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3 Image Enhancement 
in the Spatial Domain

It makes all the difference whether one sees darkness
through the light or brightness through the shadows.

David Lindsay

Preview
The principal objective of enhancement is to process an image so that the re-
sult is more suitable than the original image for a specific application.The word
specific is important, because it establishes at the outset that the techniques dis-
cussed in this chapter are very much problem oriented. Thus, for example, a
method that is quite useful for enhancing X-ray images may not necessarily be
the best approach for enhancing pictures of Mars transmitted by a space probe.
Regardless of the method used, however, image enhancement is one of the most
interesting and visually appealing areas of image processing.

Image enhancement approaches fall into two broad categories: spatial domain
methods and frequency domain methods.The term spatial domain refers to the
image plane itself, and approaches in this category are based on direct manipu-
lation of pixels in an image. Frequency domain processing techniques are based
on modifying the Fourier transform of an image. Spatial methods are covered in
this chapter, and frequency domain enhancement is discussed in Chapter 4. En-
hancement techniques based on various combinations of methods from these
two categories are not unusual.We note also that many of the fundamental tech-
niques introduced in this chapter in the context of enhancement are used in
subsequent chapters for a variety of other image processing applications.

There is no general theory of image enhancement. When an image is
processed for visual interpretation, the viewer is the ultimate judge of how well
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a particular method works. Visual evaluation of image quality is a highly sub-
jective process, thus making the definition of a “good image” an elusive standard
by which to compare algorithm performance.When the problem is one of pro-
cessing images for machine perception, the evaluation task is somewhat easier.
For example, in dealing with a character recognition application, and leaving
aside other issues such as computational requirements, the best image process-
ing method would be the one yielding the best machine recognition results.
However, even in situations when a clear-cut criterion of performance can be
imposed on the problem, a certain amount of trial and error usually is required
before a particular image enhancement approach is selected.

Background

As indicated previously, the term spatial domain refers to the aggregate of
pixels composing an image. Spatial domain methods are procedures that op-
erate directly on these pixels. Spatial domain processes will be denoted by the
expression

(3.1-1)

where f(x, y) is the input image, g(x, y) is the processed image, and T is an
operator on f, defined over some neighborhood of (x, y). In addition, T can op-
erate on a set of input images, such as performing the pixel-by-pixel sum of K
images for noise reduction, as discussed in Section 3.4.2.

The principal approach in defining a neighborhood about a point (x, y) is to
use a square or rectangular subimage area centered at (x, y), as Fig. 3.1 shows.
The center of the subimage is moved from pixel to pixel starting, say, at the top
left corner.The operator T is applied at each location (x, y) to yield the output,
g, at that location. The process utilizes only the pixels in the area of the image
spanned by the neighborhood.Although other neighborhood shapes, such as ap-

g(x, y) = T Cf(x, y) D

3.1
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proximations to a circle, sometimes are used, square and rectangular arrays are
by far the most predominant because of their ease of implementation.

The simplest form of T is when the neighborhood is of size 1*1 (that is, a
single pixel). In this case, g depends only on the value of f at (x, y), and T be-
comes a gray-level (also called an intensity or mapping) transformation func-
tion of the form

(3.1-2)

where, for simplicity in notation, r and s are variables denoting, respectively,
the gray level of f(x, y) and g(x, y) at any point (x, y). For example, if T(r) has
the form shown in Fig. 3.2(a), the effect of this transformation would be to pro-
duce an image of higher contrast than the original by darkening the levels below
m and brightening the levels above m in the original image. In this technique,
known as contrast stretching, the values of r below m are compressed by the
transformation function into a narrow range of s, toward black.The opposite ef-
fect takes place for values of r above m. In the limiting case shown in Fig. 3.2(b),
T(r) produces a two-level (binary) image. A mapping of this form is called a
thresholding function. Some fairly simple, yet powerful, processing approaches
can be formulated with gray-level transformations. Because enhancement at
any point in an image depends only on the gray level at that point, techniques
in this category often are referred to as point processing.

Larger neighborhoods allow considerably more flexibility. The general ap-
proach is to use a function of the values of f in a predefined neighborhood of
(x, y) to determine the value of g at (x, y). One of the principal approaches in
this formulation is based on the use of so-called masks (also referred to as filters,
kernels, templates, or windows). Basically, a mask is a small (say, 3*3) 2-D
array, such as the one shown in Fig. 3.1, in which the values of the mask coeffi-
cients determine the nature of the process, such as image sharpening. En-
hancement techniques based on this type of approach often are referred to as
mask processing or filtering. These concepts are discussed in Section 3.5.

s = T(r)

a b
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78 Chapter 3 � Image Enhancement in the Spatial Domain

Some Basic Gray Level Transformations

We begin the study of image enhancement techniques by discussing gray-level
transformation functions.These are among the simplest of all image enhancement
techniques.The values of pixels, before and after processing, will be denoted by r
and s, respectively. As indicated in the previous section, these values are related
by an expression of the form s=T(r), where T is a transformation that maps a
pixel value r into a pixel value s. Since we are dealing with digital quantities, val-
ues of the transformation function typically are stored in a one-dimensional array
and the mappings from r to s are implemented via table lookups. For an 8-bit en-
vironment, a lookup table containing the values of T will have 256 entries.

As an introduction to gray-level transformations, consider Fig. 3.3, which
shows three basic types of functions used frequently for image enhancement: lin-
ear (negative and identity transformations), logarithmic (log and inverse-log
transformations), and power-law (nth power and nth root transformations).The
identity function is the trivial case in which output intensities are identical to
input intensities. It is included in the graph only for completeness.

3.2.1 Image Negatives
The negative of an image with gray levels in the range [0, L-1] is obtained by using
the negative transformation shown in Fig. 3.3, which is given by the expression

(3.2-1)s = L - 1 - r.

3.2
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FIGURE 3.4
(a) Original
digital
mammogram.
(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)

Reversing the intensity levels of an image in this manner produces the equiva-
lent of a photographic negative. This type of processing is particularly suited
for enhancing white or gray detail embedded in dark regions of an image, es-
pecially when the black areas are dominant in size. An example is shown in
Fig. 3.4. The original image is a digital mammogram showing a small lesion. In
spite of the fact that the visual content is the same in both images, note how
much easier it is to analyze the breast tissue in the negative image in this par-
ticular case.

3.2.2 Log Transformations
The general form of the log transformation shown in Fig. 3.3 is

(3.2-2)

where c is a constant, and it is assumed that r � 0. The shape of the log curve
in Fig. 3.3 shows that this transformation maps a narrow range of low gray-level
values in the input image into a wider range of output levels.The opposite is true
of higher values of input levels. We would use a transformation of this type to
expand the values of dark pixels in an image while compressing the higher-level
values. The opposite is true of the inverse log transformation.

Any curve having the general shape of the log functions shown in Fig. 3.3
would accomplish this spreading/compressing of gray levels in an image. In fact,
the power-law transformations discussed in the next section are much more
versatile for this purpose than the log transformation. However, the log func-
tion has the important characteristic that it compresses the dynamic range of im-
ages with large variations in pixel values.A classic illustration of an application
in which pixel values have a large dynamic range is the Fourier spectrum, which
will be discussed in Chapter 4.At the moment, we are concerned only with the
image characteristics of spectra. It is not unusual to encounter spectrum values

s = c log (1 + r)

a b
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80 Chapter 3 � Image Enhancement in the Spatial Domain

FIGURE 3.5
(a) Fourier
spectrum.
(b) Result of
applying the log
transformation
given in
Eq. (3.2-2) with
c=1.

that range from 0 to or higher.While processing numbers such as these pre-
sents no problems for a computer, image display systems generally will not be
able to reproduce faithfully such a wide range of intensity values.The net effect
is that a significant degree of detail will be lost in the display of a typical Fouri-
er spectrum.

As an illustration of log transformations, Fig. 3.5(a) shows a Fourier spectrum
with values in the range 0 to 1.5*106.When these values are scaled linearly for
display in an 8-bit system, the brightest pixels will dominate the display, at the ex-
pense of lower (and just as important) values of the spectrum.The effect of this
dominance is illustrated vividly by the relatively small area of the image in
Fig. 3.5(a) that is not perceived as black. If, instead of displaying the values in this
manner, we first apply Eq. (3.2-2) (with c=1 in this case) to the spectrum val-
ues, then the range of values of the result become 0 to 6.2, a more manageable
number. Figure 3.5(b) shows the result of scaling this new range linearly and dis-
playing the spectrum in the same 8-bit display.The wealth of detail visible in this
image as compared to a straight display of the spectrum is evident from these pic-
tures. Most of the Fourier spectra seen in image processing publications have
been scaled in just this manner.

3.2.3 Power-Law Transformations
Power-law transformations have the basic form

(3.2-3)

where c and g are positive constants. Sometimes Eq. (3.2-3) is written as
to account for an offset (that is, a measurable output when the

input is zero). However, offsets typically are an issue of display calibration and
as a result they are normally ignored in Eq. (3.2-3). Plots of s versus r for vari-
ous values of g are shown in Fig. 3.6. As in the case of the log transformation,
power-law curves with fractional values of gmap a narrow range of dark input
values into a wider range of output values, with the opposite being true for high-

s = c(r + e)g

s = crg

106

a b
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er values of input levels. Unlike the log function, however, we notice here a
family of possible transformation curves obtained simply by varying g. As ex-
pected, we see in Fig. 3.6 that curves generated with values of g>1 have ex-
actly the opposite effect as those generated with values of g<1. Finally, we
note that Eq. (3.2-3) reduces to the identity transformation when c=g=1.

A variety of devices used for image capture, printing, and display respond ac-
cording to a power law. By convention, the exponent in the power-law equation
is referred to as gamma [hence our use of this symbol in Eq. (3.2-3)].The process
used to correct this power-law response phenomena is called gamma correc-
tion. For example, cathode ray tube (CRT) devices have an intensity-to-volt-
age response that is a power function, with exponents varying from
approximately 1.8 to 2.5.With reference to the curve for g=2.5 in Fig. 3.6, we
see that such display systems would tend to produce images that are darker
than intended. This effect is illustrated in Fig. 3.7. Figure 3.7(a) shows a simple
gray-scale linear wedge input into a CRT monitor. As expected, the output of
the monitor appears darker than the input, as shown in Fig. 3.7(b). Gamma cor-
rection in this case is straightforward.All we need to do is preprocess the input
image before inputting it into the monitor by performing the transformation

The result is shown in Fig. 3.7(c). When input into the same
monitor, this gamma-corrected input produces an output that is close in ap-
pearance to the original image, as shown in Fig. 3.7(d).A similar analysis would

s = r1�2.5 = r0.4.
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Monitor

Monitor

Gamma
correction

Image as viewed on monitor

Image as viewed on monitor

FIGURE 3.7
(a) Linear-wedge
gray-scale image.
(b) Response of
monitor to linear
wedge.
(c) Gamma-
corrected wedge.
(d) Output of
monitor.

apply to other imaging devices such as scanners and printers. The only differ-
ence would be the device-dependent value of gamma (Poynton [1996]).

Gamma correction is important if displaying an image accurately on a com-
puter screen is of concern. Images that are not corrected properly can look ei-
ther bleached out, or, what is more likely, too dark. Trying to reproduce colors
accurately also requires some knowledge of gamma correction because varying
the value of gamma correction changes not only the brightness, but also the ra-
tios of red to green to blue. Gamma correction has become increasingly im-
portant in the past few years, as use of digital images for commercial purposes
over the Internet has increased. It is not unusual that images created for a pop-
ular Web site will be viewed by millions of people, the majority of whom will
have different monitors and/or monitor settings. Some computer systems even
have partial gamma correction built in. Also, current image standards do not
contain the value of gamma with which an image was created, thus complicat-
ing the issue further. Given these constraints, a reasonable approach when stor-
ing images in a Web site is to preprocess the images with a gamma that
represents an “average” of the types of monitors and computer systems that
one expects in the open market at any given point in time.

� In addition to gamma correction, power-law transformations are useful for
general-purpose contrast manipulation. Figure 3.8(a) shows a magnetic reso-
nance (MR) image of an upper thoracic human spine with a fracture dislocation

EXAMPLE 3.1:
Contrast
enhancement
using power-law
transformations.

a b
c d
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FIGURE 3.8
(a) Magnetic
resonance (MR)
image of a
fractured human
spine.
(b)–(d) Results of
applying the
transformation in
Eq. (3.2-3) with
c=1 and
g=0.6, 0.4, and
0.3, respectively.
(Original image
for this example
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

and spinal cord impingement. The fracture is visible near the vertical center of
the spine, approximately one-fourth of the way down from the top of the pic-
ture. Since the given image is predominantly dark, an expansion of gray levels
are desirable. This can be accomplished with a power-law transformation with
a fractional exponent. The other images shown in the Figure were obtained by
processing Fig. 3.8(a) with the power-law transformation function of Eq. (3.2-3).
The values of gamma corresponding to images (b) through (d) are 0.6, 0.4, and
0.3, respectively (the value of c was 1 in all cases). We note that, as gamma de-
creased from 0.6 to 0.4, more detail became visible.A further decrease of gamma

a b
c d
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FIGURE 3.9
(a) Aerial image.
(b)–(d) Results of
applying the
transformation in
Eq. (3.2-3) with
c=1 and
g=3.0, 4.0, and
5.0, respectively.
(Original image
for this example
courtesy of
NASA.)

to 0.3 enhanced a little more detail in the background, but began to reduce con-
trast to the point where the image started to have a very slight “washed-out”
look, especially in the background. By comparing all results, we see that the
best enhancement in terms of contrast and discernable detail was obtained with
g=0.4.A value of g=0.3 is an approximate limit below which contrast in this
particular image would be reduced to an unacceptable level. �

� Figure 3.9(a) shows the opposite problem of Fig. 3.8(a).The image to be en-
hanced now has a washed-out appearance, indicating that a compression of gray
levels is desirable. This can be accomplished with Eq. (3.2-3) using values of g
greater than 1. The results of processing Fig. 3.9(a) with g=3.0, 4.0, and 5.0
are shown in Figs. 3.9(b) through (d). Suitable results were obtained with gamma
values of 3.0 and 4.0, the latter having a slightly more appealing appearance be-
cause it has higher contrast.The result obtained with g=5.0 has areas that are
too dark, in which some detail is lost.The dark region to the left of the main road
in the upper left quadrant is an example of such an area. �

EXAMPLE 3.2:
Another
illustration of
power-law
transformations.

a b
c d
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3.2.4 Piecewise-Linear Transformation Functions
A complementary approach to the methods discussed in the previous three sec-
tions is to use piecewise linear functions. The principal advantage of piecewise
linear functions over the types of functions we have discussed thus far is that the
form of piecewise functions can be arbitrarily complex. In fact, as we will see
shortly, a practical implementation of some important transformations can be
formulated only as piecewise functions. The principal disadvantage of piece-
wise functions is that their specification requires considerably more user input.

Contrast stretching

One of the simplest piecewise linear functions is a contrast-stretching trans-
formation. Low-contrast images can result from poor illumination, lack of dy-
namic range in the imaging sensor, or even wrong setting of a lens aperture
during image acquisition.The idea behind contrast stretching is to increase the
dynamic range of the gray levels in the image being processed.

Figure 3.10(a) shows a typical transformation used for contrast stretching.
The locations of points Ar1, s1B and Ar2, s2B control the shape of the transformation

T(r)

(r1, s1)
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FIGURE 3.10
Contrast
stretching.
(a) Form of
transformation
function. (b) A
low-contrast
image. (c) Result
of contrast
stretching.
(d) Result of
thresholding.
(Original image
courtesy of
Dr. Roger Heady,
Research School
of Biological
Sciences,
Australian
National
University,
Canberra,
Australia.)

a b
c d
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86 Chapter 3 � Image Enhancement in the Spatial Domain

function. If r1=s1 and r2=s2 , the transformation is a linear function that pro-
duces no changes in gray levels. If r1=r2, s1=0 and s2=L-1, the transfor-
mation becomes a thresholding function that creates a binary image, as illustrated
in Fig. 3.2(b). Intermediate values of Ar1, s1B and Ar2, s2B produce various degrees
of spread in the gray levels of the output image, thus affecting its contrast. In
general, r1 � r2 and s1 � s2 is assumed so that the function is single valued and
monotonically increasing.This condition preserves the order of gray levels, thus
preventing the creation of intensity artifacts in the processed image.

Figure 3.10(b) shows an 8-bit image with low contrast. Fig. 3.10(c) shows the
result of contrast stretching, obtained by setting Ar1 , s1 B= Armin , 0 B and
Ar2, s2 B=Armax, L-1 B where rmin and rmax denote the minimum and maximum
gray levels in the image, respectively.Thus, the transformation function stretched
the levels linearly from their original range to the full range [0, L-1]. Final-
ly, Fig. 3.10(d) shows the result of using the thresholding function defined pre-
viously, with r1=r2=m, the mean gray level in the image.The original image
on which these results are based is a scanning electron microscope image of
pollen, magnified approximately 700 times.

Gray-level slicing

Highlighting a specific range of gray levels in an image often is desired. Appli-
cations include enhancing features such as masses of water in satellite imagery
and enhancing flaws in X-ray images.There are several ways of doing level slic-
ing, but most of them are variations of two basic themes. One approach is to dis-
play a high value for all gray levels in the range of interest and a low value for
all other gray levels.This transformation, shown in Fig. 3.11(a), produces a binary
image.The second approach, based on the transformation shown in Fig. 3.11(b),
brightens the desired range of gray levels but preserves the background and
gray-level tonalities in the image. Figure 3.11(c) shows a gray-scale image, and
Fig. 3.11(d) shows the result of using the transformation in Fig. 3.11(a).Variations
of the two transformations shown in Fig. 3.11 are easy to formulate.

Bit-plane slicing

Instead of highlighting gray-level ranges, highlighting the contribution made to
total image appearance by specific bits might be desired. Suppose that each
pixel in an image is represented by 8 bits. Imagine that the image is composed
of eight 1-bit planes, ranging from bit-plane 0 for the least significant bit to bit-
plane 7 for the most significant bit. In terms of 8-bit bytes, plane 0 contains all
the lowest order bits in the bytes comprising the pixels in the image and plane
7 contains all the high-order bits. Figure 3.12 illustrates these ideas, and Fig. 3.14
shows the various bit planes for the image shown in Fig. 3.13. Note that the
higher-order bits (especially the top four) contain the majority of the visually sig-
nificant data.The other bit planes contribute to more subtle details in the image.
Separating a digital image into its bit planes is useful for analyzing the relative
importance played by each bit of the image, a process that aids in determining
the adequacy of the number of bits used to quantize each pixel. Also, this type
of decomposition is useful for image compression, as discussed in Chapter 8.
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FIGURE 3.11
(a) This
transformation
highlights range
[A, B] of gray
levels and reduces
all others to a
constant level.
(b) This
transformation
highlights range
[A, B] but
preserves all
other levels.
(c) An image.
(d) Result of
using the
transformation
in (a).

One 8-bit byte Bit-plane 7
(most significant)

Bit-plane 0
(least significant)

FIGURE 3.12
Bit-plane
representation of
an 8-bit image.

In terms of bit-plane extraction for an 8-bit image, it is not difficult to show
that the (binary) image for bit-plane 7 can be obtained by processing the input
image with a thresholding gray-level transformation function that (1) maps all
levels in the image between 0 and 127 to one level (for example, 0); and (2) maps
all levels between 129 and 255 to another (for example, 255).The binary image
for bit-plane 7 in Fig. 3.14 was obtained in just this manner. It is left as an exer-
cise (Problem 3.3) to obtain the gray-level transformation functions that would
yield the other bit planes.

a b
c d
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Histogram Processing

The histogram of a digital image with gray levels in the range [0, L-1] is a dis-
crete function h Ark B=nk , where rk is the kth gray level and nk is the number
of pixels in the image having gray level rk . It is common practice to normalize
a histogram by dividing each of its values by the total number of pixels in the
image, denoted by n. Thus, a normalized histogram is given by p Ark B=nk�n,
for k=0, 1, p , L-1. Loosely speaking, p Ark B gives an estimate of the prob-
ability of occurrence of gray level rk . Note that the sum of all components of a
normalized histogram is equal to 1.

Histograms are the basis for numerous spatial domain processing techniques.
Histogram manipulation can be used effectively for image enhancement, as
shown in this section. In addition to providing useful image statistics, we shall
see in subsequent chapters that the information inherent in histograms also is
quite useful in other image processing applications, such as image compression
and segmentation. Histograms are simple to calculate in software and also lend
themselves to economic hardware implementations, thus making them a pop-
ular tool for real-time image processing.

As an introduction to the role of histogram processing in image enhance-
ment, consider Fig. 3.15, which is the pollen image of Fig. 3.10 shown in four
basic gray-level characteristics: dark, light, low contrast, and high contrast. The
right side of the figure shows the histograms corresponding to these images.
The horizontal axis of each histogram plot corresponds to gray level values, rk .
The vertical axis corresponds to values of h Ark B=nk or p Ark B=nk�n if the
values are normalized. Thus, as indicated previously, these histogram plots are
simply plots of h Ark B=nk versus rk or p Ark B=nk�n versus rk .

3.3

FIGURE 3.13 An 8-bit fractal image. (A fractal is an image generated from mathematical
expressions). (Courtesy of Ms. Melissa D. Binde, Swarthmore College, Swarthmore, PA.)

Consult the book web site
for a review of basic prob-
ability theory.

See inside front cover
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3.3 � Histogram Processing 89

FIGURE 3.14 The eight bit planes of the image in Fig. 3.13. The number at the bottom,
right of each image identifies the bit plane.

We note in the dark image that the components of the histogram are con-
centrated on the low (dark) side of the gray scale. Similarly, the components of
the histogram of the bright image are biased toward the high side of the gray
scale. An image with low contrast has a histogram that will be narrow and will
be centered toward the middle of the gray scale. For a monochrome image this
implies a dull, washed-out gray look. Finally, we see that the components of the
histogram in the high-contrast image cover a broad range of the gray scale and,
further, that the distribution of pixels is not too far from uniform, with very few
vertical lines being much higher than the others. Intuitively, it is reasonable to
conclude that an image whose pixels tend to occupy the entire range of possi-
ble gray levels and, in addition, tend to be distributed uniformly, will have an ap-
pearance of high contrast and will exhibit a large variety of gray tones.The net
effect will be an image that shows a great deal of gray-level detail and has high
dynamic range. It will be shown shortly that it is possible to develop a trans-
formation function that can automatically achieve this effect, based only on
information available in the histogram of the input image.
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Dark image

Bright image

Low-contrast image

High-contrast image

FIGURE 3.15 Four basic image types: dark, light, low contrast, high contrast, and their cor-
responding histograms. (Original image courtesy of Dr. Roger Heady, Research School
of Biological Sciences, Australian National University, Canberra, Australia.)

a b
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3.3.1 Histogram Equalization
Consider for a moment continuous functions, and let the variable r represent the
gray levels of the image to be enhanced. In the initial part of our discussion we
assume that r has been normalized to the interval [0, 1], with r=0 represent-
ing black and r=1 representing white. Later, we consider a discrete formula-
tion and allow pixel values to be in the interval [0, L-1].

For any r satisfying the aforementioned conditions, we focus attention on
transformations of the form

s=T(r) 0 � r � 1 (3.3-1)

that produce a level s for every pixel value r in the original image. For reasons
that will become obvious shortly, we assume that the transformation function
T(r) satisfies the following conditions:

(a) T(r) is single-valued and monotonically increasing in the interval
0 � r � 1; and

(b) 0 � T(r) � 1 for 0 � r � 1.

The requirement in (a) that T(r) be single valued is needed to guarantee that the
inverse transformation will exist, and the monotonicity condition preserves
the increasing order from black to white in the output image.A transformation
function that is not monotonically increasing could result in at least a section
of the intensity range being inverted, thus producing some inverted gray levels
in the output image. While this may be a desirable effect in some cases, that is
not what we are after in the present discussion. Finally, condition (b) guarantees
that the output gray levels will be in the same range as the input levels. Fig-
ure 3.16 gives an example of a transformation function that satisfies these two
conditions. The inverse transformation from s back to r is denoted

(3.3-2)

It can be shown by example (Problem 3.8) that even if T(r) satisfies conditions
(a) and (b), it is possible that the corresponding inverse may fail to be sin-
gle valued.

T-1(s)

r = T-1(s)  0 � s � 1.

T(r)

0 rk 1

t

r

s

sk=T(rk)

FIGURE 3.16 A
gray-level
transformation
function that is
both single valued
and
monotonically
increasing.
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92 Chapter 3 � Image Enhancement in the Spatial Domain

The gray levels in an image may be viewed as random variables in the in-
terval [0, 1]. One of the most fundamental descriptors of a random variable is
its probability density function (PDF). Let pr(r) and ps(s) denote the probability
density functions of random variables r and s, respectively, where the subscripts
on p are used to denote that pr and ps are different functions. A basic result
from an elementary probability theory is that, if pr(r) and T(r) are known and

satisfies condition (a), then the probability density function ps(s) of the
transformed variable s can be obtained using a rather simple formula:

(3.3-3)

Thus, the probability density function of the transformed variable, s, is deter-
mined by the gray-level PDF of the input image and by the chosen transfor-
mation function.

A transformation function of particular importance in image processing
has the form

(3.3-4)

where w is a dummy variable of integration.The right side of Eq. (3.3-4) is rec-
ognized as the cumulative distribution function (CDF) of random variable r.
Since probability density functions are always positive, and recalling that the in-
tegral of a function is the area under the function, it follows that this transfor-
mation function is single valued and monotonically increasing, and, therefore,
satisfies condition (a). Similarly, the integral of a probability density function for
variables in the range [0, 1] also is in the range [0, 1], so condition (b) is satis-
fied as well.

Given transformation function T(r), we find ps(s) by applying Eq. (3.3-3).We
know from basic calculus (Leibniz’s rule) that the derivative of a definite inte-
gral with respect to its upper limit is simply the integrand evaluated at that limit.
In other words,

(3.3-5)

Substituting this result for dr�ds into Eq. (3.3-3), and keeping in mind that all
probability values are positive, yields 

(3.3-6)

 = 1  0 � s � 1.

 = pr(r) 2 1
pr(r)
2

 ps(s) = pr(r) 2 dr
ds
2

 = pr(r).

 =
d

dr
 c 3

r

0
pr(w) dw d

 
ds
dr

=
dT(r)

dr

s = T(r) = 3
r

0
pr(w) dw

ps(s) = pr(r) 2 dr
ds
2  .

T-1(s)
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3.3 � Histogram Processing 93

Because ps(s) is a probability density function, it follows that it must be zero out-
side the interval [0, 1] in this case because its integral over all values of s must
equal 1. We recognize the form of ps(s) given in Eq. (3.3-6) as a uniform prob-
ability density function. Simply stated, we have demonstrated that performing
the transformation function given in Eq. (3.3-4) yields a random variable s char-
acterized by a uniform probability density function. It is important to note from
Eq. (3.3-4) that T(r) depends on pr(r), but, as indicated by Eq. (3.3-6), the re-
sulting ps(s) always is uniform, independent of the form of pr(r).

For discrete values we deal with probabilities and summations instead of
probability density functions and integrals. The probability of occurrence of
gray level rk in an image is approximated by

(3.3-7)

where, as noted at the beginning of this section, n is the total number of pixels
in the image, nk is the number of pixels that have gray level rk , and L is the total
number of possible gray levels in the image. The discrete version of the trans-
formation function given in Eq. (3.3-4) is

(3.3-8)

Thus, a processed (output) image is obtained by mapping each pixel with level
rk in the input image into a corresponding pixel with level sk in the output image
via Eq. (3.3-8). As indicated earlier, a plot of pr Ark B versus rk is called a his-
togram. The transformation (mapping) given in Eq. (3.3-8) is called histogram
equalization or histogram linearization. It is not difficult to show (Problem 3.9)
that the transformation in Eq. (3.3-8) satisfies conditions (a) and (b) stated pre-
viously in this section.

Unlike its continuos counterpart, it cannot be proved in general that this dis-
crete transformation will produce the discrete equivalent of a uniform proba-
bility density function, which would be a uniform histogram. However, as will
be seen shortly, use of Eq. (3.3-8) does have the general tendency of spreading
the histogram of the input image so that the levels of the histogram-equalized
image will span a fuller range of the gray scale.

We discussed earlier in this section the many advantages of having gray-level
values that cover the entire gray scale. In addition to producing gray levels that
have this tendency, the method just derived has the additional advantage that
it is fully “automatic.” In other words, given an image, the process of histogram
equalization consists simply of implementing Eq. (3.3-8), which is based on in-
formation that can be extracted directly from the given image, without the need
for further parameter specifications. We note also the simplicity of the compu-
tations that would be required to implement the technique.

The inverse transformation from s back to r is denoted by

(3.3-9)rk = T-1AskB  k = 0, 1, 2, p , L - 1

 = a
k

j = 0
 
nj

n
  k = 0, 1, 2, p , L - 1.

 sk = TArkB = a
k

j = 0
prArjB

pr(rk) =
nk

n
  k = 0, 1, 2, p , L - 1
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94 Chapter 3 � Image Enhancement in the Spatial Domain

It can be shown (Problem 3.9) that the inverse transformation in Eq. (3.3-9)
satisfies conditions (a) and (b) stated previously in this section only if none of
the levels, rk , k=0, 1, 2, p , L-1, are missing from the input image.Although
the inverse transformation is not used in histogram equalization, it plays a cen-
tral role in the histogram-matching scheme developed in the next section. We
also discuss in that section details of how to implement histogram processing
techniques.

� Figure 3.17(a) shows the four images from Fig. 3.15, and Fig. 3.17(b) shows
the result of performing histogram equalization on each of these images.The first
three results (top to bottom) show significant improvement. As expected, his-
togram equalization did not produce a significant visual difference in the fourth
image because the histogram of this image already spans the full spectrum of
the gray scale. The transformation functions used to generate the images in
Fig. 3.17(b) are shown in Fig. 3.18. These functions were generated from the
histograms of the original images [see Fig. 3.15(b)] using Eq. (3.3-8). Note that
transformation (4) has a basic linear shape, again indicating that the gray lev-
els in the fourth input image are nearly uniformly distributed.As was just noted,
we would expect histogram equalization in this case to have negligible effect on
the appearance of the image.

The histograms of the equalized images are shown in Fig. 3.17(c). It is of in-
terest to note that, while all these histograms are different, the histogram-
equalized images themselves are visually very similar. This is not unexpected
because the difference between the images in the left column is simply one of
contrast, not of content. In other words, since the images have the same content,
the increase in contrast resulting from histogram equalization was enough to
render any gray-level differences in the resulting images visually indistinguish-
able. Given the significant contrast differences of the images in the left column,
this example illustrates the power of histogram equalization as an adaptive en-
hancement tool. �

3.3.2 Histogram Matching (Specification)
As indicated in the preceding discussion, histogram equalization automatical-
ly determines a transformation function that seeks to produce an output image
that has a uniform histogram. When automatic enhancement is desired, this is
a good approach because the results from this technique are predictable and the
method is simple to implement. We show in this section that there are applica-
tions in which attempting to base enhancement on a uniform histogram is not
the best approach. In particular, it is useful sometimes to be able to specify the
shape of the histogram that we wish the processed image to have. The method
used to generate a processed image that has a specified histogram is called
histogram matching or histogram specification.

Development of the method

Let us return for a moment to continuous gray levels r and z (considered
continuous random variables), and let pr(r) and pz(z) denote their corre-
sponding continuos probability density functions. In this notation, r and z denote

EXAMPLE 3.3:
Histogram
equalization.
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3.3 � Histogram Processing 95

FIGURE 3.17 (a) Images from Fig. 3.15. (b) Results of histogram equalization. (c) Cor-
responding histograms.

a b c
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FIGURE 3.18
Transformation
functions (1)
through (4) were
obtained from the
histograms of the
images in
Fig.3.17(a), using
Eq. (3.3-8).

the gray levels of the input and output (processed) images, respectively.We can
estimate pr(r) from the given input image, while pz(z) is the specified probability
density function that we wish the output image to have.

Let s be a random variable with the property

(3.3-10)

where w is a dummy variable of integration.We recognize this expression as the
continuos version of histogram equalization given in Eq. (3.3-4). Suppose next
that we define a random variable z with the property

(3.3-11)

where t is a dummy variable of integration. It then follows from these two equa-
tions that G(z)=T(r) and, therefore, that z must satisfy the condition

(3.3-12)

The transformation T(r) can be obtained from Eq. (3.3-10) once pr(r) has been
estimated from the input image. Similarly, the transformation function G(z)
can be obtained using Eq. (3.3-11) because pz(z) is given.

Assuming that G–1 exists and that it satisfies conditions (a) and (b) in the
previous section, Eqs. (3.3-10) through (3.3-12) show that an image with a spec-
ified probability density function can be obtained from an input image by using
the following procedure: (1) Obtain the transformation function T(r) using
Eq. (3.3-10). (2) Use Eq. (3.3-11) to obtain the transformation function G(z).
(3) Obtain the inverse transformation function G–1. (4) Obtain the output image

z = G-1(s) = G-1 CT(r) D .

G(z) = 3
z

0
pz(t) dt = s

s = T(r) = 3
r

0
pr(w) dw
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3.3 � Histogram Processing 97

by applying Eq. (3.3-12) to all the pixels in the input image.The result of this pro-
cedure will be an image whose gray levels, z, have the specified probability den-
sity function pz(z).

Although the procedure just described is straightforward in principle, it is
seldom possible in practice to obtain analytical expressions for T(r) and for
G–1. Fortunately, this problem is simplified considerably in the case of discrete
values.The price we pay is the same as in histogram equalization, where only an
approximation to the desired histogram is achievable. In spite of this, however,
some very useful results can be obtained even with crude approximations.

The discrete formulation of Eq. (3.3-10) is given by Eq. (3.3-8), which we re-
peat here for convenience:

(3.3-13)

where n is the total number of pixels in the image, nj is the number of pixels with
gray level rj , and L is the number of discrete gray levels. Similarly, the discrete
formulation of Eq. (3.3-11) is obtained from the given histogram pz Azi B , i=0,
1, 2, p , L-1, and has the form

(3.3-14)

As in the continuos case, we are seeking values of z that satisfy this equation.
The variable vk was added here for clarity in the discussion that follows. Final-
ly, the discrete version of Eq. (3.3-12) is given by

(3.3-15)

or, from Eq. (3.3-13),

(3.3-16)

Equations (3.3-13) through (3.3-16) are the foundation for implementing
histogram matching for digital images. Equation (3.3-13) is a mapping from the
levels in the original image into corresponding levels sk based on the histogram
of the original image, which we compute from the pixels in the image. Equation
(3.3-14) computes a transformation function G from the given histogram pz(z).
Finally, Eq. (3.3-15) or its equivalent, Eq. (3.3-16), gives us (an approximation
of) the desired levels of the image with that histogram. The first two equations
can be implemented easily because all the quantities are known. Implementa-
tion of Eq. (3.3-16) is straightforward, but requires additional explanation.

Implementation

We start by noting the following: (1) Each set of gray levels ErjF , EsjF , and EzjF ,
j=0, 1, 2, p , L-1, is a one-dimensional array of dimension L*1. (2) All
mappings from r to s and from s to z are simple table lookups between a given

zk = G-1AskB  k = 0, 1, 2, p , L - 1.

zk = G-1 CTArkB D  k = 0, 1, 2, p , L - 1

vk = GAzkB = a
k

i = 0
pzAziB = sk  k = 0, 1, 2, p , L - 1.

 = a
k

j = 0
 
nj

n
  k = 0, 1, 2, p , L - 1

 sk = TArkB =  a      k
         

j = 0
prArjB
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FIGURE 3.19
(a) Graphical
interpretation of
mapping from rk

to sk via T(r).
(b) Mapping of zq

to its
corresponding
value vq via G(z).
(c) Inverse
mapping from sk

to its
corresponding
value of zk .

a b
c

pixel value and these arrays. (3) Each of the elements of these arrays, for ex-
ample, sk , contains two important pieces of information: The subscript k de-
notes the location of the element in the array, and s denotes the value at that
location. (4) We need to be concerned only with integer pixel values. For ex-
ample, in the case of an 8-bit image, L=256 and the elements of each of the
arrays just mentioned are integers between 0 and 255.This implies that we now
work with gray level values in the interval [0, L-1] instead of the normalized
interval [0, 1] that we used before to simplify the development of histogram
processing techniques.

In order to see how histogram matching actually can be implemented, con-
sider Fig. 3.19(a), ignoring for a moment the connection shown between this
figure and Fig. 3.19(c). Figure 3.19(a) shows a hypothetical discrete transfor-
mation function s=T(r) obtained from a given image. The first gray level in
the image, r1 , maps to s1 ; the second gray level, r2 , maps to s2 ; the kth level rk

maps to sk ; and so on (the important point here is the ordered correspondence
between these values). Each value sj in the array is precomputed using
Eq. (3.3-13), so the process of mapping simply uses the actual value of a pixel
as an index in an array to determine the corresponding value of s. This process
is particularly easy because we are dealing with integers. For example, the s
mapping for an 8-bit pixel with value 127 would be found in the 128th position
in array EsjF (recall that we start at 0) out of the possible 256 positions. If we
stopped here and mapped the value of each pixel of an input image by the
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3.3 � Histogram Processing 99

method just described, the output would be a histogram-equalized image, ac-
cording to Eq. (3.3-8).

In order to implement histogram matching we have to go one step further.
Figure 3.19(b) is a hypothetical transformation function G obtained from a
given histogram pz(z) by using Eq. (3.3-14). For any zq , this transformation
function yields a corresponding value vq . This mapping is shown by the arrows
in Fig. 3.19(b). Conversely, given any value vq , we would find the correspond-
ing value zq from G–1. In terms of the figure, all this means graphically is that we
would reverse the direction of the arrows to map vq into its corresponding zq .
However, we know from the definition in Eq. (3.3-14) that v=s for corre-
sponding subscripts, so we can use exactly this process to find the zk corre-
sponding to any value sk that we computed previously from the equation
sk=T Ark B . This idea is shown in Fig. 3.19(c).

Since we really do not have the z’s (recall that finding these values is pre-
cisely the objective of histogram matching), we must resort to some sort of iter-
ative scheme to find z from s. The fact that we are dealing with integers makes
this a particularly simple process. Basically, because vk=sk , we have from
Eq. (3.3-14) that the z’s for which we are looking must satisfy the equation
GAzk B=sk , or AGAzk B-skB=0. Thus, all we have to do to find the value of zk

corresponding to sk is to iterate on values of z such that this equation is satisfied
for k=0, 1, 2, p , L-1. This is the same thing as Eq. (3.3-16), except that we
do not have to find the inverse of G because we are going to iterate on z. Since
we are dealing with integers, the closest we can get to satisfying the equation
AG Azk B-sk B=0 is to let zk= for each value of k, where is the smallest
integer in the interval [0, L-1] such that

(3.3-17)

Given a value sk , all this means conceptually in terms of Fig. 3.19(c) is that we
would start with and increase it in integer steps until Eq. (3.3-17) is sat-
isfied, at which point we let Repeating this process for all values of k
would yield all the required mappings from s to z, which constitutes the im-
plementation of Eq. (3.3-16). In practice, we would not have to start with
each time because the values of sk are known to increase monotonically. Thus,
for k=k+1, we would start with and increment in integer values
from there.

The procedure we have just developed for histogram matching may be sum-
marized as follows:

1. Obtain the histogram of the given image.
2. Use Eq. (3.3-13) to precompute a mapped level sk for each level rk .
3. Obtain the transformation function G from the given pz(z) using

Eq. (3.3-14).
4. Precompute zk for each value of sk using the iterative scheme defined in con-

nection with Eq. (3.3-17).
5. For each pixel in the original image, if the value of that pixel is rk , map this

value to its corresponding level sk ; then map level sk into the final level zk .
Use the precomputed values from Steps (2) and (4) for these mappings.

ẑ = zk

ẑ = 0

zk = ẑ.
ẑ = 0

AG(ẑ) - skB � 0  k = 0, 1, 2, p , L - 1.

ẑẑ
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FIGURE 3.20 (a) Image of the Mars moon Photos taken by NASA’s Mars Global
Surveyor. (b) Histogram. (Original image courtesy of NASA.)

Note that Step (5) implements two mappings for each pixel in the image being
processed. The first mapping is nothing more than histogram equalization. If
the histogram-equalized image is not required, it obviously would be beneficial
to combine both transformations into one in order to save an intermediate step.

Finally, we note that, even in the discrete case, we need to be concerned about
G–1 satisfying conditions (a) and (b) of the previous section. It is not difficult to
show (Problem 3.9) that the only way to guarantee that G–1 be single valued and
monotonic is to require that G be strictly monotonic (i.e., always increasing),
which means simply that none of the values of the specified histogram pz Azi B in
Eq. (3.3-14) can be zero.

� Figure 3.20(a) shows an image of the Mars moon, Phobos, taken by NASA’s
Mars Global Surveyor. Figure 3.20(b) shows the histogram of Fig. 3.20(a). The
image is dominated by large, dark areas, resulting in a histogram characterized
by a large concentration of pixels in the dark end of the gray scale. At first
glance, one might conclude that histogram equalization would be a good ap-
proach to enhance this image, so that details in the dark areas become more
visible. It is demonstrated in the following discussion that this is not so.

Figure 3.21(a) shows the histogram equalization transformation [Eq. (3.3-8)
or (3.3-13)] obtained from the histogram shown in Fig. 3.20(b). The most rele-
vant characteristic of this transformation function is how fast it rises from gray
level 0 to a level near 190.This is caused by the large concentration of pixels in
the input histogram having levels very near 0. When this transformation is ap-
plied to the levels of the input image to obtain a histogram-equalized result,
the net effect is to map a very narrow interval of dark pixels into the upper end
of the gray scale of the output image. Because numerous pixels in the input
image have levels precisely in this interval, we would expect the result to be an

EXAMPLE 3.4:
Comparison
between
histogram
equalization and
histogram
matching.

a b
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FIGURE 3.21
(a) Transformation
function for
histogram
equalization.
(b) Histogram-
equalized image
(note the washed-
out appearance).
(c) Histogram 
of (b).

image with a light, washed-out appearance. As shown in Fig. 3.21(b), this is in-
deed the case.The histogram of this image is shown in Fig. 3.21(c). Note how all
the gray levels are biased toward the upper one-half of the gray scale.

Since the problem with the transformation function in Fig. 3.21(a) was caused
by a large concentration of pixels in the original image with levels near 0, a rea-
sonable approach is to modify the histogram of that image so that it does not
have this property. Figure 3.22(a) shows a manually specified function that pre-
serves the general shape of the original histogram, but has a smoother transition
of levels in the dark region of the gray scale. Sampling this function into 256
equally spaced discrete values produced the desired specified histogram. The
transformation function G(z) obtained from this histogram using Eq. (3.3-14) is
labeled transformation (1) in Fig. 3.22(b). Similarly, the inverse transformation
G–1(s) from Eq. (3.3-16) [obtained using the iterative technique discussed in
connection with Eq. (3.3-17)] is labeled transformation (2) in Fig. 3.22(b).The en-
hanced image in Fig. 3.22(c) was obtained by applying transformation (2) to the
pixels of the histogram-equalized image in Fig. 3.21(b).The improvement of the
histogram-specified image over the result obtained by histogram equalization is
evident by comparing these two images. It is of interest to note that a rather
modest change in the original histogram was all that was required to obtain a sig-
nificant improvement in enhancement.The histogram of Fig. 3.22(c) is shown in
Fig. 3.22(d).The most distinguishing feature of this histogram is how its low end
has shifted right toward the lighter region of the gray scale, as desired. �

a b
c
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FIGURE 3.22
(a) Specified
histogram.
(b) Curve (1) is
from Eq. (3.3-14),
using the
histogram in (a);
curve (2) was
obtained using
the iterative
procedure in
Eq. (3.3-17).
(c) Enhanced
image using
mappings from
curve (2).
(d) Histogram 
of (c).

Although it probably is obvious by now, we emphasize before leaving this sec-
tion that histogram specification is, for the most part, a trial-and-error process.
One can use guidelines learned from the problem at hand, just as we did in the
preceding example. At times, there may be cases in which it is possible to for-
mulate what an “average” histogram should look like and use that as the spec-
ified histogram. In cases such as these, histogram specification becomes a
straightforward process. In general, however, there are no rules for specifying
histograms, and one must resort to analysis on a case-by-case basis for any given
enhancement task.

a c
b
d
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3.3.3 Local Enhancement
The histogram processing methods discussed in the previous two sections are
global, in the sense that pixels are modified by a transformation function based
on the gray-level content of an entire image. Although this global approach is
suitable for overall enhancement, there are cases in which it is necessary to en-
hance details over small areas in an image.The number of pixels in these areas
may have negligible influence on the computation of a global transformation
whose shape does not necessarily guarantee the desired local enhancement.
The solution is to devise transformation functions based on the gray-level dis-
tribution—or other properties—in the neighborhood of every pixel in the image.
Although processing methods based on neighborhoods are the topic of Section
3.5, we discuss local histogram processing here for the sake of clarity and con-
tinuity. The reader will have no difficulty in following the discussion.

The histogram processing techniques previously described are easily adapt-
able to local enhancement. The procedure is to define a square or rectangular
neighborhood and move the center of this area from pixel to pixel. At each lo-
cation, the histogram of the points in the neighborhood is computed and either
a histogram equalization or histogram specification transformation function is
obtained. This function is finally used to map the gray level of the pixel cen-
tered in the neighborhood.The center of the neighborhood region is then moved
to an adjacent pixel location and the procedure is repeated. Since only one new
row or column of the neighborhood changes during a pixel-to-pixel translation
of the region, updating the histogram obtained in the previous location with
the new data introduced at each motion step is possible (Problem 3.11).This ap-
proach has obvious advantages over repeatedly computing the histogram over
all pixels in the neighborhood region each time the region is moved one pixel
location.Another approach used some times to reduce computation is to utilize
nonoverlapping regions, but this method usually produces an undesirable
checkerboard effect.

� Figure 3.23(a) shows an image that has been slightly blurred to reduce its
noise content (see Section 3.6.1 regarding blurring). Figure 3.23(b) shows the re-
sult of global histogram equalization. As is often the case when this technique
is applied to smooth, noisy areas, Fig. 3.23(b) shows considerable enhancement
of the noise, with a slight increase in contrast. Note that no new structural de-
tails were brought out by this method. However, local histogram equalization
using a 7*7 neighborhood revealed the presence of small squares inside the
larger dark squares. The small squares were too close in gray level to the larg-
er ones, and their sizes were too small to influence global histogram equaliza-
tion significantly. Note also the finer noise texture in Fig. 3.23(c), a result of
local processing using relatively small neighborhoods. �

3.3.4 Use of Histogram Statistics for Image Enhancement
Instead of using the image histogram directly for enhancement, we can use in-
stead some statistical parameters obtainable directly from the histogram. Let r
denote a discrete random variable representing discrete gray-levels in the range

EXAMPLE 3.5:
Enhancement
using local
histograms.
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104 Chapter 3 � Image Enhancement in the Spatial Domain

FIGURE 3.23 (a) Original image. (b) Result of global histogram equalization. (c) Result of local histogram
equalization using a 7*7 neighborhood about each pixel.

[0, L-1], and let p Ari B denote the normalized histogram component corre-
sponding to the ith value of r. As indicated previously in this section, we may
view p Ari B as an estimate of the probability of occurrence of gray level ri . The
nth moment of r about its mean is defined as 

(3.3-18)

where m is the mean value of r (its average gray level):

(3.3-19)

It follows from Eqs. (3.3-18) and (3.3-19) that m0=1 and m1=0. The second
moment is given by 

(3.3-20)

We recognize this expression as the variance of r, which is denoted conven-
tionally by s2(r).The standard deviation is defined simply as the square root of
the variance. We will revisit moments in Chapter 11 in connection with image
description. In terms of enhancement, however, we are interested primarily in
the mean, which is a measure of average gray level in an image, and the variance
(or standard deviation), which is a measure of average contrast.

We consider two uses of the mean and variance for enhancement purposes.
The global mean and variance are measured over an entire image and are use-
ful primarily for gross adjustments of overall intensity and contrast. A much
more powerful use of these two measures is in local enhancement, where the
local mean and variance are used as the basis for making changes that depend
on image characteristics in a predefined region about each pixel in the image.

m2(r) = a
L - 1

i = 0
Ari - mB2pAriB.

m = a
L - 1

i = 0
ri pAriB.

mn(r) = a
L - 1

i = 0
Ari - mBnpAriB

a b c
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3.3 � Histogram Processing 105

Let (x, y) be the coordinates of a pixel in an image, and let Sxy denote a
neighborhood (subimage) of specified size, centered at (x, y). From Eq. (3.3-19)
the mean value of the pixels in Sxy can be computed using the expression 

(3.3-21)

where rs, t is the gray level at coordinates (s, t) in the neighborhood, and p Ars, t B
is the neighborhood normalized histogram component corresponding to that
value of gray level. Similarly, from Eq. (3.3-20), the gray-level variance of the pix-
els in region Sxy is given by

(3.3-22)

The local mean is a measure of average gray level in neighborhood Sxy , and the
variance (or standard deviation) is a measure of contrast in that neighborhood.

An important aspect of image processing using the local mean and variance
is the flexibility they afford in developing simple, yet powerful enhancement
techniques based on statistical measures that have a close, predictable corre-
spondence with image appearance.We illustrate these characteristics by means
of an example.

� Figure 3.24 shows an SEM (scanning electron microscope) image of a tung-
sten filament wrapped around a support. The filament in the center of the
image and its support are quite clear and easy to study. There is another fila-
ment structure on the right side of the image, but it is much darker and its size
and other features are not as easily discernable. Local enhancement by contrast
manipulation is an ideal approach to try on problems such as this, where part
of the image is acceptable, but other parts may contain hidden features of in-
terest.

In this particular case, the problem is to enhance dark areas while leaving the
light area as unchanged as possible since it does note require enhancement.We
can use the concepts presented in this section to formulate an enhancement
method that can tell the difference between dark and light and, at the same
time, is capable of enhancing only the dark areas.A measure of whether an area
is relatively light or dark at a point (x, y) is to compare the local average gray
level to the average image gray level, called the global mean and denoted
MG . This latter quantity is obtained by letting S encompass the entire image.
Thus, we have the first element of our enhancement scheme: We will consider
the pixel at a point (x, y) as a candidate for processing if where
k0 is a positive constant with value less than 1.0. Since we are interested in en-
hancing areas that have low contrast, we also need a measure to determine
whether the contrast of an area makes it a candidate for enhancement.Thus, we
will consider the pixel at a point (x, y) as a candidate for enhancement if

where DG is the global standard deviation and k2 is a positive con-
stant. The value of this constant will be greater than 1.0 if we are interested in
enhancing light areas and less than 1.0 for dark areas. Finally, we need to restrict

sSxy
� k2 DG ,

mSxy
� k0 MG ,

mSxy

s2
Sxy

= a
 

(s, t)HSxy

Crs, t - mSxy
D 2pArs, tB.

mSxy
= a

 

(s, t)HSxy

rs, t pArs, tB

mSxy

EXAMPLE 3.6:
Enhancement
based on local
statistics.
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106 Chapter 3 � Image Enhancement in the Spatial Domain

the lowest values of contrast we are willing to accept, otherwise the procedure
would attempt to enhance even constant areas, whose standard deviation is
zero. Thus, we also set a lower limit on the local standard deviation by requir-
ing that with k<k2. A pixel at (x, y) that meets all the condi-
tions for local enhancement is processed simply by multiplying it by a specified
constant, E, to increase (or decrease) the value of its gray level relative to the
rest of the image. The values of pixels that do not meet the enhancement con-
ditions are left unchanged.

A summary of the enhancement method is as follows. Let f(x, y) represent
the value of an image pixel at any image coordinates (x, y), and let g(x, y) rep-
resent the corresponding enhanced pixel at those coordinates. Then

where, as indicated previously, E, k0 , k1 , and k2 are specified parameters; MG is
the global mean of the input image; and DG is its global standard deviation.

Normally, making a successful selection of parameters requires a bit of ex-
perimentation to gain familiarity with a given image or class of images. In this
case, the following values were selected: E=4.0, k0=0.4, k1=0.02, and
k2=0.4. The relatively low value of 4.0 for E was chosen so that, when it was
multiplied by the levels in the areas being enhanced (which are dark), the re-
sult would still tend toward the dark end of the scale, and thus preserve the gen-
eral visual balance of the image. The value of k0 was chosen as somewhat less
than half the global mean since it is obvious by looking at the image that the
areas that require enhancement definitely are dark enough to be below half
the global mean. A similar analysis led to the choice of values for k1 and k2 .
Choosing these constants is not a difficult task in general, but their choice

g(x, y) = bE � f(x, y)

f(x, y)

if mSxy
� k0 MG AND k1 DG � sSxy

� k2 DG

otherwise

k1 DG � sSxy
 ,

FIGURE 3.24 SEM
image of a
tungsten filament
and support,
magnified
approximately
130*. (Original
image courtesy of
Mr. Michael
Shaffer,
Department of
Geological
Sciences,
University of
Oregon, Eugene).
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3.3 � Histogram Processing 107

FIGURE 3.25 (a) Image formed from all local means obtained from Fig. 3.24 using Eq. (3.3-21). (b) Image
formed from all local standard deviations obtained from Fig. 3.24 using Eq. (3.3-22). (c) Image formed from
all multiplication constants used to produce the enhanced image shown in Fig. 3.26.

definitely must be guided by a logical analysis of the enhancement problem at
hand. Finally, the choice of size for the local area should be as small as possible
in order to preserve detail and keep the computational burden as low as possi-
ble. We chose a small (3*3) local region.

Figure 3.25(a) shows the values of for all values of (x, y). Since the value
of for each (x, y) is the average of the neighboring pixels in a 3*3 area
centered at (x, y), we expect the result to be similar to the original image, but

mSxy

mSxy

a b c

FIGURE 3.26
Enhanced SEM
image. Compare
with Fig. 3.24. Note
in particular the
enhanced area on
the right, bottom
side of the image.
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108 Chapter 3 � Image Enhancement in the Spatial Domain

slightly blurred. This indeed is the case in Fig. 3.25(a). Figure 3.25(b) shows in
image formed using all the values of Similarly, we can construct an image
out the values that multiply f(x, y) at each coordinate pair (x, y) to form g(x, y).
Since the values are either 1 or E, the image is binary, as shown in Fig. 3.25(c).
The dark areas correspond to 1 and the light areas to E.Thus, any light point in
Fig. 3.25(c) signifies a coordinate pair (x, y) at which the enhancement proce-
dure multiplied f(x, y) by E to produce an enhanced pixel. The dark points
represent coordinates at which the procedure did not to modify the pixel values.

The enhanced image obtained with the method just described is shown in
Fig.3.26. In comparing this image with the original in Fig.3.24,we note the obvious
detail that has been brought out on the right side of the enhanced image.It is worth-
while to point out that the unenhanced portions of the image (the light areas) were
left intact for the most part.We do note the appearance of some small bright dots
in the shadow areas where the coil meets the support stem,and around some of the
borders between the filament and the background.These are undesirable artifacts
created by the enhancement technique.In other words,the points appearing as light
dots met the criteria for enhancement and their values were amplified by factor E.
Introduction of artifacts is a definite drawback of a method such as the one just de-
scribed because of the nonlinear way in which they process an image.The key point
here, however, is that the image was enhanced in a most satisfactory way as far as
bringing out the desired detail. �

It is not difficult to imagine the numerous ways in which the example just
given could be adapted or extended to other situations in which local en-
hancement is applicable.

Enhancement Using Arithmetic/Logic Operations

Arithmetic/logic operations involving images are performed on a pixel-by-pixel
basis between two or more images (this excludes the logic operation NOT, which
is performed on a single image). As an example, subtraction of two images re-
sults in a new image whose pixel at coordinates (x, y) is the difference between
the pixels in that same location in the two images being subtracted. Depending
on the hardware and/or software being used, the actual mechanics of imple-
menting arithmetic/logic operations can be done sequentially, one pixel at a
time, or in parallel, where all operations are performed simultaneously.

Logic operations similarly operate on a pixel-by-pixel basis†. We need only
be concerned with the ability to implement the AND, OR, and NOT logic op-
erators because these three operators are functionally complete. In other words,
any other logic operator can be implemented by using only these three basic
functions.When dealing with logic operations on gray-scale images, pixel values
are processed as strings of binary numbers. For example, performing the NOT
operation on a black, 8-bit pixel (a string of eight 0’s) produces a white pixel

3.4

sSxy
 .

† Recall that, for two binary variables a and b: aANDb yields 1 only when both a and b are 1; otherwise
the result is 0. Similarly, aORb is 0 when both variables are 0; otherwise the result is 1. Finally, if a is 1,
NOT (a) is 0, and vice versa.
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FIGURE 3.27
(a) Original
image. (b) AND
image mask.
(c) Result of the
AND operation
on images (a) and
(b). (d) Original
image. (e) OR
image mask.
(f) Result of
operation OR on
images (d) and
(e).

(a string of eight 1’s). Intermediate values are processed the same way, chang-
ing all 1’s to 0’s and vice versa.Thus, the NOT logic operator performs the same
function as the negative transformation of Eq. (3.2-1). The AND and OR op-
erations are used for masking; that is, for selecting subimages in an image, as il-
lustrated in Fig. 3.27. In the AND and OR image masks, light represents a binary
1 and dark represents a binary 0. Masking sometimes is referred to as region of
interest (ROI) processing. In terms of enhancement, masking is used primarily
to isolate an area for processing. This is done to highlight that area and differ-
entiate it from the rest of the image. Logic operations also are used frequently
in conjunction with morphological operations, as discussed in Chapter 9.

Of the four arithmetic operations, subtraction and addition (in that order) are
the most useful for image enhancement. We consider division of two images
simply as multiplication of one image by the reciprocal of the other.Aside from
the obvious operation of multiplying an image by a constant to increase its av-
erage gray level, image multiplication finds use in enhancement primarily as a
masking operation that is more general than the logical masks discussed in the
previous paragraph. In other words, multiplication of one image by another can
be used to implement gray-level, rather than binary, masks. We give an exam-
ple in Section 3.8 of how such a masking operation can be a useful tool. In the
remainder of this section, we develop and illustrate methods based on subtrac-
tion and addition for image enhancement. Other uses of image multiplication
are discussed in Chapter 5, in the context of image restoration.

a b c
d e f
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110 Chapter 3 � Image Enhancement in the Spatial Domain

FIGURE 3.28
(a) Original
fractal image.
(b) Result of
setting the four
lower-order bit
planes to zero.
(c) Difference
between (a) and
(b).
(d) Histogram-
equalized
difference image.
(Original image
courtesy of Ms.
Melissa D. Binde,
Swarthmore
College,
Swarthmore, PA).

3.4.1 Image Subtraction
The difference between two images f(x, y) and h(x, y), expressed as

(3.4-1)

is obtained by computing the difference between all pairs of corresponding pix-
els from f and h. The key usefulness of subtraction is the enhancement of dif-
ferences between images. We illustrate this concept by returning briefly to the
discussion in Section 3.2.4, where we showed that the higher-order bit planes of
an image carry a significant amount of visually relevant detail, while the lower
planes contribute more to fine (often imperceptible) detail. Figure 3.28(a) shows
the fractal image used earlier to illustrate the concept of bit planes. Figure 3.28(b)
shows the result of discarding (setting to zero) the four least significant bit planes
of the original image. The images are nearly identical visually, with the excep-
tion of a very slight drop in overall contrast due to less variability of the gray-
level values in the image of Fig. 3.28(b). The pixel-by-pixel difference between
these two images is shown in Fig. 3.28(c). The differences in pixel values are so
small that the difference image appears nearly black when displayed on an 8-bit

g(x, y) = f(x, y) - h(x, y),

a b
c d
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display. In order to bring out more detail, we can perform a contrast stretching
transformation, such as those discussed in Sections 3.2 or 3.3. We chose his-
togram equalization, but an appropriate power-law transformation would have
done the job also.The result is shown in Fig. 3.28(d).This is a very useful image
for evaluating the effect of setting to zero the lower-order planes.

� One of the most commercially successful and beneficial uses of image sub-
traction is in the area of medical imaging called mask mode radiography. In this
case h(x, y), the mask, is an X-ray image of a region of a patient’s body captured
by an intensified TV camera (instead of traditional X-ray film) located oppo-
site an X-ray source.The procedure consists of injecting a contrast medium into
the patient’s bloodstream, taking a series of images of the same anatomical re-
gion as h(x, y), and subtracting this mask from the series of incoming images
after injection of the contrast medium. The net effect of subtracting the mask
from each sample in the incoming stream of TV images is that the areas that are
different between f(x, y) and h(x, y) appear in the output image as enhanced
detail. Because images can be captured at TV rates, this procedure in essence
gives a movie showing how the contrast medium propagates through the vari-
ous arteries in the area being observed.

Figure 3.29(a) shows an X-ray image of the top of a patient’s head prior to
injection of an iodine medium into the bloodstream. The camera yielding this
image was positioned above the patient’s head, looking down. As a reference
point, the bright spot in the lower one-third of the image is the core of the spinal
column. Figure 3.29(b) shows the difference between the mask (Fig. 3.29a) and
an image taken some time after the medium was introduced into the blood-
stream. The bright arterial paths carrying the medium are unmistakably en-
hanced in Fig. 3.29(b). These arteries appear quite bright because they are not
subtracted out (that is, they are not part of the mask image). The overall back-
ground is much darker than that in Fig. 3.29(a) because differences between
areas of little change yield low values, which in turn appear as dark shades of gray
in the difference image. Note, for instance, that the spinal cord, which is bright
in Fig. 3.29(a), appears quite dark in Fig. 3.29(b) as a result of subtraction. �

EXAMPLE 3.7:
Use of image
subtraction in
mask mode
radiography.

FIGURE 3.29
Enhancement by
image subtraction.
(a) Mask image.
(b) An image
(taken after
injection of a
contrast medium
into the
bloodstream) with
mask subtracted
out.

a b
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† Recall that the variance of a random variable x with mean m is defined as E C(x-m)2 D , where EE�F is
the expected value of the argument. The covariance of two random variables xi and xj is defined as
E C Axi-mi B Axj-mj B D . If the variables are uncorrelated, their covariance is 0.

A few comments on implementation are an order before we leave this sec-
tion. In practice, most images are displayed using 8 bits (even 24-bit color im-
ages consists of three separate 8-bit channels). Thus, we expect image values
not to be outside the range from 0 to 255. The values in a difference image can
range from a minimum of –255 to a maximum of 255, so some sort of scaling is
required to display the results.There are two principal ways to scale a difference
image. One method is to add 255 to every pixel and then divide by 2. It is not
guaranteed that the values will cover the entire 8-bit range from 0 to 255, but
all pixel values definitely will be within this range. This method is fast and sim-
ple to implement, but it has the limitations that the full range of the display
may not be utilized and, potentially more serious, the truncation inherent in the
division by 2 will generally cause loss in accuracy.

If more accuracy and full coverage of the 8-bit range are desired, then we can
resort to another approach. First, the value of the minimum difference is ob-
tained and its negative added to all the pixels in the difference image (this will
create a modified difference image whose minimum values is 0). Then, all the
pixels in the image are scaled to the interval [0, 255] by multiplying each pixel
by the quantity 255�Max, where Max is the maximum pixel value in the modi-
fied difference image. It is evident that this approach is considerably more com-
plex and difficult to implement.

Before leaving this section we note also that change detection via image sub-
traction finds another major application in the area of segmentation, which is
the topic of Chapter 10. Basically, segmentation techniques attempt to subdivide
an image into regions based on a specified criterion. Image subtraction for seg-
mentation is used when the criterion is “changes.” For instance, in tracking (seg-
menting) moving vehicles in a sequence of images, subtraction is used to remove
all stationary components in an image. What is left should be the moving ele-
ments in the image, plus noise.

3.4.2 Image Averaging
Consider a noisy image g(x, y) formed by the addition of noise h(x, y) to an
original image f(x, y); that is,

(3.4-2)

where the assumption is that at every pair of coordinates (x, y) the noise is un-
correlated† and has zero average value.The objective of the following procedure
is to reduce the noise content by adding a set of noisy images, Egi(x, y)F .

If the noise satisfies the constraints just stated, it can be shown (Problem
3.15) that if an image is formed by averaging K different noisy images,

(3.4-3)g–(x, y) =
1
K

 a
K

i = 1
gi(x, y)

g–(x, y)

g(x, y) = f(x, y) + h(x, y)
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then it follows that

(3.4-4)

and

(3.4-5)

where is the expected value of and and are the
variances of and h, all at coordinates (x, y). The standard deviation at any
point in the average image is

(3.4-6)

As K increases, Eqs. (3.4-5) and (3.4-6) indicate that the variability (noise) of
the pixel values at each location (x, y) decreases. Because = f(x, y),
this means that approaches f(x, y) as the number of noisy images used
in the averaging process increases. In practice, the images gi(x, y) must be reg-
istered (aligned) in order to avoid the introduction of blurring and other arti-
facts in the output image.

� An important application of image averaging is in the field of astronomy,
where imaging with very low light levels is routine, causing sensor noise fre-
quently to render single images virtually useless for analysis. Figure 3.30(a)
shows an image of a galaxy pair called NGC 3314, taken by NASA’s Hubble
Space Telescope with a wide field planetary camera. NGC 3314 lies about 140
million light-years from Earth, in the direction of the southern-hemisphere con-
stellation Hydra. The bright stars forming a pinwheel shape near the center of
the front galaxy have formed recently from interstellar gas and dust. Fig-
ure 3.30(b) shows the same image, but corrupted by uncorrelated Gaussian
noise with zero mean and a standard deviation of 64 gray levels. This image is
useless for all practical purposes. Figures 3.30(c) through (f) show the results of
averaging 8, 16, 64, and 128 images, respectively.We see that the result obtained
with K=128 is reasonably close to the original in visual appearance.

We can get a better appreciation from Fig. 3.31 for how reduction in the vi-
sual appearance of noise takes place as a function of increasing K. This figure
shows the difference images between the original [Fig. 3.30(a)] and each of the
averaged images in Figs. 3.30(c) through (f). The histograms corresponding to
the difference images are also shown in the figure. As usual, the vertical scale
in the histograms represents number of pixels and is in the range C0, 2.6*104 D .
The horizontal scale represents gray level and is in the range [0, 255]. Notice in
the histograms that the mean and standard deviation of the difference images
decrease as K increases.This is as expected because, according to Eqs. (3.4-3) and
(3.4-4), the average image should approach the original as K increases. We can
also see the effect of a decreasing mean in the difference images on the left col-
umn of Fig. 3.31, which become darker as the K increases.

g–(x, y)
EEg–(x, y)F

sg–(x, y) =
11K

 sh(x, y) .

g–
s2
h– (x, y)s2

g– (x, y)g–,EEg–(x, y)F

s2
g– (x, y) =

1
K

 s2
h(x, y)

EEg–(x, y)F = f(x, y)

EXAMPLE 3.8:
Noise reduction
by image
averaging.
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FIGURE 3.30 (a) Image of Galaxy Pair NGC 3314. (b) Image corrupted by additive Gauss-
ian noise with zero mean and a standard deviation of 64 gray levels. (c)–(f) Results of av-
eraging K=8, 16, 64, and 128 noisy images. (Original image courtesy of NASA.)

Addition is the discrete formulation of continuous integration. In astronomical
observations, a process equivalent to the method just described is to use the inte-
grating capabilities of CCD or similar sensors for noise reduction by observing the
same scene over long periods of time.The net effect, however, is analogous to the
procedure just discussed. Cooling the sensor further reduces its noise level. �

a b
c
e

d
f
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FIGURE 3.31
(a) From top to
bottom:
Difference images
between
Fig. 3.30(a) and
the four images in
Figs. 3.30(c)
through (f),
respectively.
(b) Corresponding
histograms.

As in the case of image subtraction, adding two or more 8-bit images requires
special care when it comes to displaying the result on an 8-bit display.The values in
the sum of K, 8-bit images can range from 0 to 255*K. Scaling back to 8 bits in
this case consists simply of dividing the result by K. Naturally, some accuracy will
be lost in the process,but this is unavoidable if the display has to be limited to 8 bits.

a b
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It is possible in some implementations of image averaging to have negative
values when noise is added to an image. In fact, in the example just given, this
was precisely the case because Gaussian random variables with zero mean and
nonzero variance have negative as well as positive values.The images in the ex-
ample were scaled using the second scaling method discussed at the end of the
previous section. That is, the minimum value in a given average image was ob-
tained and its negative was added to the image. Then all the pixels in the mod-
ified image were scaled to the range [0, 255] by multiplying each pixel in the
modified image by the quantity 255�Max, where Max was the maximum pixel
value in that image.

Basics of Spatial Filtering

As mentioned in Section 3.1, some neighborhood operations work with the val-
ues of the image pixels in the neighborhood and the corresponding values of a
subimage that has the same dimensions as the neighborhood. The subimage is
called a filter, mask, kernel, template, or window, with the first three terms being
the most prevalent terminology. The values in a filter subimage are referred to
as coefficients, rather than pixels.

The concept of filtering has its roots in the use of the Fourier transform for
signal processing in the so-called frequency domain. This topic is discussed in
more detail in Chapter 4. In the present chapter, we are interested in filtering
operations that are performed directly on the pixels of an image. We use the
term spatial filtering to differentiate this type of process from the more tradi-
tional frequency domain filtering.

The mechanics of spatial filtering are illustrated in Fig. 3.32. The process con-
sists simply of moving the filter mask from point to point in an image. At each
point (x, y), the response of the filter at that point is calculated using a prede-
fined relationship. For linear spatial filtering (see Section 2.6 regarding linear-
ity), the response is given by a sum of products of the filter coefficients and the
corresponding image pixels in the area spanned by the filter mask. For the 3*3
mask shown in Fig. 3.32, the result (or response), R, of linear filtering with the
filter mask at a point (x, y) in the image is

which we see is the sum of products of the mask coefficients with the corre-
sponding pixels directly under the mask. Note in particular that the coefficient
w(0, 0) coincides with image value f(x, y), indicating that the mask is centered
at (x, y) when the computation of the sum of products takes place. For a mask
of size m*n, we assume that m=2a+1 and n=2b+1, where a and b are
nonnegative integers. All this says is that our focus in the following discussion
will be on masks of odd sizes, with the smallest meaningful size being 3*3 (we
exclude from our discussion the trivial case of a 1*1 mask).

     + w(0, 0)f(x, y) + p + w(1, 0)f(x + 1, y) + w(1, 1)f(x + 1, y + 1),

 R = w(-1, -1)f(x - 1, y - 1) + w(-1, 0)f(x - 1, y) + p
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