Geometric Transformations and Image Warping: Mosaicing

CS 6640

Ross Whitaker, Guido Gerig
SCI Institute, School of Computing
University of Utah (with slides from: Jinxiang Chai, TAMU)
faculty.cs.tamu.edu/jchai/cpsc641_spring10/lectures/lecture8.ppt

Applications

Microscopy (Morane Eye Inst, UofU, T. Tasdizen et al.)

Special Cases

- Nothing new in the scene is uncovered in one view vs another
- No ray from the camera gets behind another

2) Arbitrary views of planar surfaces

Image Homologies

- Images taken under cases 1,2 are perspectively equivalent to within a linear transformation
- Projective relationships - equivalence is

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \equiv\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right) \Longleftrightarrow\left(\begin{array}{c}
a / c \\
b / c \\
1
\end{array}\right)=\left(\begin{array}{c}
d / f \\
e / f \\
1
\end{array}\right)
$$

Mosaic Procedure

Basic Procedure

- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Image Mosaic

Is a pencil of rays contains all views

Can generate any synthetic camera view as long as it has the same center of projection!

Image Re-projection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

Issues in Image Mosaic

How to relate two images from the same camera center?

- image registration

How to re-project images to a common plane?

- image warping

Perspective projection equations

- 3d world mapped to 2d projection in image plane

Forsyth and Ponce

3D Perspective and Projection

- Camera model

Homogeneous coordinates

Is this a linear transformation?

- no-division by z is nonlinear

Trick: add one more coordinate:

$$
\begin{array}{cc}
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & (x, y, z) \Rightarrow\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] \\
\text { homogeneous image } & \text { homogeneous scene } \\
\text { coordinates } & \text { coordinates }
\end{array}
$$

Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w) \quad\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right] \Rightarrow(x / w, y / w, z / w)
$$

Perspective Projection Matrix

- Projection is a matrix multiplication using homogeneous coordinates:

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 / f^{\prime} & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{c}
x \\
y \\
z / f^{\prime}
\end{array}\right] \Rightarrow\left(f^{\prime} \frac{x}{z}, f^{\prime} \frac{y}{z}\right)
$$

Complete mapping from world points to image pixel positions?

Perspective projection

Extrinsic:
Camera frame $\leftarrow \rightarrow$ World frame

Rigid Transformations as Mappings

$$
{ }^{F} P^{\prime}=\mathcal{R}^{F} P+\boldsymbol{t} \Longleftrightarrow\binom{{ }^{F} P^{\prime}}{1}=\left(\begin{array}{cc}
\mathcal{R} & \boldsymbol{t} \\
\mathbf{0}^{T} & 1
\end{array}\right)\binom{{ }^{F} P}{1}
$$

Extrinsic parameters: translation and rotation of camera frame

$$
{ }^{C} \vec{p}={ }_{W}^{C} R{ }^{W} \vec{p}+{ }_{W}^{C} \vec{t}
$$

Non-homogeneous coordinates

Homogeneous
coordinates

Remember discussion of transformations: Rotation and Translation can be Combined into a matrix transformation via homogeneous coordinates!

Transformations

affine
New image coordinates can be found as $x^{\prime}=\mathrm{X}^{\prime} / \mathrm{W}, \mathrm{y}^{\prime}=\mathrm{Y}^{\prime} / \mathrm{W}$
x^{\prime}, y^{\prime} : homographies
(Geom.) A relation between two figures, such that to any point of the one corresponds one and but one point in the other, and vise versa.

Materials

- Excellent material to derive homography matrix:
- www.cs.toronto.edu/~jepson/csc2503/tutor ial2.pdf
- www.cs.toronto.edu/pub/jepson/teaching/vi sion/2503/tutorial2.pdf

Perspective Projection

 Properties- Lines to lines (linear)
- Conic sections to conic sections
- Convex shapes to convex shapes
- Foreshortening

Transforming Images To Make Mosaics

Linear transformation with matrix P

$$
\bar{x}^{*}=P \bar{x} \quad P=\left(\begin{array}{ccc}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & 1
\end{array}\right) \quad \begin{aligned}
& x^{*}=p_{11} x+p_{12} y+p_{13} \\
& y^{*}=p_{21} x+p_{22} y+p_{23} \\
& z^{*}=p_{31} x+p_{32} y+1
\end{aligned}
$$

Perspective equivalence

$$
\begin{aligned}
& x^{\prime}=\frac{p_{11} x+p_{12} y+p_{13}}{p_{31} x+p_{32} y+1} \\
& y^{\prime}=\frac{p_{21} x+p_{22} y+p_{23}}{p_{31} x+p_{32} y+1}
\end{aligned}
$$

Multiply by denominator and reorganize terms

$$
\begin{aligned}
& p_{31} x x^{\prime}+p_{32} y x^{\prime}-p_{11} x-p_{12} y-p_{13}=-x^{\prime} \\
& p_{31} x y^{\prime}+p_{32} y y^{\prime}-p_{21} x-p_{22} y-p_{23}=-y^{\prime}
\end{aligned}
$$

Linear system, solve for P

$$
\left(\begin{array}{cccccccc}
-x_{1} & -y_{1} & -1 & 0 & 0 & 0 & x_{1} x_{1}^{\prime} & y_{1} x_{1}^{\prime} \\
-x_{2} & -y_{2} & -1 & 0 & 0 & 0 & x_{2} x_{2}^{\prime} & y_{2} x_{2}^{\prime} \\
& & & \vdots & & & & \\
-x_{N} & -y_{N} & -1 & 0 & 0 & 0 & x_{N} x_{N}^{\prime} & y_{N} x_{2}^{\prime} \\
0 & 0 & 0 & -x_{1} & -y_{1} & -1 & x_{1} y_{1}^{\prime} & y_{1} y_{1}^{\prime} \\
0 & 0 & 0 & -x_{2} & -y_{2} & -1 & x_{2} y_{2}^{\prime} & y_{2} y_{2}^{\prime} \\
& & & \vdots & & & & \\
0 & 0 & 0 & -x_{N} & -y_{N} & -1 & x_{N} y_{N}^{\prime} & y_{N} y_{N}^{\prime}
\end{array}\right)\left(\begin{array}{c}
p_{11} \\
p_{12} \\
p_{13} \\
p_{21} \\
p_{23} \\
p_{23} \\
p_{31} \\
p_{32}
\end{array}\right)=\left(\begin{array}{c}
-x_{1}^{\prime} \\
-x_{2}^{\prime} \\
\vdots \\
-x_{N}^{\prime} \\
-y_{1}^{\prime} \\
-y_{2}^{\prime} \\
\vdots \\
-y_{N}^{\prime}
\end{array}\right)
$$

Transforming Images To Make Mosaics

Linear system, solve for P

$$
\left(\begin{array}{cccccccc}
-x_{1} & -y_{1} & -1 & 0 & 0 & 0 & x_{1} x_{1}^{\prime} & y_{1} x_{1}^{\prime} \\
-x_{2} & -y_{2} & -1 & 0 & 0 & 0 & x_{2} x_{2}^{\prime} & y_{2} x_{2}^{\prime} \\
& & & \vdots & & & & \\
-x_{N} & -y_{N} & -1 & 0 & 0 & 0 & x_{N} x_{N}^{\prime} & y_{N} x_{2}^{\prime} \\
0 & 0 & 0 & -x_{1} & -y_{1} & -1 & x_{1} y_{1}^{\prime} & y_{1} y_{1}^{\prime} \\
0 & 0 & 0 & -x_{2} & -y_{2} & -1 & x_{2} y_{2}^{\prime} & y_{2} y_{2}^{\prime} \\
& & & \vdots & & & & \\
0 & 0 & 0 & -x_{N} & -y_{N} & -1 & x_{N} y_{N}^{\prime} & y_{N} y_{N}^{\prime}
\end{array}\right)\left(\begin{array}{c}
p_{11} \\
p_{12} \\
p_{13} \\
p_{21} \\
p_{23} \\
p_{23} \\
p_{31} \\
p_{32}
\end{array}\right)=\left(\begin{array}{c}
-x_{1}^{\prime} \\
-x_{2}^{\prime} \\
\vdots \\
-x_{N}^{\prime} \\
-y_{1}^{\prime} \\
-y_{2}^{\prime} \\
\vdots \\
-y_{N}^{\prime}
\end{array}\right)
$$

- Choose sets of corresponding landmarks in two images A and $B: x_{i}$ and x_{i}^{\prime}
- Calculate matrix P
- Transform image A to image B

Image Stitching

Stitch pairs together, blend, then crop

Image Stitching

A big image stitched from 5 small images

Image Mosaicing

4 Correspondences

5 Correspondences

6 Correspondences

Mosaicing Issues

- Need a canvas (adjust coordinates/origin)
- Blending at edges of images (avoid sharp transitions)
- Adjusting brightnesses
- Cascading transformations

Recognizing panoramas

- A fully automatic 2D image stitcher system

Recognizing panoramas

- A fully automatic 2D image stitcher system

- Image matching with SIFT features
- For every image, find the M best images with RANSAC
- Form a graph and find connected component in the graph
- Stitching and blending.

