
1. Apertures and the notion of 
scale

Nothing that is seen is perceived at once in its entirety.
Euclid (~300 B.C.),  Theorem I

1.1 Observations and the size of apertures

Observations  are  always  done  by  integrating  some  physical  property  with  a  measurement
device. Integration can be done over a spatial area, over an amount of time, over wavelengths
etc.  depending  on  the  task  of  the  physical  measurement.  For  example,  we  can  integrate  the
emitted or reflected light intensity of an object with a CCD (charge-coupled device) detector
element  in  a  digital  camera,  or  a  grain  in  the  photographic  emulsion  in  a  film,  or  a
photoreceptor  in  our  eye.  These  'devices'  have  a  sensitive  area,  where  the  light  is collected.
This  is  the  aperture  for  this  measurement.  Today's  digital  cameras  have  several  million
'pixels'  (picture  elements),  very  small  squares  where  the  incoming  light  is  integrated  and
transformed  into  an  electrical  signal.  The  size  of  such  pixels/apertures  determines  the
maximal sharpness of the resulting picture.

An example  of integration  over  time  is  sampling  of a  temporal  signal,  for  example  with  an
analog-digital  converter (ADC). The integration time needed to measure a finite signal is the
size of the temporal aperture. We always need a finite integration area or a finite  integration
time in order  to  measure  a signal.  It would be nice  to have infinitely  small  or infinitely  fast
detectors, but then the integrated signal is zero, making it useless.

Looking  with  our  visual  system  is  making  measurements.  When  we  look  at  something,  we
have a range of possibilities to do so. We can look with our eyes, the most obvious choice. 

We can zoom in with a microscope when things are too small for the unaided eye, or with a
telescope when things are just very big.The smallest  distance we can see with the naked eye
is about 0.5 second of arc, which is about the distance between two neighboring cones in the
center of our visual field. And, of course, the largest object we can see fills the whole retina. 

It  seems  that  for  the  eye  (and  any  other  measurement  device)  the  range  of  possibilities  to
observe  certain  sizes  of  objects  is  bounded  on  two  sides:  there  is  a  minimal  size,  about  the
size of the smallest aperture, and there is a maximal size, about the size of the whole detector
array.
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Spatial resolution  is defined as the diameter  of the local integration area. It is the size of the
field  of  view  divided  by  the  number  of  samples  taken  over  it.  The  spatial  resolution  of  a
Computer  Tomography  (CT)  scanner  is  about  0.5  mm,  which  is  calculated  from  the
measurement of 512 samples over a field of view with a diameter of 25 cm. 

The temporal resolution  of a modern CT scanner is about 0.5 second,  which is 2 images per
second.

It seems that we are always trying to measure with the highest possible sharpness, or highest
resolution.  Reasons  to  accept  lower  resolution  range  from  costs,  computational  efficiency,
storage and transmission  requirements,  to the radiation dose to a patient  etc.  We can always
reduce the  resolution  by taking together  some pixels  into one,  but we cannot  make a coarse
image into a sharp one without the introduction of extra knowledge.

The  resulting  measurement  of  course  strongly  depends  on  the  size  of  the  measurement
aperture.  We  need to  develop  strict  criteria  that  determine  objectively  what  aperture  size  to
apply.  Even  for  a  fixed  aperture  the  results  may  vary,  for  example  when  we  measure  the
same object at different distances (see figure 1.1).

<< FrontEndVision`FEV`;
Show@GraphicsArray@88Import@"cloud1.gif"D<, 8Import@"cloud2.gif"D<<D, ImageSize Ø 400D;

Figure 1.1 A cloud observed at different scales, simulated by the blurring of a random set of
points, the 'drops'. Adapted from [Koenderink1992a]. 

1.2 Mathematics, physics, and vision

In  mathematics  objects  are  allowed  to  have  no  size.  We  are  familiar  with  the  notion  of
points,  that  really  shrink  to  zero  extent,  and  lines  of  zero  width.  No  metrical  units  (like
meters, seconds, amperes) are involved in mathematics, as in physics. 

Neighborhoods,  like  necessary  in  the  definition  of  differential  operators,  are  taken  into  the
limit  to  zero,  so  for  such  operators  we  can  really  speak  of  local  operators.  We  recall  the
definition for the derivative  of f HxL: limhØ0

f Hx+hL- f HxLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅh ,  where the limit makes the operation
confined to a mathematical point.

In physics however this is impossible. We saw before that objects live on a bounded range of
scales. When we measure an object, or look at it, we use an instrument to do this observation
(our  eye,  a  camera)  and  it  is  the  range  that  this  instrument  can  see  that  we  call  the  scale
range. The scale range is bounded on two sides:
-  the  smallest  scale  the  instrument  can  see  is  the  inner  scale.  This  is  the  smallest  sampling
element, such as a CCD element in a digital camera, rod or cone on our retina;
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scales. When we measure an object, or look at it, we use an instrument to do this observation
(our  eye,  a  camera)  and  it  is  the  range  that  this  instrument  can  see  that  we  call  the  scale
range. The scale range is bounded on two sides:
-  the  smallest  scale  the  instrument  can  see  is  the  inner  scale.  This  is  the  smallest  sampling
element, such as a CCD element in a digital camera, rod or cone on our retina;

-  the  largest  scale  the  instrument  can  see  is  the  outer  scale.  This  is  the  field  of  view.  The
dimension is expressed as the ratio between the outer scale and the inner scale, or how often
the inner scale fits  into the  outer  scale.  Of course  the bounds  apply  both to the detector and
the measurement: an image can have a 2D dimension of 256 x 256 pixels.

Dimensional  units  are  essential  in  physics:  we  express  any  measurement  in  dimensional
units,  like:  12  meters,  14.7  seconds,  0.02  candela ê m2  etc.  When  we  measure  (observe,
sample)  a  physical  property,  we  need  to  choose  the  'stepsize'  with  which  we  should
investigate the measurement. We scrutinize a microscope image in microns, a global satellite
image in kilometers. In measurements there is no such thing as a physical 'point': the smallest
'point'  we  have  is  the  physical  sample,  which  is  defined  as  the  integrated  weighted
measurement over the detector area (which we call the aperture), where area is always finite.

How  large  should  the  sampling  element  be?  It  depends  on  the  task  at  hand  in  what  scale
range  we  should  measure:  "Do  we  like  to  see  the  leaves  or  the  tree"?  The  range  of  scales
applies not only to the objects in the image, but also to the scale of the features. In chapter 5
we discuss in detail many such features,  and how they can be constructed.  We give just one
example  here:  in  figure  1.2  we  see  a  hierarchy  in  the  range  of  scales,  illustrated  here  for a
specific feature (the gradient).

im = Import@"Utrecht256.gif"D@@1, 1DD;
BlockA8$DisplayFunction = Identity<,
p1 = ListDensityPlot@imD;
p2 =

ListDensityPlotA"################################################################################
gD@im, 1, 0, #D2 + gD@im, 0, 1, #D2 E & êü 81, 2, 4<E;

Show@GraphicsArray@Prepend@p2, p1DD, ImageSize Ø 500D;

Figure  1.2  Picture  of  the  city  of  Utrecht.  The  right  three  pictures  show  the  gradient:  the
strength  of  borders,  at  a  scale  of  1,  2  resp.  4  pixels.  At  the  finest  scale  we  can  see  the
contours  of  almost  every  stone,  at  the  coarsest  scale  we see  the most  important  edges,  in
terms of outlines of the larger structures. We see a hierarchy of structures at different scales.
The Mathematica code and the gradient will be explained in detail in later chapters.

To expand the range say of our eye we have a wide armamentarium of instruments available,
like  scanning  electron  microscopes  and  a  Hubble  telescope.  The  scale  range  known  to
humankind  spans  about  50  decades,  as  is  beautifully  illustrated  in  the  book  (and  movie)
"Powers of Ten" [Morrison1985].
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Show@Import@"Powersof10sel.gif"D, ImageSize Ø 500D;

Figure  1.3  Selection  of  pictures  from  the  journey  through  scale  from  the  book
[Morrison1985],  where  each page zooms in  a  factor  of  ten.  Starting  at  a cosmic  scale,  with
clusters of galaxies, we zoom in to the solar system, the earth (see the selection above), to a
picknicking  couple  in  a  park  in  Chicago.  Here  we reach the 'human'  (antropometric)  scales
which are so familiar to us. We then travel further into cellular and molecular structures in the
hand, ending up in the quark structure of the nuclear particles. For the movie see:
http://www.micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/index.html.

In  vision  we  have  a  system  evolved  to  make  visual  observations  of  the  outside  world.  The
front-end  of  the  (human)  visual  system  is  defined  as  the  very  first  few layers  of  the  visual
system.  Here  a  special  representation  of  the  incoming  data  is  set  up  where  subsequent
processing  layers  can  start  from.  At  this  stage  there  is  no  memory  involved  or  cognitive
process. 

Later we will define the term 'front-end'  in a more precise way.  We mean the retina, lateral
geniculate nucleus (LGN, a small nucleus in the thalamus in our mid-brain),  and the primary
visual  cortex in  the back of our  head.  In the chapter  on human  vision we fully  elaborate  on
the visual pathway.

The  front-end  sampling  apparatus  (the  receptors  in  the  retina)  is  designed  just  to  extract
multi-scale information. As we will see, it does so by applying sampling apertures, at a wide
range of sizes simultaneously. 

There is no sampling by individual rods and cones, but by well-structured assemblies of rods
and cones, the so-called 'receptive fields'. 

In  chapters  6  -  9  we  will  study  the  neuroanatomy  of  the  human  front-end  visual  system  in
more  detail.  The  concept  of  a  receptive  field  was  introduced  in  the  visual  sciences  by
Hartline  [Hartline1940]  in  1940,  who  studied  single  fibre  recordings  in  the  horseshoe  crab
(Limulus polyphemus).
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In  chapters  6  -  9  we  will  study  the  neuroanatomy  of  the  human  front-end  visual  system  in
more  detail.  The  concept  of  a  receptive  field  was  introduced  in  the  visual  sciences  by
Hartline  [Hartline1940]  in  1940,  who  studied  single  fibre  recordings  in  the  horseshoe  crab
(Limulus polyphemus).

Psychophysically  (psychophysics  is  the  art  of  measuring  the  performance  of  our  perceptual
abilities  through  perceptual  tasks)  it  has  been  shown that  when  viewing  sinusoidal  gratings
of  different  spatial  frequency  the  threshold  modulation  depth  is  constant  (within  5%)  over
more than two decades. 

This  indicates  that  the  visual  system  is  indeed  equipped  with  a  large  range  of  sampling
apertures.  Also,  there  is  abundant  electro-physiological  evidence  that  the  receptive  fields
come  in  a  wide  range  of  sizes.  In  the  optic  nerve  leaving  each  eye  one  optic-nerve-fibre
comes from one receptive field, not from an individual rod or cone. 

In a human eye there are about 150 million receptors and one million optic nerve fibres.So a
typical  receptive  field  consists  of  an  average  of  150  receptors.  Receptive  fields  form  the
elementary 'multi-scale apertures' on the retina. In the chapter on human vision we will study
this neuroanatomy in more detail.

1.3 We blur by looking

Using a larger aperture reduces the resolution.  Sometimes we exploit the blurring that  is the
result of applying a larger aperture. A classical example is dithering,  where the eye blurs the
little  dots  printed  by  a  laser  printer  into  a  multilevel  greyscale  picture,  dependent  on  the
density of the dots (see figure 1.4).

It nicely illustrates that we can make quite a few different observations of the same object (in
this case the universe), with measurement devices having different inner and outer scales. An
atlas, of course, is the canonical example. 

Show@GraphicsArray@8Import@"Floyd0.gif"D, Import@"Floyd1.gif"D<D,
ImageSize -> 330D;

Figure 1.4 Dithering is the representation of grayvalues through sparse printing of black dots
on paper. In this way a tonal image can be produced with a laserprinter, which is only able to
print miniscule identical single small high contrast dots. Left: the image as we observe it, with
grayscales and no dithering. Right: Floyd-Steinberg dithering with random dot placements.
[From http://sevilleta.unm.edu/~bmilne/khoros/html-dip/c3/s7/front-page.html].
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A priori we have to decide on how large we should take the inner scale. The front-end vision
system  has  no  knowledge  whatsoever  of  what  it  is  measuring,  and  should  be  open-minded
with respect to the size of the measurement aperture to apply.

Show@Import@"wales-colordither.gif"D, ImageSize -> 400D;

Figure 1.5 En example  of color-dithering  in  image compression.  Left:  the original  image,  26
KByte. Middle: color dithering, effective spreading of a smaller number of color pixels so that
the blurring of  our perception  blends the colors to the same color as in the original.  Filesize
16  Kbyte.  Right:  enlargement  of  a  detail  showing  the  dithering.  From  http://www.digital-
foundry.com/gif/workshop/dithering.shtml.

As we  will  see  in  the  next  section,  the  visual  front-end  measures  at  a  multitude  of  aperture
sizes simultaneously. The reason for this is found in the world around us: objects come at all
sizes, and at this stage they are all equally important for the front-end. 

Show@Import@"Edlef Romeny - cherry trees.jpg"D, ImageSize -> 280D;

Figure  1.6  In  art  often  perceptual  clues  are  used,  like  only  coarse  scale  representation  of
image structures, and dithering. Painting by Edlef ter Haar Romeny [TerHaarRomeny2002b].
Owned by the author.

im = Import@"mona lisa face.gif"D@@1, 1DD;
imr1 = Table@Plus üü Plus üü Take@im, 8y, y + 9<, 8x, x + 9<D,8y, 1, 300, 10<, 8x, 1, 200, 10<D;
imr2 = Table@Plus üü Plus üü Take@im, 8y, y + 14<, 8x, x + 9<D,8y, 1, 290, 15<, 8x, 1, 200, 10<D;
DisplayTogetherArray@ListDensityPlot êü 8im,

Join üü Table@MapThread@Join, Table@imr2 imr1@@y, xDD, 8x, 1, 20<DD,8y, 1, 30<D<, ImageSize Ø 250D;
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Figure 1.7 Image  mosaic  of  the Mona Lisa.  Image  resolution  200x300 pixels.  The image is
subsampled  to  20x30  samples,  whose  mean  intensity  modulates  a  mosaic  of  the
subsampled images.

And that, in a natural way, leads us to the notion of multi-scale  observation,  and multi-scale
representation  of information,  which  is  intrinsically  coupled  to  the  fact  that  we  can observe
in  so  many  ways.  The  size  of  the  aperture  of  the  measurement  will  become  an  extra
continuous  measurement  dimension,  as  is  space,  time,  color  etc.  We  use  it  as  a  free
parameter: in first instance we don't give it a value, it can take any value.

Ú Task  1.1  Experiment  with  dithering  with  circular  disks  of  proper  size  in  each
pixel. Calculate the area the disk occupies. Some example code to get started:
Show[Graphics[Table[Disk[{x,y},.3+im[[y,x]]/2048],{y,1,128}
,{x,1,128}]],AspectRatioØAutomatic];

Ú Task  1.2  Experiment  with  dithering  with  randomly  placed  small  dots  in  each
pixel.

Mosaics,  known since  Roman times,  employ  this  multiresolution  perceptive  effect.  There  is
also  artistic  interest  in  replacing  a  pixel  by  a  complete  image  (see  e.g.  figure  1.7).  When
random images with appropriate average intensity and color (and often intensity gradient) are
chosen the technique is called an image mosaic.

Ú Task  1.3  One  can  play  with  other  graphical  elements,  e.g.  text  (  BasicBlockß
(Text["FEV",  #1,#2]&)  )  etc.  Note  that  despite  the  structure  in  the  dithering
elements, we still perceive the large scale structure unchanged in depth.

It turns  out  that there  is a very specific  reason to not only  look at  the highest  resolution.  As
we will see in this book, a new world opens when we consider a measurement of the outside
world  at  all  these  sizes  simultaneously,  at  a  whole  range  of  sharpnesses.  So,  not  only  the
smallest possible pixel element in our camera, but a camera with very small ones, somewhat
larger ones, still larger ones and so on. It turns out that our visual system takes this approach.
The stack of images taken at a range of resolutions is called a scale-space.
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It turns  out  that there  is a very specific  reason to not only  look at  the highest  resolution.  As
we will see in this book, a new world opens when we consider a measurement of the outside
world  at  all  these  sizes  simultaneously,  at  a  whole  range  of  sharpnesses.  So,  not  only  the
smallest possible pixel element in our camera, but a camera with very small ones, somewhat
larger ones, still larger ones and so on. It turns out that our visual system takes this approach.
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Another  interesting  application  of  dithering  is  in  the  generation  of  random  dot  stereograms
(RDS), see figure 1.8. 

Options@RDSPlotD = 8BasicBlock ß HRectangle@#1 - #2, #1 + #2D &L<;
RDSPlot@expr_, 8x_, xmin_, xmax_<, 8y_, ymin_, ymax_<, opts___D :=

Block@8pts = 120, periods = 6, zrange = 8-1, 1<, density = .4, depth = 1,
basicblock = BasicBlock ê. 8opts< ê. Options@RDSPlotD, guides = True,
strip, xpts, ypts, dx, dy, xval, yval, zmin, zmax, exprnorm<,8zmin, zmax< = zrange; 8xpts, ypts< = If@Length@ptsD ã 2, pts, 8pts, pts<D;

dy = Hymax - yminL ê ypts; dx = Hxmax - xminL ê xpts; strip = Floor@xpts ê periodsD dx;
exprnorm = H.25 depth  Hxmax - xminL ê Hperiods  Hzmax - zminLLL *HMax@zmin, Min@zmax, exprDD - Hzmax + zminL ê 2L;
Graphics@8RDSArray@basicblock, 8dx, dy< ê 2, Flatten@Table@If@Random@D < density,

Thread@8rdsimages@exprnorm ê. y Ø yval, 8x, xval, xmax, strip<D, yval<D, 8<D,8yval, ymin + .5 dy, ymax, dy<, 8xval, xmin + .5 dx,
rdsimage@exprnorm ê. y Ø yval, 8x, xmin, strip<D, dx<D, 2DD,

If@guides, makeguides@8.5 xmax + .5 xmin, 1.1 ymin - .1 ymax<, .5 stripD, 8<D<,
Sequence üü Select@8opts<, ! MemberQ@First êü Options@RDSPlotD, First@#DD &DDD;

rdsimage@expr_, 8x_, xval_, dx_<D := xval + dx - N@expr ê. x Ø xval + dx ê 2D;
rdsimages@expr_, 8x_, xval_, xmax_, dx_<D := » If@xval § xmax,

Prepend@rdsimages@expr, 8x, rdsimage@expr, 8x, xval, dx<D, xmax, dx<D, xvalD, 8<D;
makeguides@pos_, size_D := Apply@Rectangle,

Map@pos + size # &, 888-1.1, -.1<, 8-.9, .1<<, 88.9, -.1<, 81.1, .1<<<, 82<D, 1D;
Unprotect@DisplayD; Display@channel_, graphics_ ?H! FreeQ@#, RDSArrayD &LD := HDisplay@

channel, graphics ê. HRDSArray@basicblock_, dims_, pts_D ß Hbasicblock@#, dimsD & êü ptsLLD;
graphicsL; Protect@DisplayD;

ShowARDSPlotA-
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

 x ExpA-
x2 + y2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
E, 8x, -3, 3<, 8y, -3, 3<E,

ImageSize Ø 400E;

Figure 1.8 Random dot stereogram (of the first derivative  with respect  to x  of  the Gaussian
function, a function which we will encounter frequently in this book). The dots are replaced by
a random draw from the letters A-Z. 
Code by Bar-Natan [Bar-Natan1991, www.ma.huji.ac.il/~drorbn/]. 
See also www.ccc.nottingham.ac.uk/~etzpc/sirds.html . Look with both eyes to a point behind
the  image,  so  the  dots  under  the  figure  blend  together.  You  will  then  see  the  function  in
depth.
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See also the peculiar paintings  of the Italian painter Giuseppe Arcimboldo (1527-1593).  See
www.illumin.co.uk/svank/biog/arcim/arcidx.html.

Show@Import@"Vertumnus.jpg"D, ImageSize -> 170D;

Figure  1.9  Vertumnus  (Rudolph  II)  by  Giuseppe  Arcimboldo  (ca.  1590).  Painting  in  the
Skoklosters Slott, Stockholm, Sweden.

1.4 A critical view on observations

Let us take a close look at the process of observation. We note the following:

Ï Any physical observation is done through an aperture. By necessity this aperture has to be
finite.  If  it  would  be  zero  size  no  photon  would  come  through.  We  can  modify  the
aperture considerably by using instruments, but never make it of zero width. This leads to
the  fundamental  statement:  We  cannot  measure  at  infinite  resolution.  We  only  can
perceive  a  'blurred'  version  of  the  mathematical  abstraction  (infinite  resolution)  of  the
outside world.

Ï In  a  first  'virginal'  measurement  like  on  the  retina  we  like  to  carry  out  observations  that
are uncommitted. With uncommitted we mean: not biased in any way, and with no model
or any a priori knowledge involved. Later we will fully incorporate the notion of a model,
but in this first stage of observation we know nothing. 

An example: when we know we want to observe vertical structures such as stems of trees, it
might  be  advantageous  to  take  a  vertically  elongated  aperture.  But  in  this  early  stage  we
cannot allow such special apertures. 

At  this  stage  the  system  needs  to  be  general.  We  will  exploit  this  notion  of  being
uncommitted in the sequel of this chapter to the establishment of linear scale-space theory.

 It  turns  out  that  we  can  express  this  'uncommitment'  into  axioms  from  which  a  physical
theory can be derived. Extensions of the theory, like nonlinear scale-space theories, follow in
a natural way through relaxing these axioms.

Ï Being uncommitted  is a natural  requirement  for the first  stage,  but not  for  further stages,
where extracted  information,  knowledge  of model  and/or  task etc.  come in.  An example:
the  introduction  of  feedback  enables  a  multi-scale  analysis  where  the  aperture  can  be
made  adaptive  to  properties  measured  from  the  data  (such  as  the  strength  of  certain
derivatives  of  the  data).  This  is  the  field of  geometry-driven  diffusion,  a  nonlinear  scale-
space theory. This will be discussed in more detail after the treatment of linear scale-space
theory.

1. Apertures and the notion of scale 9



Ï Being uncommitted  is a natural  requirement  for the first  stage,  but not  for  further stages,
where extracted  information,  knowledge  of model  and/or  task etc.  come in.  An example:
the  introduction  of  feedback  enables  a  multi-scale  analysis  where  the  aperture  can  be
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Show@Import@"DottedPR.gif"D, ImageSize -> 380D;

Figure 1.10 At different resolutions we see different information. The meaningful information in
this image is at a larger scale then the dots of which it is made. Look at the image from about
2 meters. Source: dr. Bob Duin, Pattern Recognition Group, Delft University, the Netherlands.

Ï A  single  constant  size  aperture  function  may  be  sufficient  in  a  controlled  physical
application.  An  example  is  a  picture  taken  with  a  camera  or  a  medical  tomographic
scanner,  with  the  purpose  to  replicate  the  pixels  on  a  screen,  paper  or  film  without  the
need for cognitive tasks like recognition.  Note that most man-made devices have a single
aperture  size.  If  we  need  images  at  a  multiple  of  resolutions  we  simply  blur  the  images
after the measurement. 

Ï The  human  visual  system  measures  at  multiple  resolutions  simultaneously,  thus
effectively  adding  scale  or  resolution  as  a  measurement  dimension.  It  measures  a  scale-
space  LHx, y; sL ,  a  function  of  space  Hx, yL  and  scale  s ,  where  L  denotes  the  measured
parameter  (in  this  case  luminance)  and  s  the  size  of  the  aperture.  In  a  most  general
observation  no  a  priori  size  is  set,  we  just  don't  know  what  aperture  size  to  take.  So,  in
some way control is needed: we could apply a whole range of aperture sizes if we have no
preference or clue what size to take. 

Ï When  we  observe  noisy  images  we  should  realize  that  noise  is  always  part  of  the
observation.  The term 'noisy  image'  already implies  that  we have  some idea  of an image
with structure 'corrupted  with  noise'.  In a measurement  noise  can only be separated  from
the observation if we have a model of the structures in the image, a model of the noise, or
a model of both. Very often this is not considered explicitly. 
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im = Table@If@11 < x < 30 && 11 < y < 30, 1, 0D + 2 Random@D, 8x, 40<, 8y, 40<D;
ListDensityPlot@im, FrameTicks -> False, ImageSize -> 120D;

Figure  1.11  A  square  with  additive  uniform  pixel-uncorrelated  noise.  Jagged  or  straight
contours? 'We think  it  is'  or  'it  looks like'  a square embedded in the noise. Without  a model
one really cannot tell.

Ï When it  is  given that  objects  are human-made  structures  like buildings  or otherwise  part
of computer vision's 'blocks world', we may assume straight or smoothly curved contours,
but often this is not known.

Ï Things  often  go  wrong  when  we  change  the  resolution  of  an  image,  for  example  by
creating larger pixels. 

Ï If  the  apertures  (the  pixels)  are  square,  as  they  usually  are,  we  start  to  see  blocky
tesselation  artefacts.  In  his  famous  paper  "The  structure  of  images"  Koenderink  coined
this spurious  resolution  [Koenderink1984a],  the  emergence  of details  that  were  not  there
before, and should not be there. The sharp boundaries and right angles are artefacts of the
representation, they certainly are not in the outside world data. Somehow we have created
structure  in  such  a  process.  Nearest  neighbour  interpolation  (the  name  for  pixel
replication) is of all interpolation methods fastest but the worst. As a general rule we want
the structure only to decrease with increasing aperture. 

Show@Import@"Einsteinblocky.gif"D, ImageSize -> 120D;

Figure  1.12  Spurious  resolution  due  to  square  apertures.  Detail  of  a  famous  face:  Einstein.
Much unintended  'spurious'  information  has been  added to this  picture due  to the sampling
process.  Intuitively  we take  countermeasures  for  such artefacts  by squeezing  our eyes  and
looking through our eyelashes to blur the image, or we look from a greater distance. 

Ï In the construction  of fonts and graphics anti-aliasing  is well known: one obtains a much
better  perceptual  delineation  of the  contour  if  the  filling  of  the  pixel  is  equivalent  to  the
physical integration of the intensity over the area of the detector. See figure 1.13 for a font
example. 
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Show@Import@"anti_alias.gif"D, ImageSize -> 250D;

Figure  1.13  Anti-aliasing  is  the  partial  volume  effect  at  the  boundaries  of  contours.  When
making physically realistic test images for computer  vision applications it is essential to take
this sampling effect into account.

1.5 Summary of this chapter

Observations  are  necessarily  done  through  a  finite  aperture.  Making  this  aperture
infinitesimally small is not a physical reality. The size of the aperture determines a hierarchy
of  structures,  which  occur  naturally  in  (natural)  images.  With  the  help  of  instruments
(telescopes,  microscopes)  we  are  able  to  see  a  scale-range  of  roughly  1050 .  The  visual
system exploits  a wide  range of such  observation  apertures  in  the front-end  simultaneously,
in  order  to  capture  the  information  at  all  scales.  Dithering  is  a  method  where  the
blending/blurring  through  an  observation  with  a  finite  aperture  is  exploited  to  create
grayscale and color nuances which can then be created with a much smaller palet of colors.

Observed noise is part of the observation. There is no way to separate the noise from the data
if  a  model  of  the  data,  a  model  of  the  noise  or  a  model  of  both  is  absent.  Without  a  model
noise  is  considered  input  which  also  contains  structural  geometric  information,  like  edges,
corners, etc. at all scales.

The  aperture  cannot  take  any  form.  An  example  of  a  wrong  aperture  is  the  square  pixel  so
often used  when zooming  in  on images.  Such a  representation  gives  rise to  edges that  were
never  present  in  the  original  image.  This  artificial  extra  information  is  called  'spurious
resolution'.  In the next chapter  we derive from first principles the best  and unique kernel for
an uncommitted observation.
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