Probabilities, Greyscales, and Histograms:
Chapter 3a G\&W
Ross Whitaker
(modified by Guido Gerig)
School of Computing
University of Utah

Goal

- Image intensity transformations
- Intensity transformations as mappings
- Image histograms
- Relationship btw histograms and probability density distributions
- Repetition: Probabilities
- Image segmentation via thresholding

Intensity transformation

 example
-We can drop the (\mathbf{x}, \mathbf{y}) and represent this kind of filter as an intensity transformation $s=T(r)$. In this case $s=\log (r)$
-s: output intensity
-r: input intensity

Intensity transformation

$$
s=T(r)
$$

Gamma correction

$S=C r^{\gamma}$

Gamma transformations

a b
c d

FIGURE 3.9

(a) Aerial image.
(b)-(d) Results of applying the transformation in Eq. (3.2-3) with
$c=1$ and
$\gamma=3.0,4.0$, and 5.0 , respectively. (Original image for this example courtesy of NASA.)

Gamma transformations

a b
c d
FIGURE 3.8
(a) Magnetic
resonance
image (MRI) of a
fractured human
spine.
(b)-(d) Results of applying the transformation in
Eq. (3.2-3) with
$c=1$ and
$\gamma=0.6,0.4$, and
0.3 , respectively. (Original image courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

Piecewise linear intensity transformation

- More control
-But also more parameters for user to specify
-Graphical user interface can be useful

More intensity transformations

Histogram of Image Intensities

- Create bins of intensities and count number of pixels at each level
- Normalize or not (absolute vs \% frequency)

Histograms and Noise

- What happens to the histogram if we add noise?

$$
-g(x, y)=f(x, y)+n(x, y)
$$

Sample Spaces

- $S=\underline{\text { Set }}$ of possible outcomes of a random event
- Toy examples
- Dice
- Urn
- Cards
- Probabilities

$$
\begin{aligned}
& P(S)=1 \quad A_{n} \in S \Rightarrow P(A) \geq 0 \\
& P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right) \text { where } \mathrm{A}_{\mathrm{i}} \cap \mathrm{~A}_{\mathrm{j}}=\emptyset \\
& \cup_{i=1}^{n} A_{i}=S \Rightarrow \sum_{i=1}^{n} P\left(A_{i}\right)=1
\end{aligned}
$$

Conditional Probabilities

- Multiple events
- S2 = SxS Cartesian produce - sets
- Dice - $(2,4)$
- Urn - (black, black)
- $P(A \mid B)$ - probability of A in second experiment knowledge of outcome of first experiment
- This quantifies the effect of the first experiment on the second
- $P(A, B)$ - probability of A in second experiment and B in first experiment
- $P(A, B)=P(A \mid B) P(B)$

Independence

- $P(A \mid B)=P(A)$
- The outcome of one experiment does not affect the other
- Independence -> $P(A, B)=P(A) P(B)$
- Dice
- Each roll is unaffected by the previous (or history)
- Urn
- Independence -> put the stone back after each experiment
- Cards
- Put each card back after it is picked

Random Variable (RV)

- Variable (number) associated with the outcome of an random experiment
- Dice
- E.g. Assign 1-6 to the faces of dice
- Urn
- Assign 0 to black and 1 to white (or vise versa)
- Cards
- Lots of different schemes - depends on application
- A function of a random variable is also a random variable

Cumulative Distribution Function (cdf)

- $F(x)$, where x is a RV
- $F($-infty $)=0, F(i n f t y)=1$
- $F(x)$ non decreasing

$$
F(x)=\sum_{i=-\infty}^{x} P(i)
$$

Continuous Random Variables

- $f(x)$ is pdf (normalized to 1)
- $F(x)$ - cdf continuous $-->x$ is a continuous RV

$$
\begin{gathered}
F(x)=\int_{-\infty}^{x} f(q) d q \\
f(x)=\left.\frac{d F(q)}{d q}\right|_{x}=F^{\prime}(x)
\end{gathered}
$$

Probability Density Functions

- $f(x)$ is called a probability density function (pdf)

$$
\int_{-\infty}^{\infty} f(x)=1 \quad f(x) \geq 0 \forall x
$$

- A probability density is not the same as a probability
- The probability of a specific value as an outcome of continuous experiment is (generally) zero
- To get meaningful numbers you must specify a range

$$
P(a \leq x \leq b)=\int_{a}^{b} f(q) d q=F(b)-F(a)
$$

Expected Value of a RV

$$
\begin{aligned}
& E[x]=\sum_{i=-\infty}^{\infty} i p(i) \\
& E[x]=\int_{-\infty}^{\infty} q f(q) d q
\end{aligned}
$$

- Expectation is linear
$-\mathrm{E}[\mathrm{ax}]=\mathrm{aE}[\mathrm{x}]$ for a scalar (not random)
$-E[x+y]=E[x]+E[y]$
- Other properties
$-\mathrm{E}[\mathrm{z}]=\mathrm{z}$ ———if z is not random

Mean of a PDF

- Mean: $\mathrm{E}[\mathrm{x}]=\mathrm{m}$
- also called " μ "
- The mean is not a random variable-it is a fixed value for any PDF
- Variance: $\mathrm{E}\left[(x-m)^{2}\right]=E\left[x^{2}\right]-2 E[m x]+$
$E\left[m^{2}\right]=E\left[x^{2}\right]-m^{2}=E\left[x^{2}\right]-E[x]^{2}$
- also called " σ^{2} "
- Standard deviation is σ
- If a distribution has zero mean then: $\mathrm{E}\left[\mathrm{x}^{2}\right]$ $=\sigma^{2}$

Sample Mean

- Run an experiments
- Take N samples from a pdf (RV)
- Sum them up and divide by N
- Let M be the result of that experiment
-M is a random variable

$$
\begin{aligned}
& M=\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
& E[M]=E\left[\frac{1}{N} \sum_{i=1}^{N} x_{i}\right]=\frac{1}{N} \sum_{i=1}^{N} E\left[x_{i}\right]=m
\end{aligned}
$$

Sample Mean

- How close can we expect to be with a sample mean to the true mean?
- Define a new random variable: $\mathrm{D}=(\mathrm{M}-\mathrm{m})^{2}$.
- Assume independence of sampling process

$$
\begin{aligned}
& \begin{array}{l}
D=\frac{1}{N^{2}} \sum_{i} x_{i} \sum_{j} x_{j}-\frac{1}{N} 2 m \sum_{i} x_{i}+m^{2} \\
e[D] \\
=\frac{1}{N^{2}} E\left[\sum_{i} x_{i} \sum_{j} x_{j}\right]-\frac{1}{N} 2 m E\left[\sum_{i} x_{i}\right]+m^{2} \\
\frac{1}{N^{2}} E\left[\sum_{i} x_{i} \sum_{j} x_{j}\right]-m^{2}
\end{array} \\
& \frac{1}{N^{2}} E\left[\sum_{i} x_{i} \sum_{j} x_{j}\right]=\frac{1}{N^{2}} \sum_{i} E\left[x_{i}^{2}\right]+\frac{1}{N^{2}} \sum_{i} \sum_{j} E\left[x_{i} x_{j}\right]=\frac{1}{N} \sum_{i} E\left[x^{2}\right]+\frac{N(N-1)}{N^{2}} m^{2} \\
& \text { Number of terms off } \\
& \text { diagonal }
\end{aligned}
$$

Root mean squared difference between true mean and sample mean is stdev/sqrt(N). As number of samples \rightarrow infty, sample mean \rightarrow true mean.

Application: Noisy Images

- Imagine N images of the same scene with random, independent, zero-mean noise added to each one
- Nuclear medicine-radioactive events are random
- Noise in sensors/electronics
- Pixel value is $s+n$

Random noise:
-Independent from one image to the next
-Variance $=\sigma$

Application: Noisy Images

- If you take multiple images of the same scene you have
$-s_{i}=s+n_{i}$
$-S=(1 / N) \Sigma \mathrm{S}_{\mathrm{i}}=\mathrm{S}+(1 / \mathrm{N}) \Sigma \mathrm{n}_{\mathrm{i}}$
$-E\left[(S-s)^{2}\right]=(1 / N) E\left[n_{i}{ }^{2}\right]=(1 / N) E\left[n_{i}{ }^{2}\right]-(1 / N) E\left[n_{i}\right]^{2}=(1 / N) \sigma^{2}$
- Expected root mean squared error is $\sigma / \mathrm{sqrt}(\mathrm{N})$
- Application:
- Digital cameras with large gain (high ISO, light sensitivity)
- Not necessarily random from one image to next
- Sensors CCD irregularity
- How would this principle apply

Averaging Noisy Images Can Improve Quality

a b c
def
FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)-(f) Results of averaging $5,10,20,50$, and 100 noisy images, respectively. (Original image courtesy of NASA.)

Gaussian Distribution

- "Normal" or "bell curve"
- Two parameters: μ - mean, σ - standard deviation

$$
\begin{aligned}
& \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

Gaussian Properties

- Best fitting Guassian to some data is gotten by mean and standard deviation of the samples
- Occurrence
- Central limit theorem: result from lots of random variables
- Nature (approximate)
- Measurement error, physical characteristic, physical phenomenon
- Diffusion of heat or chemicals

What is image segmentation?

- Image segmentation is the process of subdividing an image into its constituent regions or objects.
- Example segmentation with two regions:

Input image
intensities 0-255

Segmentation output 0 (background)
1 (foreground)

Thresholding

$g(x, y)=\left\{\begin{array}{lll}1 & \text { if } & f(x, y)>T \\ 0 & \text { if } & f(x, y) \leq T\end{array}\right.$

Input image $f(x, y)$ intensities 0-255

- How can we choose T?
- Trial and error
- Use the histogram of $f(x, y)$

Segmentation output $\mathrm{g}(\mathrm{x}, \mathrm{y})$
0 (background)
1 (foreground)

Choosing a threshold

Role of noise

Low signal-to-noise ratio

Effect of noise on image histogram

Images

Histograms

No noise

With noise

More noise

Effect of illumination on histogram

Images

Histograms

f $\quad x$
Original image

Illumination image

h
Final image

Histogram of Pixel Intensity Distribution

Histogram: Distribution of intensity values $p(v)$
(count \#pixels for each intensity level)

Checkerboard with values 96 and 160.

Histogram:

- horizontal: intensity
- vertical: \# pixels

Checkerboard with additive Gaussian noise (sigma 20).

Regions: 50\%b,50\%w

Classification by Thresholding

Important!

- Histogram does not represent image structure such as regions and shapes, but only distribution of intensity values
- Many images share the same histogram

Is the histogram suggesting the right threshold?

Proportions of bright and dark regions are different \Rightarrow Peak presenting bright regions becomes dominant.

Threshold value 128 does not match with valley in distribution.

Statistical Pattern Recognition

Histogram as Superposition of PDF's (probability density functions)

Regions with 2 brightness levels, different proportions

Corruption with Gaussian noise,
individual distributions

Histogram:
Superposition of distributions

Gaussian Mixture Model

$$
\text { hist }=a_{1} G\left(\mu_{1}, \sigma_{1}\right)+a_{1} G\left(\mu_{1}, \sigma_{2}\right)
$$

more general with k classes :

$$
\text { hist }=\sum_{k} a_{k} G\left(\mu_{k}, \sigma_{k}\right)
$$

Example: MRI

Example: MRI

Fit with 3 weighted Gaussians

Segmentation: Learning pdf's

- We learned: histogram can be misleading due to different size of regions.
- Solution:

Segmentation: Learning pdf's

 set of $p d f^{\prime} s$:$G_{k}\left(\mu_{k}, \sigma_{k} \mid k\right), \quad(k=1, \ldots, n)$
calculate thresholds
assign pixels to categories

Histogram Processing and Equalization

- Notes

Histograms

- $h\left(r_{k}\right)=n_{k}$
- Histogram: number of times intensity level r_{k} appears in the image
- $p\left(r_{k}\right)=n_{k} / N M$
- normalized histogram
- also a probability of occurence

Histogram equalization

- Automatic process of enhancing the contrast of any given image

Histogram Equalization

Next Class

- Chapter 3 G\&W second part on "Spatial Filtering"
- Also read chapter 2, section 2.6.5. as introduction

