University of Utah, CS/BIOEN 6640 Image Processing

Fall 2012, Prof. Guido Gerig

Quizz 1: 9/19/2012

Student Name:

1.1 Representing Digital Images:

Which of the following applies?

	Amplitude intensity values	Spatial coordinates
Sampling		X
Quantization	X	

1.2 Number of gray levels:

An 8bit image of 512x512 pixels has how many discrete intensity levels?: 256

2. Basic Relationships between Pixels:

Recall the notation from the book: "Let V be the set of intensity values used to define adjacency: In a binary image, $V=\{1\}$ if we are referring to adjacency of pixels with value 1. In a gray-scale image, V typically contains more elements" and is given as $V=\{k,l\}$.

2.1 Adjacency I

Consider the two image subsets, S1 and S2, shown in the following figure. For V={1}, determine whether these two subsets are

(b) 8-adjacent, d_8

c) What is the minimum path length between the circled locations in the metric of result (a) or

(b) 6_.and in the Euclidan metric:

2.2 Adjacency II

Consider the image segment shown.

- (a) Let V={0, 1} and compute the lengths of the shortest 4- and 8-path between p and q. Draw your solution on copied versions of the template image. If a particular path does not exist say so.
- **(b)** Repeat for V={1, 2}.

3.1 Histogram Processing:

Suppose that a digital image is subjected to histogram equalization. You have the idea to do a second pass of histogram equalization on the result of the first pass: What would you expect your result to be?

- A second pass of histogram equalization will produce exactly the same result as the first pass.
- A second pass would further improve the result.

3.2 Histogram and probability density function (pdf):

The integral or sum, respectively, of the histogram or pdf sum up to:

4.1 Image Filtering

The image gradient and its magnitude are given as follows:

$$\nabla \mathbf{f} = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} \quad \begin{vmatrix} \nabla f \end{vmatrix} = \max(\nabla \mathbf{f}) \\ = \begin{bmatrix} G_x^2 + G_y^2 \end{bmatrix}^{1/2} \\ = \begin{bmatrix} \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 \end{bmatrix}^{1/2}$$

Given is an image object shaped like a disk. Would you walk around the disk's boundary from top all around, what do you expect to see w.r.t. the partial derivatives and the gradient magnitude?

Partial derivatives:

- df/dx and df/dy stays the same at locations around the disk boundary
- X df/dx and df/dy vary at different locations around the disk boundary

Gradient magnitude:

- 🔲 varies at locations around the disk boundary
- K stays the same at locations around the disk boundary

4.2 Image Filtering

Let us apply linear filters with equal weights to reduce noise in an image g(x,y) which is characterized by g(x,y) = f(x,y) + $\eta(x,y)$, where the noise $\eta(x,y)$ is uncorrelated, has zero mean and variance $\sigma^2_{\eta(x,y)}$.

Let us apply 3x3 and 5x5 filters with equal weights. What can you say about the variance and standard deviation of noise in the filtered images?

- 3x3 box filter: change of variance $\frac{1}{2}$, change of standard deviation $\frac{1}{3}$.
- 5x5 box filter: change of variance , change of standard deviation