University of Utah, CS/BIOEN 6640 Image Processing

Fall 2012, Prof. Guido Gerig

Quizz 1: 9/19/2012

Student Name:

1.1 Representing Digital Images:

Which of the following applies?

1.2 Number of gray levels:

An 8bit image of 512×512 pixels has how many discrete intensity levels?: 256

2. Basic Relationships between Pixels:

Recall the notation from the book: "Let V be the set of intensity values used to define adjacency: In a binary image, $\mathrm{V}=\{1\}$ if we are referring to adjacency of pixels with value 1. In a gray-scale image, V typically contains more elements" and is given as $\mathrm{V}=\{\mathrm{k}, \mathrm{l}\}$.

2.1 Adjacency I

Consider the two image subsets, S1 and S2, shown in the following figure. For $\mathrm{V}=\{1\}$, determine whether these two subsets are
(a) \square 4-adjacent, d_{4}
(b) 8-adjacent, d_{8}

c) What is the minimum path length between the circled locations in the metric of result (a) or (b) 6 . and in the Euclidan metric: \square

2.2 Adjacency II

Consider the image segment shown.
(a) Let $\mathrm{V}=\{0,1\}$ and compute the lengths of the shortest 4 - and 8-path between p and q . Draw your solution on copied versions of the template image. If a particular path does not exist say so.
(b) Repeat for $V=\{1,2\}$.

$\mathbf{v = \{ 0 , 1 \} :}$ Length 4path: \perp Length 8path: $\underline{4} \quad \mathbf{v}=\{\mathbf{1}, \mathbf{2}\}:$ Length 4path: 6 Length 8path: $\underline{4}$

3.1 Histogram Processing:

Suppose that a digital image is subjected to histogram equalization. You have the idea to do a second pass of histogram equalization on the result of the first pass: What would you expect your result to be?

- A second pass of histogram equalization will produce exactly the same result as the first pass.
- \quad A second pass would further improve the result.

3.2 Histogram and probability density function (pdf):

The integral or sum, respectively, of the histogram or pdf sum up to:

4.1 Image Filtering

The image gradient and its magnitude are given as follows:

$$
\nabla \mathbf{f}=\left[\begin{array}{c}
G_{x} \\
G_{y}
\end{array}\right]=\left[\begin{array}{rl}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right] \quad \begin{aligned}
|\nabla f| & =\operatorname{mag}(\nabla \mathbf{f}) \\
& =\left[G_{x}^{2}+G_{y}^{2}\right]^{1 / 2} \\
& =\left[\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

Given is an image object shaped like a disk. Would you walk around the disk's boundary from top all around, what do you expect to see w.r.t. the partial derivatives and the gradient magnitude?

Partial derivatives:

- $\square \mathrm{df} / \mathrm{dx}$ and df/dy stays the same at locations around the disk boundary
- df/dx and df/dy vary at different locations around the disk boundary

Gradient magnitude:

- $\quad \square$ varies at locations around the disk boundary
- stays the same at locations around the disk boundary

4.2 Image Filtering

Let us apply linear filters with equal weights to reduce noise in an image $g(x, y)$ which is characterized by $g(x, y)=f(x, y)+\eta(x, y)$, where the noise $\eta(x, y)$ is uncorrelated, has zero mean and variance $\sigma_{\eta(x, y)}^{2}$.

Let us apply 3×3 and 5×5 filters with equal weights. What can you say about the variance and standard deviation of noise in the filtered images?

- 3×3 box filter: change of variance $1 / 9$, change of standard deviation $\sqrt{\frac{1}{9}}=\frac{1}{3}$
- 5×5 box filter: change of variance $1 / 25^{5}$ change of standard deviation $\frac{1}{\sqrt{25}}=\frac{1}{5}$

