  does
not  multiply  the  operand  with  an  accidental  multiplication  factor.  Two  Gaussian  functions
can  be  cascaded,  i.e.  applied  consecutively,  to  give  a  Gaussian  convolution  result  which  is
equivalent  to a kernel  with the variance equal to the sum of the variances of the constituting
Gaussian  kernels.  The  spatial  parameter  normalized  over  scale  is  called  the  dimensionless
'natural coordinate'.

The  Gaussian  kernel  is  the  'blurred  version'  of  the  Delta  Dirac  function,  the  cumulative
Gaussian  function  is  the  Error  function,  which  is  the  'blurred  version'  of  the  Heavyside
stepfunction. The Dirac and Heavyside functions are examples of generalized functions.

The  Gaussian  kernel  appears  as  the  limiting  case  of  the  Pascal  Triangle  of  binomial
coefficients  in  an  expanded  polynomial  of  high  order.  This  is  a  special  case  of  the  central
limit  theorem.  The  central  limit  theorem  states  that  any  finite  kernel,  when  repeatedly
convolved with itself, leads to the Gaussian kernel.
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Anisotropy  of a  Gaussian  kernel  means  that  the  scales,  or  standard  deviations,  are  different
for  the  different  dimensions.  When  they  are  the  same  in  all  directions,  the  kernel  is  called
isotropic.

The Fourier transform of a Gaussian kernel acts as a low-pass filter for frequencies. The cut-
off  frequency  depends  on  the  scale  of  the  Gaussian  kernel.  The  Fourier  transform  has  the
same Gaussian shape. The Gaussian kernel is the only kernel for which the Fourier transform
has the same shape.

The  diffusion  equation  describes  the  expel  of  the  flow  of  some  quantity  (intensity,
temperature)  over  space  under  the  force  of  a  gradient.  It  is  a  second  order  parabolic
differential  equation.  The linear,  isotropic diffusion equation is the generating  equation for a
scale-space. In chapter 21 we will encounter a wealth on nonlinear diffusion equations.
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