
2. Foundations of scale-space
"There are many paths to the top of the mountain, 
but the view is always the same" -Chinese proverb.

2.1 Constraints for an uncommitted front-end

To compute  any type  of  representation  from the  image  data,  information  must  be  extracted
using certain  operators  interacting  with  the  data.  Basic  questions  then  are:  Which operators
to apply? Where to apply them? How should they look like? How large should they be?

Suppose such an operator is the derivative operator. This is a difference operator, comparing
two  neighboring  values  at  a  distance  close  to  each  other.  In  mathematics  this  distance  can
indeed become infinitesimally small by taking the limit of the separation distance to zero, but
in physics  this  reduces  to the sampling  distance  as the smallest  distance  possible.  Therefore
we  may  foresee  serious  problems  when  we  deal  with  such  notions  as  mathematical
differentiation on discrete data (especially for high order), and sub-pixel accuracy.

From  this  moment  on  we  consider  the  aperture  function  as  an  operator:  we  will  search  for
constraints  to  pin  down  the  exact  specification  of  this  operator.  We  will  find  an  important
result:  for  an unconstrained  front-end  there is  a unique  solution  for the operator.  This  is the
Gaussian kernel gHx; sL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!2 p s2

 ‰- x2
ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 s2 , with s the width of the kernel. It is the same bell-

shaped  kernel  we  know  from  probability  theory  as  the  probability  density  function  of  the
normal distribution, where s is the standard deviation of the distribution.

Interestingly,  there  have  been  many  derivations  of  the  front-end  kernel,  all  leading  to  the
unique Gaussian kernel. 

This  approach was  pioneered  by Iijima  (figure  2.2)  in  Japan  in the  sixties  [Iijima1962],  but
was  unnoticed  for  decades because  the  work  was  in Japanese  and therefore  inaccessible  for
Western researchers.

Independently  Koenderink  in  the  Netherlands  developed  in  the  early  eighties  a  rather
complete  multi-scale  theory  [Koenderink1984a],  including  the  derivation  of  the  Gaussian
kernel and the linear diffusion equation.

<< FrontEndVision`FEV`;
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Figure 2.1 The Gaussian kernel with unit standard deviation in 1D.

Koenderink was the first to point out the important  relation to the receptive  field families in
the visual  system, as we will discuss  in forthcoming chapters.  Koenderink's  work turned out
to be monumental  for  the  development  of  scale-space  theory.  Lindeberg  pioneered  the  field
with  a  tutorial  book  [Lindeberg1994a].  The  papers  by  Weickert,  Ishikawa  and  Imija  (who
together  discovered  this  Japanese  connection)  present  a  very  nice  review  on  these  early
developments [Weickert1997a, Weickert1999a].

Show@Import@"Iijima.gif"D, ImageSize -> 150D;

Fig. 2.2 Prof.  Taizo Iijima, emeritus prof.  of Tokyo Technical  University,  Japan,  was the first
to publish the axiomatic derivation of 'the fundamental equation of figure'.

We will  select  and discuss  two  fundamentally  different  example  approaches  to  come  to  the
Gaussian kernel in this book:

1.  An  axiomatic  approach  based  on  dimensional  analysis  and  the  notion  of  having  'no
preferences' (section 2.2);
2. An approach based on the maximization of local entropy in the observation (section 2.5);
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2.2 Axioms of a visual front-end

The  line  of  reasoning  presented  here  is  due  to  Florack  et  al.  [Florack1992a].  The
requirements  can be stated  as axioms,  or  postulates  for  an uncommitted  visual  front-end.  In
essence  it  is  the  mathematical  formulation  for  being  uncommitted:  "we  know  nothing",  or
"we have no preference whatsoever". 

Ë linearity: we do not allow any nonlinearities at this stage, because they involve knowledge
of some kind. So: no knowledge, no model, no memory;

Ë  spatial  shift  invariance:  no  preferred  location.  Any  location  should  be  measured  in  the
same fashion, with the same aperture function;

Ë  isotropy:  no  preferred  orientation.  Structures  with  a  particular  orientation,  like  vertical
trees or a horizontal horizon, should have no preference, any orientation is just as likely. This
necessitates an aperture function with a circular integration area.

Ë  scale invariance: no  preferred size, or  scale of  the aperture.  Any size of structure,  object,
texture  etc.  to  be  measured  is  at  this  stage  just  as  likely.  We  have  no  reason  to  look  only
through the  finest  of  apertures.  The visual  world  consists of  structures  at  any size,  and they
should be measured at any size.

In order to use these constraints in a theory that sets up the reasoning to come to the aperture
profile formula, we need to introduce the concept of dimensional analysis.

2.2.1 Dimensional analysis

Every physical unit has a physical dimension.

It  is  this  that  mostly  discriminates  physics  from  mathematics.   It  was  Baron  Jean-Baptiste
Fourier  who already in  1822 established the  concept  of  dimensional  analysis  [Fourier1955].
This is indeed the same mathematician so famous for his Fourier transformation.

Show@Import@"Fourier.jpg"D, ImageSize Ø 140D;

Figure 2.3 Jean-Baptiste Fourier, 1792-1842. 

Fourier described the concept of dimension analysis in his memorable work entitled "Théorie
analytique  de  la  chaleur"  [Fourier1955]  as  follows:  "It  should  be  noted  that  each  physical
quantity, known or unknown, possesses a dimension proper to itself and that the terms in an
equation  cannot  be  compared  one  with  another  unless  they  possess  the  same  dimensional
exponent".
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When  a physicist  inspects  a  new formula  he invariably  checks first  whether  the  dimensions
are  correct.  It  is  for  example  impossible  to  add  meters  to  meters/second.  One  of  the  most
fundamental  laws in physics is that the physical laws should be rock solid, independent  of a
chosen  description,  anywhere  and  anytime.  This  law  is  the  law  of  scale  invariance,  which
indicates that we have full freedom of reparametrization:

[Law  of  Scale  Invariance]  Physical  laws  must  be  independent  of  the  choice  of
fundamental parameters.

'Scale  invariance'  here  refers  to  the  notion  of  scale  with  respect  to  dimensional  units
(remember  the  microns,  kilometers  or  milliseconds  as  the  aperture  size  of  the  measurement
instrument). 

In  essence  the  law of  scale  invariance  states  that  the left  and right  part  of  the  equation  of a
physical equation should have the same dimensional units, and they should describe the same
process, whether expressed in Cartesian or polar coordinates. 

Core in  dimensional  analysis  is  that  when the  dimensions  in a complex  physical  system are
considered,  only  a limited number  of dimensionless  combinations  can be made:  the basis or
null-space  of  the  system.  It  is  an  elegant  and  powerful  tool  to  find  out  basic  relations
between  physical  entities,  or  even  to  solve  a  problem.  It  is  often  a  method  of  first  choice,
when  no  other  information  is  available.  It  is  often  quite  remarkable  how  much  one  can
deduct  by  just  using  this  technique.  We  will  use  dimensional  analysis  to  establish  the
expression defining the basic linear isotropic scale-space  kernel.  First  some examples which
illustrate the idea.

2.2.2 The cooking of a turkey

Show@Import@"Turkey.gif"D, ImageSize -> 150D;

This  example  is  taken  from  the  delightful  paper  by  Geoffrey  West  [West1988].  When
cooking  a turkey,  or  a goose,  there is the  problem of knowing  how long to cook the bird in
the oven, given the considerable variation that can exist in its weight and size. 

Many (inferior) cookbooks specify simply something like '20 minutes per pound', implying a
linear  relation.  There  are  superior  cookbooks,  however,  such  as  the  'Better  Homes  and
Gardens Cookbook'  that  recognize  the nonlinear  nature of  this relationship.  In figure 1.4 we
have adapted  the graph from this cookbook,  showing a log-log plot of the cooking time as a
function of the weight of the turkey. The slope of the linear relation is about 0.6. It turns out
that we can predict this relation just by dimensional analysis.
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data = 885, 3<, 87, 3.8<, 810, 4.5<, 814, 5<, 820, 6<, 824, 7<<;
LogLogListPlot@data, PlotJoined -> False,
Ticks -> 885, 10, 15, 20<, 83, 5, 7<<, Frame -> True,
FrameLabel -> 8"Cooking time HhrsL", "Weight HlbL"<,
PlotStyle -> PointSize@0.02D, ImageSize -> 220D;
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Figure 2.4.  Turkey cooking time as a (nonlinear)  function of  turkey weight.  The slope of the
log-log  plot  is  about  0.6.  (Based  on  a  table  in  Better  Homes  and  Gardens  Cookbook,  Des
Moines: Meridith Corp., 1962, p. 272).

Let us list the physical quantities that are involved:
- the temperature distribution inside the turkey T , in degrees Kelvin,
- the oven temperature T0  (both measured relative to the outside air temperature), in degrees
Kelvin,
- the bird density r  in kg ê m3 ,
-  the  diffusion  coefficient  of  the  turkey  k  from  Fourier's  diffusion  equation  for  T :
∑TÅÅÅÅÅÅÅÅ∑t = k D T  where D  is the Laplacian operator ∑2

ÅÅÅÅÅÅÅÅÅ∑x2 + ∑2
ÅÅÅÅÅÅÅÅÅÅ∑y2 + ∑2

ÅÅÅÅÅÅÅÅÅ∑z2 , in m2 ê sec ,
- the weight of the turkey W , in kg,
- and the time t  in seconds.
In general,  for  the dimensional  quantities  in this problem,  there will  be a relationship  of the
form T = f HT0 , W , t, r, kL . We can make a matrix of the units and their dimensions:

m = 880, 0, 0, 0, -3, 2<,80, 0, 0, 1, 0, -1<, 80, 0, 1, 0, 1, 0<, 81, 1, 0, 0, 0, 0<<;
TableForm@m, TableHeadings -> 88"length", "time", "mass", "degree"<,8"T0", "T", "W", "t", "r", "k"<<D

T0 T W t r k

length 0 0 0 0 -3 2
time 0 0 0 1 0 -1
mass 0 0 1 0 1 0
degree 1 1 0 0 0 0

A matrix can be described with a basis spanned by basis vectors,  whose linear combinations
satisfy  the  matrix  equation  m.x == 0 .  The  command  NullSpace  gives  us  the  list  of
basis vectors: 
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NullSpace@mD880, 0, -2, 3, 2, 3<, 8-1, 1, 0, 0, 0, 0<<
The (famous) Pi-theorem in dimensional analysis by Buckingham (see
http://www.treasure-troves.com/physics/BuckinghamsPiTheorem.html )  states  that  one  can
make  as  many  independent  dimensionless  combinations  of  the  physical  variables  in  the
system under study  as the  number of basis vectors  of  the nullspace  of the dimension  matrix
m. These are determined by the nullspace. 

So,  for  the  turkey  problem we  can  only construct  two  independent  dimensionless  quantities
(just fill in the exponents given by the basis vectors): r2 t3  k3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅW2 and TÅÅÅÅÅÅÅT0
. 

So,  from  the  nullspace  vector  {-1,1,0,0,0,0}  we  found  TÅÅÅÅÅÅÅT0
 and  from

{0,0,-2,3,2,3}  we found r2 t3  k3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅW2 .  Because both these quantities are dimensionless  one
must be expressible in the other, giving the relationship: TÅÅÅÅÅÅÅT0

= f I r2  t3 k3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅW2 M . Note that since the
lefthand side is dimensionless, the arbitrary function f  must be a dimensionless function of a
dimensionless  variable.  This  equation  does  not  depend  on  the  choice  of  units,  since
dimensionless units remain invariant to changes in scale: the scale invariance.
The  graph  in  the  cookbook  can  now  be  understood:  when  geometrically  similar  birds  are
considered,  cooked to the same temperature  distribution at the same oven temperature,  there
will  be  the  following  scaling  law:  r2  t3 k3

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅW2 = constant .  If  the  birds  have  the  same  physical
characteristics,  which means the same r  and k ,  we find that t3 = W2

ÅÅÅÅÅÅÅÅÅÅÅÅÅr2  k3 , so the cooking time
t  is proportional to W 2ê3  which nicely explains the slope.

2.2.3 Reynold's number

From [Olver1993] we take the example of the Reynold's number. We study the motion of an
object in some fluid. 

As physical  parameters we have the resistance D  of the object (in kgÅÅÅÅÅÅÅÅÅÅÅm s2 ),  the fluid density r
(in kgÅÅÅÅÅÅÅÅm3 ), the velocity relative to the fluid v  (in mÅÅÅÅÅs ), the object diameter d  (in m) and the fluid
viscosity m (in kgÅÅÅÅÅÅÅÅm s ). The dimension matrix becomes then:

m = 88-3, 1, 1, -1, -1<, 80, -1, 0, -1, -2<, 81, 0, 0, 1, 1<<;
TableForm@m,
TableHeadings -> 88"meter", "second", "kg"<, 8"r", "v", "d", "m", "D"<<D

r v d m D
meter -3 1 1 -1 -1
second 0 -1 0 -1 -2
kg 1 0 0 1 1

We calculate the nullspace: 

NullSpace@mD88-1, -2, 0, 0, 1<, 8-1, -1, -1, 1, 0<<
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From  the  nullspace  we  easily  find  the  famous  Reynolds  number:  R = r v dÅÅÅÅÅÅÅÅÅÅÅÅm .  The  other
dimensionless entity DÅÅÅÅÅÅÅÅÅÅr v2 is the friction factor.

2.2.4 Rowing: more oarsmen, higher speed?

Show@Import@"Rowerswanted.gif"D, ImageSize Ø 210D;

Another  illuminating  example  is  the  problem  of  the  number  of  oarsmen  in  a  competition
rowing boat: Do 8 oarsmen  need less time to row a certain distance,  say 2000 meter,  then a
single skiffer, despite the fact that the water displacement is so much bigger? Let's study the
physics again: We first find the relation for the drag force F  on a ship with length l  moving
with velocity v  through a viscous fluid with viscosity m  and density r . 

The final term to take into account in this physical setup is the gravity g . Again we can make
a dimensional matrix for the six variables involved:

m = 881, 1, 1, -1, -3, 1<, 8-2, 0, -1, -1, 0, -2<, 81, 0, 0, 1, 1, 0<<;
TableForm@m, TableHeadings ->88"meter", "second", "kg"<, 8"F", "l", "v", "m", "r", "g"<<D

F l v m r g
meter 1 1 1 -1 -3 1
second -2 0 -1 -1 0 -2
kg 1 0 0 1 1 0

Figure  2.5  Dimensional  matrix  for  the  physics  of  drag  of  an  object  through  water.  F  is  the
drag  force,  l  resp  v  are  the  length  resp.  the  velocity  of  the  ship,  m  is  the  viscosity  of  the
water. 

 and study the nullspace:

NullSpace@mD880, 1, -2, 0, 0, 1<, 8-1, 2, 2, 0, 1, 0<, 8-1, 1, 1, 1, 0, 0<<
rowdata1 = 881, 6.88<, 82, 6.80<, 84, 6.60<, 88, 5.80<<;
rowdata2 = 881, 7.01<, 82, 6.85<, 84, 6.50<, 88, 5.85<<;
rowdata3 = 881, 7.04<, 82, 6.85<, 84, 6.40<, 88, 5.95<<;
rowdata4 = 881, 7.10<, 82, 6.95<, 84, 6.50<, 88, 5.90<<;
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MultipleListPlot@rowdata1, rowdata2,
rowdata3, rowdata4, Ticks -> 881, 2, 4, 8<, Automatic<,
AxesLabel -> 8"# of\noarsmen", "Time for\n2000 m HminL"<,
PlotJoined -> True, PlotRange -> 8Automatic, 85, 8<<D;
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Figure  2.5.  The  results  of  best  US  regatta  rowing  (2000  m)  of  Summer  2000  for  different
numbers of oarsmen. The slope of the graph is about -1/9. Source: http://rowingresults.com/

The  dimensionless  units  are:   v2
ÅÅÅÅÅÅÅl g (Froude's  number),  FÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅr v2  l2 (the  pressure  coefficient)  and

l v mÅÅÅÅÅÅÅÅÅÅF  (the Poisseuille coefficient). So we have FÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅr v2  l2 = f I v2
ÅÅÅÅÅÅÅl g , l v mÅÅÅÅÅÅÅÅÅÅF M  or F º r v2 l2 f  where f

is a  dimensionless  number.  The power  E  produced  by the  n  oarsmen  together  to overcome
the  drag  force  F  is  given  by  F v .  Thus  E = F v = r v3 l2 f º n  because  E  is  directly
proportional to n .

The weight W  of a ship is proportional  to the volume of displaced water (Archimedes law),
so W º l3 . This implies FÅÅÅÅÅÅÅW º 1ÅÅÅÅl which means that larger ships have advantages, because, for
similar  bodies,  the  ratio FÅÅÅÅÅÅÅW  decreases  as  the  size  of  the  ship  increases.  We know r = 1  for
water and W º l3  (Archimedes  again) and W º n  in good approximation,  we find v3 º n1ê3
so v º n1ê9 . So eight oarsmen indeed go faster, though little, than less oarsmen.

There  are  several  nice  references  to  the  technique  of  dimensional  analysis  [West1988,
Pankhurst1964a,  Olver1993],  often  with  quite  amusing  examples,  some  of  which  were
presented in this section.

Archimedes' Number
Bingham Number
Biot Number
BoussinesqNumber
Critical Rayleigh Number
Ekman Number
Fresnel Number

Froude Number
Grashof Number
Internal Froude Number
Mach Number
Magnetic Reynolds Number
Mason Number
Moment of Inertia Ratio

Monin- Obukhov Length
Nusselt Number
Péclet Number
Prandtl Number
Rayleigh Number
RichardsonNumber
TimescaleNumber

Figure  2.6.  A  list  of  famous dimensional  numbers.  From Eric  Weisstein's  World  of  Physics.
URL: http://scienceworld.wolfram.com/physics/topics/UnitsandDimensionalAnalysis.html.

Many scaling  laws exist.  In biology scaling  laws have become a powerful  technique  to find
surprising  relations  (see  for  a  delightful  easy-to-read  overview  the  book  by  McMahon  and
Bonner [McMahon1983] and the classical book by Thompson [Thompson1942]). 
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2.3 Axiomatic derivation of the Gaussian kernel

The  dimensional  analysis  discussed  in  the  previous  section  will  now  be  used  to  derive  the
Gaussian  kernel  as  the  unique  solution  for  the  aperture  function  of  the  uncommitted  visual
front-end. 

We do the reasoning in the Fourier domain, as this turns out to be easier and leads to smaller
equations. We give the theory for 2D. We will see that expansion to other dimensionalities is
straightforward.  We  use  scripted  symbols  for  variables  in  the  Fourier  domain.  We  consider
'looking through an aperture'. The matrix m  and the nullspace become:

m = 881, -1, -2, -2<, 80, 0, 1, 1<<;
TableForm@m,
TableHeadings -> 88"meter", "candela"<, 8"s", "w", "L0", "L"<<D

s w L0 L
meter 1 -1 -2 -2
candela 0 0 1 1

Figure 2.8 Dimensional matrix for the physics of observation through an aperture.

NullSpace@mD880, 0, -1, 1<, 81, 1, 0, 0<<
were s is the size of the aperture, w the spatial coordinate (frequency in the Fourier domain),
!0  the  luminance  of  the  outside  world  (in  candela  per  square  meter:  cd ê m2 ),  and  !  the
luminance  as  processed  in  our  system.  The  two  dimensionless  units  !ÅÅÅÅÅÅÅÅ!0

and  sw  can  be
expressed  into  each  other:  !ÅÅÅÅÅÅÅÅ!0

= "HswL ,  where  "  is  the  kernel  (filter,  aperture)  function  in
the  Fourier  domain  to  be  found  (the  Gaussian  kernel  we  are  after).  We  now  plug  in  our
constraints, one by one.
No  preference  for  location,  together  with  the  prerequisite  for  linearity,  leads  to  the
recognition  of the  process  as a convolution.  The  aperture  function  is  shifted  over  the whole
image  domain,  with  no  preference  for  location:  any  location  is  measured  (or  filtered,
observed)  with  the  same  aperture  function  (kernel,  template,  filter,  receptive  field:  all  the
same thing). This is written for the spatial domain as:

LHx, yL = L0 Hx, yL ≈ GHx, yL  ª Ÿ-¶

¶
L0 Hu, vL GHx - u, y - vL „ u „ v

In the Fourier domain, a convolution of functions translates to a regular product between the
Fourier transforms of the functions: !Hwx , wy L = !0 Hwx, wy L . "Hwx , wy L
The axiom of isotropy  translates  into  the  fact  that  we now only  have  to  consider  the  length
||w”÷÷ ||  of  our  spatial  frequency  vector  w”÷÷ = 8wx , wy < :   w = »» w”÷÷ »» = "#####################wx 2 + wy 2 .  This  is  a
scalar.

The  axiom  of  scale-invariance  is  the  core  of  the  reasoning:  when  we  observe  (or  blur)  an
observed  image  again,  we  get  an  image  which  is  blurred  with  the  same  but  wider  kernel:
"Hw s1 L "Hw s2 L = "Hw s1 + w s2 L .  Only  the  exponential  function  is  a  general  solution  of
this equation: "Hw sL = exp HHa w sLp L  where a  and p  are some arbitrary constants.
We  must  raise  the  argument  here  to  some  power  p  because  we  are  dealing  with  the
dimensionless  parameter w s.  In general,  we don't know a  or p , so we apply the following
constraint: isotropy.
The  dimensions  are  independent,  thus  separable:  »» w”÷÷  s »» = Hw1  sL e”1 + Hw1  sL e”2 + ...  where
the  e”i  are  the  basis  unit  coordinate  vectors.  Recall  that  the  vector  w”÷÷
(w”÷÷ = wx  e”x + wy  e”y + wx  e”z )  in  the  Fourier  domain  is  the  set  of  spatial  frequencies  in  the
spatial dimensions. The magnitude of »» w”÷÷  s »»  is calculated by means of Pythagoras from the
projections  along  e”i ,  so  we  add  the  squares:  p = 2 .  We  further  demand  the  solution  to  be
real,  so a2  is  real.  We notice  that  when we open the aperture fully,  we blur everything  out,
so  limsw ∞0 "HwsL Ø 0 .  This  means  that  a2  must  be  negative.  We  choose  a = - 1ÅÅÅÅ2 . As we
will  see,  this  (arbitrary)  choice  gives  us a  concise  notation  of the  diffusion  equation.  So we
get:  "Hw”÷÷ , sL = expH- 1ÅÅÅÅ2  s2  w2 L .  We  go  to  the  spatial  domain  with  the  inverse  Fourier
transform:
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spatial dimensions. The magnitude of »» w”÷÷  s »»  is calculated by means of Pythagoras from the
projections  along  e”i ,  so  we  add  the  squares:  p = 2 .  We  further  demand  the  solution  to  be
real,  so a2  is  real.  We notice  that  when we open the aperture fully,  we blur everything  out,
so  limsw ∞0 "HwsL Ø 0 .  This  means  that  a2  must  be  negative.  We  choose  a = - 1ÅÅÅÅ2 . As we
will  see,  this  (arbitrary)  choice  gives  us a  concise  notation  of the  diffusion  equation.  So we
get:  "Hw”÷÷ , sL = expH- 1ÅÅÅÅ2  s2  w2 L .  We  go  to  the  spatial  domain  with  the  inverse  Fourier
transform:

Clear@sD;
g@x_, s_D = SimplifyAInverseFourierTransformAExpA-

s2  w2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
2

E, w, xE, s > 0E
‰- x2ÅÅÅÅÅÅÅÅÅÅÅ

2 s2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

s

The  last  notion  to  use  it  that  we  want  a  normalized  kernel.  The  integrated  area  under  the
curve must be unity:

SimplifyAIntegrateA ‰- x2ÅÅÅÅÅÅÅÅÅÅÅ
2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
s

, 8x, -¶, ¶<E, s > 0Eè!!!!!!!2 p

We  divide  by  this  factor,  so  we  finally  find  for  the  kernel:  GHx”, sL = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
2 p  s

 expI- x”÷ .x”÷ÅÅÅÅÅÅÅÅÅÅÅ2 s2 M .
This  is  the  Gaussian  kernel,  which  is  the  Green's  function  of  the  linear,  isotropic  diffusion
equation ∑2 LÅÅÅÅÅÅÅÅÅÅ∑ x2 + ∑2 LÅÅÅÅÅÅÅÅÅÅÅ∑ y2 = Lxx + Lyy = ∑LÅÅÅÅÅÅÅ∑ t , where t = 2 s2  is the variance. 

Note  that  the  'derivative  to  scale'  in  the  diffusion  equation  (as  it  is  typically  called)  is  the
derivative  to  2s2 ,  which  also  immediately  follows  from  a  consideration  of  the
dimensionality  of  the equation.  The variance t  has  the dimensional  unit of m2 . The original
image  is  the  boundary  condition  of  the  diffusion:  it  starts  'diffusing'  from  there.Green's
functions  are  named  in  honor  of  the  English  mathematician  and  physicist  George  Green
(1793-1841).

So  from  the  prerequisites  'we  know  nothing',  the  axioms  from  which  we  started,  we  have
found  the  Gaussian  kernel  as  the  unique  kernel  fulfilling  these  constraints.  This  is  an
important  result,  one  of the  cornerstones  in  scale-space  theory.  There  have been more ways
in which the kernel could be derived as the unique kernel. Weickert [Weickert1997a] gives a
systematic  and  thorough  overview  of  the  historical  schemes  that  have  been  published  to
derive the Gaussian.
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So  from  the  prerequisites  'we  know  nothing',  the  axioms  from  which  we  started,  we  have
found  the  Gaussian  kernel  as  the  unique  kernel  fulfilling  these  constraints.  This  is  an
important  result,  one  of the  cornerstones  in  scale-space  theory.  There  have been more ways
in which the kernel could be derived as the unique kernel. Weickert [Weickert1997a] gives a
systematic  and  thorough  overview  of  the  historical  schemes  that  have  been  published  to
derive the Gaussian.

2.4 Scale-space from causality

Koenderink presented in his famous paper "The structure of images" [Koenderink1984a] the
elegant  and  concise  derivation  of  the  linear  diffusion  equation  as  the  generating  partial
differential equation for the construction of a scale-space. 

The arguments were taken from the physics of causality: when we increase the scale and blur
the image further, we have the situation that the final blurred image is completely caused by
the image we started from. 

The  previous  level  of  scale  is  the  cause  of  events  at  the  next  level.  We  first  discuss  the
situation in 1D.

Clear@fD; f@x_D := Sin@xD + Sin@3 xD; gr = Plot@f@xD, 8x, -3, 3<, Epilog ->HArrow@8x, f@xD<, 8x, f@xD + Sign@f''@xD D .5<D ê. Solve@f'@xD == 0, xDL,
AxesLabel -> 8"x", "intensity"<, ImageSize -> 200D;
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Figure  2.9  Under  causal  blurring  signals  can  only  change  in  the  direction  of  less  structure.
Generation  of  new  structure  is  impossible,  so  the  signal  must  always  be  closed  to  above
(seen  from  both  sides  of  the  signal).  The  arrows  indicate  the  direction  the  intensity  moves
under blurring.

A higher  level  of  scale contains  always  less  structure.  It  is  physically  not  possible  that  new
structure is being generated. This is one of the most essential properties of a scale-space. We
will encounter this property again when we consider nonlinear scale-spaces in chapter 19. 

The  direction  of  the  arrows  in  figure  2.9  are  determined  by  the  fact  if  the  extremum  is  a
maximum  or  a  minimum.  In  a  maximum  the  intensity  is  bound  to  decrease,  in  a  minimum
the  intensity  is  bound  to  increase.  The second  order  derivative  determines  the  curvature  of
the signal, and the sign determines whether the function is locally convex (in a maximum) or
concave (in a minimum). We have the following conditions:

maximum: ∑2 uÅÅÅÅÅÅÅÅÅ∑x2 < 0, ∑ uÅÅÅÅÅÅÅÅ∑ t < 0, intensity always decreasing;
minimum: ∑2 uÅÅÅÅÅÅÅÅÅ∑x2 > 0, ∑ uÅÅÅÅÅÅÅÅ∑ t > 0, intensity always increasing.

These conditions can be summarized by ∑2 uÅÅÅÅÅÅÅÅÅ∑x2  ∑ uÅÅÅÅÅÅÅÅ∑ t > 0.

 The most important property to include next is the requirement of linearity: the second order
derivative  to  space  ∑2 uÅÅÅÅÅÅÅÅÅ∑x2  is  linearly  related  to  the  first  order  derivative  to  scale  ∑ uÅÅÅÅÅÅÅÅ∑ t ,  so:
∑2 uÅÅÅÅÅÅÅÅÅ∑x2 = a ∑ uÅÅÅÅÅÅÅÅ∑ t .  We  may  resample  any  scale  axis  in  such  a  way  that  a = 1  so  we  get
∑2 uÅÅÅÅÅÅÅÅÅ∑x2 = ∑ uÅÅÅÅÅÅÅÅ∑ t .  This  is  the  1D    linear  isotropic  diffusion  equation,  an  important  result.  The

Green's function of the linear diffusion equation is the Gaussian kernel 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!2 p s2
 e- x2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 s2 , which
means that any function upon which the diffusion is applied, is convolved with this Gaussian
kernel.
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 The most important property to include next is the requirement of linearity: the second order
derivative  to  space  ∑2 uÅÅÅÅÅÅÅÅÅ∑x2  is  linearly  related  to  the  first  order  derivative  to  scale  ∑ uÅÅÅÅÅÅÅÅ∑ t ,  so:
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Green's function of the linear diffusion equation is the Gaussian kernel 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!2 p s2
 e- x2

ÅÅÅÅÅÅÅÅÅÅÅÅÅ2 s2 , which
means that any function upon which the diffusion is applied, is convolved with this Gaussian
kernel.

We  can  check  (with  t = 1ÅÅÅÅ2 s2 ,  the  double  ==  means  equation,  test  of  equality,  not
assignment):

Clear@x, tD; ∑x,x
ikjjjjj 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!
4 p t

 E- x2ÅÅÅÅÅÅÅÅ4 t
y{zzzzz == ∑t

ikjjjjj 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!
4 p t

 E- x2ÅÅÅÅÅÅÅÅ4 t
y{zzzzz êê Simplify

True

Also any spatial derivative of the Gaussian kernel is a solution. We test this for the first order
derivative:

Clear@x, tD; ∑x,x
ikjjjjj∑x

ikjjjjj 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!
4 p t

 E- x2ÅÅÅÅÅÅÅÅ4 t
y{zzzzzy{zzzzz == ∑t

ikjjjjj∑x
ikjjjjj 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!
4 p t

 E- x2ÅÅÅÅÅÅÅÅ4 t
y{zzzzzy{zzzzz

True

Ú Task  2.1  Show  that  this  holds  true  for  any  order  of  derivative,  including  mixed
derivatives for 2- or higher dimensional Gaussians.

In 2D and higher dimensions the reasoning is the same. Again we demand the function to be
closed to the top. No new structure can emerge. 

The  requirement  for  the  sign  of  the  second  order  derivative  is  now  replaced  by  the
requirement on the sign of the rotation invariant Laplacian, ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2 + ∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2 .

The  reasoning  leads  to  ∑2 uÅÅÅÅÅÅÅÅÅ∑x2 + ∑2 uÅÅÅÅÅÅÅÅÅ∑y2 = ∑ uÅÅÅÅÅÅÅÅ∑ t ,  the  2D  linear  isotropic  diffusion  equation,  or
D u = ∑ uÅÅÅÅÅÅÅÅ∑ t  in any dimension (the Laplacian operator ∑2

ÅÅÅÅÅÅÅÅÅ∑x2 + ∑2
ÅÅÅÅÅÅÅÅÅ∑y2 is often indicated as D).

In the  following chapters  we will study the  Gaussian kernel  and the  Gaussian derivatives in
detail. First we present in the next section an alternative and particularly attractive alternative
approach to derive the scale-space kernel starting from the maximization of entropy.
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2.5 Scale-space from entropy maximization

An  alternative  way  to  derive  the  Gaussian  kernel  as  the  scale-space  kernel  of  an
uncommitted observation is based on the notion that the 'uncommittedness'  is expressed in a
statistical  way  using  the  entropy  of  the  observed  signal.  The  reasoning  is  due  to  Mads
Nielsen, IT-University Copenhagen [Nielsen1995, Nielsen1997a]:

First of all, we want to do a measurement. We have a device which has some integration area
over which the measurement is done. As we have seen before, the area (or length or volume)
of  this  detector  should  have  a  finite  width.  It  cannot  be  brought  down to  zero size,  because
then nothing would be measured anymore.

The  measurement  should  be  done  at  all  locations  in  the  same  way,  with  either  a  series  of
identical  detectors,  or  the  same  detector  measuring  at  all  places.  In  mathematical  language
this is stating that the measurement should be invariant for translation. 

We  also  want  the  measurement  to  be  linear  in  the  signal  to  be  measured,  for  example  the
intensity.  This  means  that  when  we measure  a signal  twice  as strong,  also the  output  of  the
measurement  should be doubled,  and when we measure two signals, the measurement  of the
sum  of  the  signals  should  be  equal  to  the  sum  of  the  individual  measurements.  In
mathematical language again this is called invariance for translation along the intensity axis. 

These  requirements  lead  automatically  to  the  formulation  that  the  observation  must  be  a
convolution: hHxL = Ÿ-¶

¶
LHaL gHx - aL „ a . 

LHxL  is  the  observed  variable,  in  this  example  the  luminance,  gHxL  is  our  aperture,  hHxL  the
result of our measurement. 

The aperture function gHxL  should be a unity filter.  Such a filter is called a normalized  filter.
Normalization  means  that  the  integral  over  its  weighting  profile  should  be  unity:Ÿ-¶

¶
gHxL „ x = 1 . The filter should not multiply the data with something other than 1.

The  mean  of  the  filter  gHxL  should  be  at  the  location  where  we  measure  (say at  x0 ),  so  the
expected value (or first moment) should be x0 : Ÿ-¶

¶
x gHxL „ x = x0 . Because we may take any

point for x0 , we may take for our further calculations  as well the point x0 = 0 , which makes
life somewhat easier.

The size of the aperture is a very essential element. We want to be free in choice of this size,
so at least we want to find a family of filters where this size is a free parameter. We can then
monitor  the  world  at  all  these  sizes  by  'looking  through'  the  complete  set  of  kernels
simultaneously.  We  call  this 'size'  s.  It  has  the  dimension  of length,  and is the  yardstick  of
our measurement. We call it the inner scale. Every physical measurement has an inner scale.
It  can  be  mm,  milliseconds,  light-years,  anything,  but  for  every  dimension  we  need  a
yardstick. Here s is our yardstick. We can express distances in a measurement in "number of
s's that we stepped around".
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If  we  weight  distances  quadratically  with  our  kernel  we  separate  the  dimensions:  two
orthogonal  vectors  fulfill  Ha + bL2 = a2 + b2 .  Distances  (or  lengths)  add  up quadratically  by
Pythagoras' law. We call the weighted metric s2 :  Ÿ-¶

¶
x2 gHxL „ x = s2 .

The  last  equation  we  add  to  the  set  that  will  lead  to  the  final  formula  of  the  kernel,  comes
from  the  incorporation  of  the  request  to  be  as  uncommitted  as  possible.  We  want  no  filter
that  has  a  preference  for  something,  such  as  vertical  structures,  or  squares  or  circles.
Actually,  we want,  in statistical  terms,  the  'orderlessness'  or  disorder of  the measurement  as
large as possible, there should be no ordering, ranking, structuring or whatsoever. Physically,
this  is  expressed  through  the  entropy,  a  measure  for  disorder.  The  entropy  of  very  regular
data  is  low,  we  just  want  maximal  entropy.  The  formula  for  entropy  of  our  filter  is:
H = Ÿ-¶

¶
gHxL ln gHxL „ x  where lnHxL  is the natural logarithm. 

We look for the gHxL  for which the entropy is maximal, given the constraints that we derived
before:‡

-¶

¶

gHxL „ x = 1, ‡
-¶

¶

x gHxL „ x = 0 and ‡
-¶

¶

x2 gHxL „ x = s2.

When  we  want  to  find  a  maximum  under  a  set  of  given  constraints,  we  apply  a  standard
mathematical  technique named the method of Euler-Lagrange equations  (see for an intuitive
explanation of this method Petrou and Bosdogianni [Petrou1999a, page 258]).

This  is  a  technique  from  the  calculus  of  variations.  We  first  make  the  Euler-Lagrange
equation,  or  Lagrangian,  by  adding  to  the  entropy  term  the  constraints  above,  each
multiplied with an unknown constant l, which we are going to determine. The Lagrangian E
becomes:

E = Ÿ-¶

¶
gHxL ln gHxL „ x + l1  Ÿ-¶

¶
gHxL „ x + l2  Ÿ-¶

¶
x gHxL „ x + l3  Ÿ-¶

¶
x2 gHxL „ x

The condition to be minimal for a certain gHxL  is given by the vanishing of the first variation
(corresponding  to  the  first  derivative,  but  in  this  case  with  respect  to  a  function)  to  gHxL :
∑EÅÅÅÅÅÅÅÅ∑g = 0 .  This  gives  us:  -1 + l1 + x l2 + x2 l3 - ln gHxL = 0  from which  we  can easily  solve
gHxL :  gHxL = e-1+l1 +x l2 +x2 l3 .  So,  gHxL  is  beginning  to  get  some  shape:  it  is  an  exponential
function  with constant,  linear and quadratic  terms of x  in the exponent.  Let us solve  for the
l 's:

g@x_D := E-1+l1+x l2+x2  l3;

From the equation we see that at least l3  must be negative,  otherwise the function explodes,
which is physically  unrealistic.  We then need the explicit  expressions  for our constraints,  so
we make the following set of constraint equations, simplified with the condition of l3 < 0 :
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eqn1 = SimplifyA‡
-¶

¶

g@xD „x == 1, l3 < 0E
‰-1+l1- l22ÅÅÅÅÅÅÅÅÅÅ4 l3

è!!!
p

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!
-l3

== 1

eqn2 = SimplifyA‡
-¶

¶

x g@xD „x == 0, l3 < 0E
‰-1+l1- l22ÅÅÅÅÅÅÅÅÅÅ4 l3

è!!!
p l2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 H-l3L3ê2 == 0

eqn3 = SimplifyA‡
-¶

¶

x2 g@xD „x == s2, l3 < 0E
‰-1+l1- l22ÅÅÅÅÅÅÅÅÅÅ4 l3

è!!!
p Hl22 - 2 l3L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 H-l3L5ê2 == s2

Now we can solve for all three l's:

solution = Solve@8eqn1, eqn2, eqn3<, 8l1, l2, l3<D99l1 Ø
1
ÅÅÅÅ4 LogA ‰4

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 p2 s4 E, l2 Ø 0, l3 Ø -
1

ÅÅÅÅÅÅÅÅÅÅÅ2 s2 ==
g@x_, s_D = SimplifyAE-1+l1+x l2+x2  l3 ê. Flatten@solutionD, s > 0E

‰- x2ÅÅÅÅÅÅÅÅÅÅÅ
2 s2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!2 p s

which is the Gaussian function. A beautiful result. Again, we have found the Gaussian as the
unique  solution  to  the  set  of  constraints,  which  in  principle  are  a  formal  statement  of  the
uncommittment of the observation.

2.6 Derivatives of sampled, observed data

All partial derivatives of the Gaussian kernel are solutions too of the diffusion equation.

So the  first  important  result  is  that  we have  found the  Gaussian  kernel  and  all of  its  partial
derivatives  as  the  unique  set  of  kernels  for  a  front-end  visual  system  that  satisfies  the
constraints:  no preference  for location, scale and orientation,  and linearity.  We have found a
one-parameter family of kernels, where the scale s is the free parameter.

Here are the plots of some members of the Gaussian derivative family:

g :=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

 ExpA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E; s = 1;

Block@8$DisplayFunction = Identity<,
graphs = Plot3D@Evaluate@#D, 8x, -3.5, 3.5<, 8y, -3.5, 3.5<D & êü8g, ∑x g, ∑x ∑y g, ∑x,x g + ∑y,y g<D;

2. Foundations of scale-space 27



Show@GraphicsArray@graphsD, ImageSize -> 400D;

Figure 2.10 Upper left: the Gaussian kernel G(x,y;s) as the zeroth order point operator; upper
right: ∑GÅÅÅÅÅÅÅÅ∑x ; lower left: ∑2 GÅÅÅÅÅÅÅÅÅÅÅ∑x  ∑y ; lower right: the  Laplacian ∑2 GÅÅÅÅÅÅÅÅÅÅÅ∑x2 + ∑2 GÅÅÅÅÅÅÅÅÅÅÅ∑y2  of the Gaussian kernel.

Because  of  their  importance,  we  will  discuss  properties  of  the  Gaussian  kernel  and  its
derivatives  in  detail  in  the  next  chapters.  In  chapters  6  and  7  we  will  see  how  sensitivity
profiles  of  cells  in  the  retina  closely  resemble  the   Laplacian  of  the  Gaussian,  and  in  the
primary  visual  cortex  they  closely  resemble  Gaussian  derivatives,  as  was  first  noticed  by
Young  [Young1985,  Young1986,  Young1986b,  Young1987a]  and  Koenderink
[Koenderink1984a]. 

The  derivative  of  the  observed  data  L0 Hx, yL ≈ GHx, y; sL   (the  convolution  is  the
observation)  is  given  by  ∑ÅÅÅÅÅÅÅ∑x  8L0 Hx, yL ≈ GHx, y; sL< ,  which  can  be  rewritten  as

L0 Hx, yL ≈ ∑ÅÅÅÅÅÅÅ∑x  GHx, y; sL . Note that we cannot apply the chainrule of differentiation here: the

operator  between  L0Hx, yL  and GHx, y; sL  is  a  convolution,  not  a  product.  The commutation
(exchange)  of  the  convolution  operator  and  the  differential  operator  is  possible  because  of
their  linearity.  It  is  best  appreciated  when  we  consider  the  equation

∑ÅÅÅÅÅÅÅ∑x  8L0 Hx, yL ≈ GHx, y; sL<  in the Fourier domain. We need the two rules:

-  The  Fourier  transform  of  the  derivative  of  a  function  is  equal  to  -i w  times  the  Fourier
transform of the function, where i ª

è!!!!!!!
-1 , and 

- convolution in the spatial domain is a product in the Fourier domain:

Clear@fD; FourierTransform@f@xD, x, wD
FourierTransform@f@xD, x, wD
FourierTransform@D@f@xD, xD, x, wD
-Â w FourierTransform@f@xD, x, wD

So  we  get  (L`  denotes  the  Fourier  transform  of  L):  ∑ÅÅÅÅÅÅÅ∑x  8L0 Hx, yL ≈ GHx, y; sL<  ö#

-i w 9L` . G
` = = L

` . 9 -i w G
` =   ö#

-1

 L0 Hx, yL ≈ ∑ÅÅÅÅÅÅÅ∑x  GHx, y; sL
The commutation  of the convolution and the  derivative  operators , which is easily shown in
the Fourier domain. From this we can see the following important results:

Ê Differentiation  and  observation  are  done  in  a  single  step:  convolution  with  a  Gaussian
derivative kernel.

Ê Differentiation is now done by integration, namely by the convolution integral.
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This  is  a  key  result  in  scale-space  theory.  We  can  now  apply  differentiation  (even  to  high
order) to sampled data like images. 

We  just  convolve  the  image  with  the  appropriate  Gaussian  derivative  kernel.  But  where  do
we need the derivatives, and where do we need higher order derivatives?

An important  area  of  application  is  the  exploitation  of  geometric  information  from  images.
The most basic example is the first order derivative, which gives us edges.

Edges are defined as a sudden change of intensity L  when we walk over the image and this is
exactly what a derivative captures: ∑LÅÅÅÅÅÅÅ∑x . 

Derivatives  abound  in  the  detection  of  differential  features  (features  expressed  as  some
(polynomial)  expression  in  image  derivatives).  They  also  show  up  with  the  detection  of
motion,  of  stereo  disparity  to  find  the  depth,  the  detection  of  structure  in  color  images,
segmentation,  image  enhancement  and  denoising,  and  many  other  application  areas  as  we
will see in the rest of the book.

Some more implications of the theory so far:

Ê The  Gaussian  kernel  is  the  physical  analogue  of  a  mathematical  point,  the  Gaussian
derivative  kernels  are  the  physical  analogons  of  the  mathematical  differential  operators.
Equivalence is reached for the limit when the scale of the Gaussian goes to zero: 

Ê limsØ0 GHx; sL = dHxL , where dHxL  is the Dirac delta function, and
 limsØ0 9 f HxL ≈ ∑GHx; sLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x =  = limsØ0 Ÿ-¶

¶
f HaL ∑x GHx - a; sL „ a  =

 Ÿ-¶

¶
f HaL dHx - aL „ a = ∑x f HxL .

‡
-¶

¶

f@aD D@DiracDelta@a - xD, xD „a

f£ @xD
Ê There is an intrinsic and unavoidable  relation between differentiation  and blurring.  By its

definition,  any  differentiation  on  discrete  (observed)  data  blurs  the  data  somewhat,  with
the amount  of  the  scale of  the  differential  operator.  There  is no  way out,  this  increase of
the inner scale is a physical necessity. We can only try to minimize the effect by choosing
small  scales  for  the  differentiation  operator.  However,  this  minimal  scale  is  subject  to
constraints  (as  is  the  maximal  scale).  In  chapter  7  we  develop  the  fundamental  relation
between  the  scale  of  the  operator,  its  differential  order  and  the  required  amount  of
accuracy.

The  Mathematica  function  gD[im,nx,ny,s]  implements  a  convolution  with  a  Gaussian
derivative on the image im,  with order of differentiation nx  with respect  to x  resp. ny  with
respect to y . Figure 2.12 shows the derivative to x  and y  of a simple test image of a square:
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im = Table@If@80 < x < 170 && 80 < y < 170, 1, 0D, 8y, 1, 256<, 8x, 1, 256<D;
BlockA8$DisplayFunction= Identity<,
imx = gD@im, 1, 0, 1D; imy = gD@im, 0, 1, 1D; grad =

"##########################
imx2 + imy2 ;

p1 = ListDensityPlotêü 8im, imx, imy, grad<E;
Show@GraphicsArray@p1D, ImageSize Ø 400D;

Figure  2.11  The  first  order  derivative  of  an  image  gives  edges.  Left:  original  test  image
LHx, y L ,  resolution  2562 .  Second:  the  derivative  with  respect  to  x :  ∑LÅÅÅÅÅÅÅ∑x  at  scale  s = 1  pixel.
Note  the  positive  and  negative  edges.  Third:  the  derivative  with  respect  to  y :  ∑LÅÅÅÅÅÅÅ∑y  at  scale

s = 1  pixel.  Right:  the  gradient  $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H ∑LÅÅÅÅÅÅÅ∑x L2
+ H ∑LÅÅÅÅÅÅÅ∑x L2  at  a  scale  of  s = 1  pixel  which  gives  all

edges.

Ê The Gaussian  kernel  is  the  unique  kernel  that  generates  no spurious  resolution.  It  is  the
blown-up  physical  point  operator,  the  Gaussian  derivatives  are  the  blown-up  physical
multi-scale derivative operators. 

Show@Import@"blown-up ddx.jpg"D, ImageSize -> 300D;

Figure 2.12 Convolution with a Gaussian derivative is the blown-up version of convolution with
the Delta Dirac function. Taking the limit of the scale to zero ('letting the air out") leads to the
'regular' mathematical formulation.

Ê Because  convolving  is  an  integration,  the  Gaussian  kernel  has  by  definition  a  strong
regularizing  effect.  It  was  shown  by  Schwartz  [Schwartz1951]  that  differentiation  of
distributions  of  data  ('wild'  data,  such  as  discontinuous  or  sampled  data)  has  to  be
accomplished by convolution with  a smooth testfunction.  This smooth testfunction  is our
Gaussian kernel  here.  So, we recognize  that the  process  of observation  is  the  regularizer.
So there is no  need to smooth  the data  first.  Actually,  one  should  never change the input
data, but only make modifications to the process of observation where one has access: the
filter  through  which  the  measurement  is  done.  The  visual  system  does  the  same:  it
employs filters at many sizes and shapes, as we will see in the chapter on human vision. 

Ê Recently some interesting papers have shown the complete equivalence of Gaussian scale
space  regularization  with  a  number  of  other  methods  for  regularization  such  as  splines,
thin  plate  splines,  graduated  convexity  etc.  [Scherzer2000a,  Nielsen1996b,
Nielsen1997b]. In chapter 10 we will discuss the aspects of differentiation of discrete data
(it is 'ill-posed') and the property of regularization in detail.
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Ê Recently some interesting papers have shown the complete equivalence of Gaussian scale
space  regularization  with  a  number  of  other  methods  for  regularization  such  as  splines,
thin  plate  splines,  graduated  convexity  etc.  [Scherzer2000a,  Nielsen1996b,
Nielsen1997b]. In chapter 10 we will discuss the aspects of differentiation of discrete data
(it is 'ill-posed') and the property of regularization in detail.

Ê The set of Gaussian derivative kernels (including the zeroth order derivative: the Gaussian
kernel itself) forms a complete  set of derivatives.  This  set is sometimes  referred to as the
N-jet.

Now the  basic  toolkit  is  there  to  do  differential  geometry,  tensor  analysis,  invariant  theory,
topology  and  apply  many  more  mathematical  tools  on  our  discrete  data.  This  will  be  the
topic of much of the rest of this book.

2.7 Scale-space stack

A scale-space  is a  stack  of 2D images,  where  scale  is the  third  dimension.  One can make a
scale-space  of  any  measurement,  so  one  can  measure  an  intensity  scale-space,  a  gradient
magnitude scale-space, a  Laplacian scale-space etc.

im = Import@"mr64.gif"D@@1, 1DD;
Block@8$DisplayFunction = Identity, xres, yres, max<,8yres, xres< = Dimensions@imD; max = Max@imD;
gr = Graphics3D@ListPlot3D@Table@0, 8yres<, 8xres<D,

Map@GrayLevel, imê max, 82<D, Mesh Ø False, Boxed Ø FalseDD;
gb = Table@blur = gD@im, 0, 0, iD; Graphics3D@ListPlot3D@

Table@i 10, 8yres<, 8xres<D, Map@GrayLevel, blurê max, 82<D,
Mesh Ø False, Boxed Ø FalseDD, 8i, 1, 6<DD;

Show@8gr, gb<, BoxRatios Ø 81, 1, 1<, ViewPoint -> 81.190, -3.209, 1.234<,
DisplayFunction -> $DisplayFunction, Boxed -> True, ImageSize -> 240D;

Figure 2.13 A scale-space of a 2D MRI sagittal slice, dimensions 642 , for a range of scales s
=1,2,3,4,5,and 6 pixels.

We  found  a  family  of  kernels,  with  the  scale  s  as  a  free  parameter.  When  we  don't  know
what  scale  to  apply  in  an  uncommitted  measurement,  we  just  take  them  all.  It  is  like
sampling at spatial locations: we put CCD elements all over our receptor's sensitive area. We
will  see  that  the  visual  system  does  just  that:  it  has  groups  of  rods  and  cones  in  the  retina
(termed receptive fields) of a wide range of circular diameters,  effectively sampling at many
different scales.
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We  found  a  family  of  kernels,  with  the  scale  s  as  a  free  parameter.  When  we  don't  know
what  scale  to  apply  in  an  uncommitted  measurement,  we  just  take  them  all.  It  is  like
sampling at spatial locations: we put CCD elements all over our receptor's sensitive area. We
will  see  that  the  visual  system  does  just  that:  it  has  groups  of  rods  and  cones  in  the  retina
(termed receptive fields) of a wide range of circular diameters,  effectively sampling at many
different scales.

We will see in the chapters on the 'deep structure' of images (i.e. the structure along the scale
axis),  that  in  the  scale-space  the  hierarchical,  topological  structure  of  images  is  embedded.
See chapters 13-15.

One can make scale-spaces of any dimension. A scale-space stack of 3D images, such as 3D
datasets  from  medical  tomographic  scanners,  is  a  4D  space  (x,y,z;s)  and  is  termed  a
hyperstack [Vincken 1990].

And here are two scale-spaces of a real image, a scale-space  of the intensity (no derivatives,
only  blurred)  and  a  scale-space  of  the  Laplacian  (the  Laplacian  is  the  sum  of  the  second
order derivatives of the image, ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2 + ∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2 ).

im = Import@"mr128.gif"D@@1, 1DD;
DisplayTogetherArray@8Table@ListDensityPlot@gD@im, 0, 0, Et DD, 8t, 0, 2.1, .3<D,

Table@ListDensityPlot@gD@im, 2, 0, Et D + gD@im, 0, 2, Et DD,8t, 0, 2.1, .3<D<, ImageSize -> 390D;

Figure 2.14 A scale-space is a stack of images at a range of scales. Top row: Gaussian blur
scale-space  of  a  sagittal  Magnetic  Resonance  image,  resolution  1282 ,  exponential  scale
range from s = e0  to s = e2.1 .  Bottom row: Laplacian scale-space  of the same image,  same
scale range.
The  function  gD[im,nx,ny,s]  will  be  explained  later  (chapter  4  and  5).  It  convolves  the
image with a Gaussian derivative.

2.8 Sampling the scale-axis

From the example from the trip through scale in the "Powers of 10" series we made steps of
a factor  10  each time we took a  new picture.  This is an exponential  stepping through scale,
and we know this as experimental fact. We step in 'orders of magnitude'. The scale parameter
s gives a logical length parameter for the level of resolution. 

If we consider how to parametrize scale s with a dimensionless  parameter t, then we realize
that scale-invariance (or self-similarity) must imply that d s ê d t  must be proportional to s. 

In other words,  the change that we see when we step along the scale axis,  is proportional  to
the  level  of  resolution  at  hand.  Without  loss  of  generality  we  may  take  d sÅÅÅÅÅÅÅÅÅd t = s  with
s »t=0 = e .  We  call  the  dimensionless  parameter  t  the  natural  scale  parameter:  s = e et

where  t  can  be  any  number,  even  negative.  Note  that  the  artificial  singularity  due  to  the
problematic value of s = 0  is now no longer present.
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In other words,  the change that we see when we step along the scale axis,  is proportional  to
the  level  of  resolution  at  hand.  Without  loss  of  generality  we  may  take  d sÅÅÅÅÅÅÅÅÅd t = s  with
s »t=0 = e .  We  call  the  dimensionless  parameter  t  the  natural  scale  parameter:  s = e et

where  t  can  be  any  number,  even  negative.  Note  that  the  artificial  singularity  due  to  the
problematic value of s = 0  is now no longer present.

There is a difference between 'zooming' and 'blurring':

zooming  is  the  reparametrization  of  the  spatial  axis,  xè # a x ,  so  we  get  a  larger  or  smaller
image  by just  setting  them further  apart  of  farther  away.  There  is  no  information  gained  or
lost.  Blurring  is  doing  an  observation  with  a  larger  aperture:  the  image  is  blurred.  Now
information  is  lost,  and this  is  exactly  what  is  a requirement  for  a  scale-space:  reduction of
information.  Because  we  have  a  larger  s  over  the  same  image  domain,  we  can  effectively
perform a sampling rate reduction [Vincken1990].

How much information  is  lost  when we increase  scale?  Florack [Florack1994b]  introduced
the following reasoning: 

The  number  of  (equidistant)  samples  on  a  given  domain,  given  a  fixed  amount  of  overlap
between neighboring apertures, on scale level s relative to the number of samples at another
scale level s0  is given by NHsLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅNHs0 L = H s0ÅÅÅÅÅÅÅÅs LD , where D  is the dimension.
Or, in terms of the natural scale parameter t  with s = e et :

N HsL = NHs0L H eet0
ÅÅÅÅÅÅÅÅÅÅÅeet LD

= NHs0 L eDHt0 -tL  

which  is  the  solution  of  the  differential  equation  d NÅÅÅÅÅÅÅÅÅÅd t + D N = 0 .  At  the  highest  scale,  we
have  just  a  single  wide  aperture  left  and  we  achieved  total  blurring;  the  image  domain  has
become a single point. Notice that the sampling rate reduction depends on the dimension D .
When we consider natural, generic images, we expect  the information  in the images to exist
on all scales. We could think of a 'density of local generic features' such as intensity maxima,
minima,  saddle  points,  corners etc.  as relatively  homogeneously  distributed  over the  images
over all scales when we consider enough images. This 'feature density' NF  HtL  might then be
related  to the  number  of samples  NHtL ,  so  d NFÅÅÅÅÅÅÅÅÅÅÅÅd t + D NF = 0 .  In chapter  20  we will  see that
the number of extrema and saddle points in a scale-space of generic images indeed decreases
with a slope of d ln NFÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅd t º -2  for 2D images and a slope of -1 for 1D signals.

The factor e  in the equation for natural scale appears for dimensional  reasons: it is the scale
for t = 0 , and is a property of our imaging device; it is the pixelsize, CCD element size, the
sampling width etc.: the inner scale of the measurement. 
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Block@8$DisplayFunction = Identity<,
p1 = Graphics@
Table@Circle@8x, y<, .6D, 8x, 1, 10<, 8y, 1, 10<D, AspectRatio -> 1D;

p2 = Graphics@Table@Circle@8x, y<, 1.2D, 8x, 1, 10, 2<, 8y, 1, 10, 2<D,
AspectRatio -> 1D;

p3 = Graphics3D@Table@8EdgeForm@D, TranslateShape@Sphere@.6, 10, 10D,8x, y, z<D<, 8x, 1, 6<, 8y, 1, 6<, 8z, 1, 6<D, Boxed -> FalseD;
p4 = Graphics3D@Table@8EdgeForm@D, TranslateShape@

Sphere@1.2, 10, 10D, 8x, y, z<D<, 8x, 1, 6, 2<,8y, 1, 6, 2<, 8z, 1, 6, 2<D, Boxed -> FalseDD;
Show@GraphicsArray@8p1, p2, p3, p4<D, ImageSize -> 400D;

Figure  2.15  The  number  of  samples  on  a  2D  domain,  given  a  fixed  amount  of  overlap,
decreases with  H s0ÅÅÅÅÅs L2  (left  two figures),  on a  3D domain  with H s0ÅÅÅÅÅÅÅÅs L3  (right two figures).  So
the number of samples decreases as a function of scale with a slope of -D, where D  is the
dimension (see text).  The sampling rate reduction is dependent on the dimensionality  of the
measurement.

For positive t we go to larger scale, for negative t we go to smaller scale. In the expression
for the natural scale the singularity at s = 0  is effectively removed.

The exponential  stepping over  the scale axis is also evident  in the Hausdorff  dimension,  the
number  of  boxes  counted  in  a  quadtree  of  a  binary  image  (see  also  [Pedersen2000]  and
chapter 15, section 15.1.4).

Of course, there is no information within the inner scale, so here problems are to be expected
when we try to extract  information at sub-pixel  scale. Only by taking into account  a context
of voxels through a proper model, we can go to the subpixel domain.

This  is  an  important  notion:  any  observation  at  a  single  point  is  an  independent
measurement, and we can do a lot of measurements there.

In  the  next  few  chapters  we  will  derive  many  features  related  to  the  measurement  of
derivatives  at  our  pixel.  It  turns  out  that  we  can  make  lots  of  specific  polynomial
combinations,  like  edge  strength,  'cornerness'  etc.  but  they  all  describe  information  in  that
point. It is a 'keyhole observation'. The important 'perceptual grouping' of neighboring points
into meaningful  sets  is accomplished  by specifying constraints,  like models.  In this book we
first derive many local (differential) features.

In  the  second  part  we  go  a  little  further  in  the  cascade  of  visual  processing  steps,  and
investigate  local  neighborhood  relations  through  comparison  of  local  properties  like
orientation,  strength  of  derivative  measurements  etc.  We  also  explore  the  deep  structure  of
images  (a  term first  coined  by  Koenderink),  by  which  we  mean  the  relations  over  scale.  In
the deep structure we may expect the hierarchical,  structuring, more topological information:
what  is  'embedded  in'  what,  what  is  'surrounded  by'  what,  what  is  'part  of'  what  etc.  This
takes  us  to  a  next  level  of  description  in  images,  which  is  currently  receiving  a  lot  of
attention.
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In  the  second  part  we  go  a  little  further  in  the  cascade  of  visual  processing  steps,  and
investigate  local  neighborhood  relations  through  comparison  of  local  properties  like
orientation,  strength  of  derivative  measurements  etc.  We  also  explore  the  deep  structure  of
images  (a  term first  coined  by  Koenderink),  by  which  we  mean  the  relations  over  scale.  In
the deep structure we may expect the hierarchical,  structuring, more topological information:
what  is  'embedded  in'  what,  what  is  'surrounded  by'  what,  what  is  'part  of'  what  etc.  This
takes  us  to  a  next  level  of  description  in  images,  which  is  currently  receiving  a  lot  of
attention.

Fractals  are famous examples  of self similar  functions.  This self-similar  fractal shows a tree
in  three  dimensions  [Cabrera,  www.mathsource.com].  Parameters:  a  =  branch  angle;  e  =
scale factor; m = number of branches from previous branch; n = deepness.

2.9 Summary of this chapter

Scale-space theory was discovered independently  by Iijima in Japan in the early sixties,  and
by Koenderink in Europe in the early seventies.

Because  we  have  specific  physical  constraints  for  the  early  vision  front-end  kernel,  we  are
able  to  set  up  a  'first  principle'  framework  from  which  the  exact  sensitivity  function  of  the
measurement aperture can be derived. There exist many such derivations for an uncommitted
kernel,  all  leading  to  the  same  unique  result:  the  Gaussian  kernel.  We  discussed  two
approaches:  the  first  started  with  the  assumptions  of  linearity,  isotropy,  homogeneity  and
scale-invariance. 

With the help of the Pi-theorem from dimensional analysis one is able to derive the Gaussian
by plugging in the constraints one by one.

The  second  derivation  started  from  causality:  it  is  impossible  that  maxima  increase  and
minima  decrease  with  increasing  scale,  every  blurred  version  is  the  causal  consequence  of
the image it was blurred from. This means that the extrema must be closed from above. This
leads to s constraint  on the sign of the second derivative,  from which the diffusion equation
emerges.

The  third  derivation  started  from  the  minimization  of  the  entropy  at  the  very  first
measurement.  Through  the  use  of  Lagrange  multipliers,  where  the  constraints  are  used  one
by one, one can again derive the Gaussian kernel as the unique kernel for the front-end.

A  crucial  result  is  that  differentiation  of  discrete  data  is  done  by  the  convolution  with  the
derivative of the observation kernel, in other words: by an integration. Differentiation is now
possible  on  discrete  data  by  means  of  convolution  with  a  finite  kernel.  In  chapter  14  we
discuss this important mathematical notion, which is known as regularization. 

This  means  that  differentiation  can  never  be  done  without  blurring  the  data  somewhat.  We
find  as  a  complete  family  of  front-end  kernels  the  family  of  all  partial  derivatives  of  the
Gaussian kernel. The zeroth order derivative is just the Gaussian blurkernel itself.

Scale  is  parametrized  in  an  exponential  fashion  (we  consider  'orders  of  magnitude'  when
scaling). The exponent in this parametrization is called the natural scale parameter.
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Rotz@t_D = 88Cos@tD, Sin@tD, 0<, 8-Sin@tD, Cos@tD, 0<, 80, 0, 1<<;
Roty@t_D = 88Cos@tD, 0, -Sin@tD<, 80, 1, 0<, 8Sin@tD, 0, Cos@tD<<;
Rot3D@y_, q_D = Roty@qD.Rotz@yD; SphericalCoordinates@8x_, y_, z_<D =8 Sqrt@x^2 + y^2 + z^2D, ArcTan@z, Sqrt@x^2 + z^2DD , ArcTan@x, yD<;
NextBranches@a_, e_, m_D@ Branch@r1_List, r0_List, th_D D :=

ModuleA8r, y, q<, 8r, q, y< = SphericalCoordinates@r1 - r0D;9Branch@e * Hr1 - r0L + r1, r1, e * thD, Sequence üü TableA
Branch@r1 + e * r 8Sin@aD Cos@jD, Sin@aD Sin@jD, Cos@aD<.Rot3D@y, qD,

r1, e *thD, 9j, 0, 2 Pi,
2 Pi
ÅÅÅÅÅÅÅÅÅÅÅ
m

=E= êê NE;
NextBranches@a_, e_, m_D@w_ListD := Map@NextBranches@a, e, mD, wD;
Tree2D@a_, e_, m_, r_List, th_, n_D :=
NestList@NextBranches@a, e, mD, Branch@r, 80, 0, 0<, 1D , nD ê.
Branch@r1_, r0_, t_D :>8RGBColor@0, 0.6 H1 - tL + 0.4, 0D, Thickness@th* tD, Line@8r1, r0<D<

Show@Graphics3D@Tree2D@a, e, m, r, th0, nD ê.8a -> Piê 8, e -> 0.6, m -> 5, r -> 80.01, 0, 1<, n -> 4, th0 -> 0.03<D,
PlotRange -> 88-1, 1<, 8-1, 1<, 80, 2.5<<,
ViewPoint -> 83.369, -0.040, 0.312<, ImageSize -> 200D;

Figure 2.16 Fractals are famous examples of self similar functions. This self-similar 
fractal  shows a  tree  in three  dimensions  [Cabrera,  www.mathsource.com].  Parameters:  a  =
branch angle; e = scale factor; m = number of branches from previous branch; n = deepness.
Source: Renan Cabrera, www.mathsource.com.
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