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The Fourier Transform



Fourier Transform

• Forward, mapping to frequency domain:

• Backward, inverse mapping to time 
domain:



Fourier Series

• Projection or change of basis
• Coordinates in Fourier basis:

• Rewrite f as:



Example: Step Function
Step function as sum of infinite sine waves



Discrete Fourier Transform



Fourier Basis

• Why Fourier basis?

• Orthonormal in [-pi, pi]
• Periodic
• Continuous, differentiable basis



FT Properties



Common Transform Pairs
Dirac delta - constant



Common Transform Pairs
Rectangle – sinc

sinc(x) = sin(x) / x



Common Transform Pairs
Two symmetric Diracs - cosine



Common Transform Pairs

Comb – comb (inverse width)



Common Transform Pairs
Gaussian – Gaussian (inverse variance)



Common Transform Pairs 
Summary



Quiz

What is the FT of a triangle function?

Hint: how do you get triangle function from the 
functions shown so far?



Triangle Function FT
Triangle = box convolved with box

So its FT is sinc * sinc



Fourier Transform of Images



• Forward transform:

• Backward transform:

• Forward transform to freq. yields 
complex values (magnitude and phase):

2D Fourier Transform



2D Fourier Transform



Fourier Spectrum

Fourier spectrum
Origin in corners

Retiled with origin
In center

Log of spectrum

Image



Fourier Spectrum–Rotation



Phase vs Spectrum

Image Reconstruction from
phase map

Reconstruction from
spectrum



Fourier Spectrum Demo

http://bigwww.epfl.ch/demo/basisfft/demo.html



Low-Pass Filter
• Reduce/eliminate high frequencies
• Applications

– Noise reduction
• uncorrelated noise is broad band
• Images have sprectrum that focus on low 

frequencies
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Ideal LP Filter – Box, Rect

Cutoff freq Ringing – Gibbs phenomenon



Extending Filters to 2D (or 
higher)

• Two options
– Separable

• H(s) -> H(u)H(v)
• Easy, analysis

– Rotate
• H(s) -> H((u2 + v2)1/2)
• Rotationally invariant



Ideal LP Filter – Box, Rect



Ideal Low-Pass 
Rectangle With Cutoff of 2/3

Image Filtered Filtered + HE



Ideal LP – 1/3



Ideal LP – 2/3



Butterworth Filter

Control of cutoff and slope
Can control ringing



Butterworth - 1/3



Butterworth vs Ideal LP



Butterworth – 2/3



Gaussian LP Filtering
ILPF BLPF GLPF

F1

F2



High Pass Filtering

• HP = 1 - LP
– All the same filters as HP apply

• Applications
– Visualization of high-freq data (accentuate)

• High boost filtering
– HB = (1- a) + a(1 - LP) = 1 - a*LP



High-Pass Filters



High-Pass Filters in Spatial 
Domain



High-Pass Filtering with IHPF



BHPF



GHPF



HP, HB, HE



High Boost with GLPF



High-Boost Filtering



Band-Pass Filters

• Shift LP filter in Fourier domain by 
convolution with delta

LP

BPTypically 2-3 parameters
-Width
-Slope
-Band value



Band Pass - Two Dimensions

• Two strategies
– Rotate

• Radially symmetric
– Translate in 2D

• Oriented filters

• Note:
– Convolution with delta-pair in FD is 

multiplication with cosine in spatial domain 



Band Bass Filtering



SEM Image and Spectrum



Band-Pass Filter



Radial Band Pass/Reject



Band Reject Filtering



Band Reject Filtering



Band Reject Filtering



Aliasing



Discrete Sampling and 
Aliasing

• Digital signals and images are discrete 
representations of the real world 
– Which is continuous

• What happens to signals/images when we 
sample them?
– Can we quantify the effects?  
– Can we understand the artifacts and can we limit 

them?
– Can we reconstruct the original image from the 

discrete data?



A Mathematical Model of Discrete 
Samples

Delta functional

Shah functional



A Mathematical Model of Discrete 
Samples

Discrete signal

Samples from continuous function

Representation as a function of t
• Multiplication of f(t) with Shah

• Goal
– To be able to do a continuous Fourier 

transform on a signal before and after 
sampling



Fourier Series of A Shah 
Functional

u



Fourier Transform of A Discrete 
Sampling

u



Fourier Transform of A Discrete 
Sampling

u

Energy from higher 
freqs gets folded back 
down into lower freqs –
Aliasing

Frequencies get 
mixed.  The 
original signal is 
not recoverable.



What if F(u) is Narrower in the Fourier 
Domain?

u

• No aliasing!
• How could we recover the original 

signal?



What Comes Out of This 
Model

• Sampling criterion for complete 
recovery 

• An understanding of the effects of 
sampling
– Aliasing and how to avoid it

• Reconstruction of signals from discrete 
samples



Shannon Sampling Theorem

• Assuming a signal that is band limited:

• Given set of samples from that signal

• Samples can be used to generate the 
original signal
– Samples and continuous signal are 

equivalent



Sampling Theorem
• Quantifies the amount of information in 

a signal
– Discrete signal contains limited frequencies
– Band-limited signals contain no more 

information then their discrete equivalents
• Reconstruction by cutting away the 

repeated signals in the Fourier domain
– Convolution with sinc function in 

space/time



Reconstruction

• Convolution with sinc function



Sinc Interpolation Issues

• Must functions are not band limited
• Forcing functions to be band-limited can 

cause artifacts (ringing)

f(t) |F(s)|



Sinc Interpolation Issues

Ringing - Gibbs phenomenon
Other issues:

Sinc is infinite - must be truncated



Aliasing
• High frequencies appear as low 

frequencies when undersampled



Aliasing

16 pixels
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0.9174
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0.4798
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Overcoming Aliasing

• Filter data prior to sampling
– Ideally - band limit the data (conv with sinc 

function)
– In practice - limit effects with fuzzy/soft low 

pass



Antialiasing in Graphics

• Screen resolution produces aliasing on 
underlying geometry

Multiple high-res 
samples get averaged 
to create one screen 
sample



Antialiasing



Interpolation as Convolution

• Any discrete set of samples can be 
considered as a functional

• Any linear interpolant can be considered 
as a convolution
– Nearest neighbor - rect(t)
– Linear - tri(t)



Convolution-Based 
Interpolation

• Can be studied in terms of Fourier Domain
• Issues

– Pass energy (=1) in band
– Low energy out of band
– Reduce hard cut off (Gibbs, ringing)
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Fast Fourier Transform

With slides from Richard 
Stern, CMU



DFT

• Ordinary DFT is O(N2)
• DFT is slow for large images

• Exploit periodicity and symmetricity
• Fast FT is O(N log N)
• FFT can be faster than convolution



Fast Fourier Transform

• Divide and conquer algorithm
• Gauss ~1805
• Cooley & Tukey 1965

• For N = 2K



The Cooley-Tukey Algorithm
• Consider the DFT algorithm for an integer power of 2,

• Create separate sums for even and odd values of n:

• Letting for n even and                  for n odd, we 
obtain                           

N = 2ν

 

X[k] =
n=0

N−1
∑ x[n]WN

nk =
n=0

N−1
∑ x[n]e− j2πnk / N ;  WN = e− j2π / N

 

X[k] = x[n]WN
nk +

n  even
∑ x[n]WN

nk

n  odd
∑

n = 2r n = 2r +1

X[k] = x[2r]WN
2rk +

r=0

N / 2( )−1
∑ x[2r +1]WN

2r+1( )k

r=0

N /2( )−1
∑



The Cooley-Tukey Algorithm
• Splitting indices in time, we have obtained

• But                                                      and
So …

N/2-point DFT of x[2r] N/2-point DFT of x[2r+1]

X[k] = x[2r]WN
2rk +

r=0

N / 2( )−1
∑ x[2r +1]WN

2r+1( )k

r=0

N /2( )−1
∑

WN
2 = e− j2π2 / N = e− j2π /(N / 2) = WN / 2 WN

2rkWN
k = WN

kWN / 2
rk

X[k] =
n=0

(N/ 2)−1
∑ x[2r]WN /2

rk + WN
k

n=0

(N/ 2)−1
∑ x[2r +1]WN / 2

rk



Example: N=8

• Divide and reuse



Example: N=8, Upper Part

• Continue to divide and reuse



Two-Point FFT
• The expression for the 2-point DFT is:

• Evaluating for              we obtain

which in signal flowgraph notation looks like ...

X[k] =
n=0

1
∑ x[n]W2

nk =
n=0

1
∑ x[n]e− j2πnk / 2

k = 0,1
X[0] = x[0]+ x[1]

X[1] = x[0] + e− j2π1/ 2x[1] = x[0]− x[1]

This topology is referred to as the
basic butterfly
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