Geometric Transformations and Image Warping: Mosaicing

CS 6640

Ross Whitaker. Guido Gerig SCI Institute, School of Computing

University of Utah (with slides from: Jinxiang Chai, TAMU) faculty.cs.tamu.edu/jchai/cpsc641_spring10/lectures/lecture8.ppt

Applications

Microscopy (Morane Eye Inst, UofU, T. Tasdizen et al.)

Mosaic Procedure

Basic Procedure

- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Image Mosaic

Is a pencil of rays contains all views

Can generate any synthetic camera view as long as it has the same center of projection!

Image Re-projection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

Issues in Image Mosaic

How to relate two images from the same camera center?

- image registration

How to re-project images to a common plane?

- image warping

3D Perspective and Projection

- Camera model

Image Homologies

- Images taken under cases 1,2 are perspectively equivalent to within a linear transformation
- Projective relationships - equivalence is

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \equiv\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right) \Longleftrightarrow\left(\begin{array}{c}
a / c \\
b / c \\
1
\end{array}\right)=\left(\begin{array}{c}
d / f \\
e / f \\
1
\end{array}\right)
$$

Transformations

$$
\left(\begin{array}{c}
X^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

$$
\left(\begin{array}{l}
X^{\prime} \\
Y^{\prime} \\
W
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
1
\end{array}\right)
$$

affine

New image coordinates can be found as $x^{\prime}=X^{\prime} / W, y^{\prime}=Y^{\prime} / W$
x^{\prime}, y^{\prime} : homographies

Materials

- Excellent material to derive homography matrix:
- www.cs.toronto.edu/~jepson/csc2503/tutor ial2.pdf
- www.cs.toronto.edu/pub/jepson/teaching/vi sion/2503/tutorial2.pdf

Perspective Projection Properties

- Lines to lines (linear)

- Conic sections to conic sections

- Convex shapes to convex shapes
- Foreshortening

Transforming Images To Make Mosaics

Linear transformation with matrix P

$$
\bar{x}^{*}=P \bar{x} \quad P=\left(\begin{array}{ccc}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & 1
\end{array}\right) \quad \begin{aligned}
& x^{*}=p_{11} x+p_{12} y+p_{13} \\
& y^{*}=p_{21} x+p_{22} y+p_{23} \\
& z^{*}=p_{31} x+p_{32} y+1
\end{aligned}
$$

Perspective equivalence

$$
\begin{aligned}
x^{\prime} & =\frac{p_{11} x+p_{12} y+p_{13}}{p_{31} x+p_{32} y+1} \\
y^{\prime} & =\frac{p_{21} x+p_{22} y+p_{23}}{p_{31} x+p_{32} y+1}
\end{aligned}
$$

Multiply by denominator and reorganize terms

$$
\begin{aligned}
& p_{31} x x^{\prime}+p_{32} y x^{\prime}-p_{11} x-p_{12} y-p_{13}=-x^{\prime}=-y^{\prime} \\
& p_{31} x y^{\prime}+p_{32} y y^{\prime}-p_{21} x-p_{22} y-p_{23}=-y^{\prime}
\end{aligned}
$$

Linear system, solve for P

$$
\left(\begin{array}{cccccccc}
-x_{1} & -y_{1} & -1 & 0 & 0 & 0 & x_{1} x_{1}^{\prime} & y_{1} x_{1}^{\prime} \\
-x_{2} & -y_{2} & -1 & 0 & 0 & 0 & x_{2} x_{2}^{\prime} & y_{2} x_{2}^{\prime} \\
& & & \vdots & & & & \\
-x_{N} & -y_{N} & -1 & 0 & 0 & 0 & x_{N} x_{N}^{\prime} & y_{N} x_{2}^{\prime} \\
0 & 0 & 0 & -x_{1} & -y_{1} & -1 & x_{1} y_{1}^{\prime} & y_{1} y_{1}^{\prime} \\
0 & 0 & 0 & -x_{2} & -y_{2} & -1 & x_{2} y_{2}^{\prime} & y_{2} y_{2}^{\prime} \\
& & & \vdots & & & & \\
0 & 0 & 0 & -x_{N} & -y_{N} & -1 & x_{N} y_{N}^{\prime} & y_{N} y_{N}^{\prime}
\end{array}\right)\left(\begin{array}{c}
p_{11} \\
p_{12} \\
p_{13} \\
p_{21} \\
p_{23} \\
p_{23} \\
p_{31} \\
p_{32}
\end{array}\right)=\left(\begin{array}{c}
-x_{1}^{\prime} \\
-x_{2}^{\prime} \\
\vdots \\
-x_{N}^{\prime} \\
-y_{1}^{\prime} \\
-y_{2}^{\prime} \\
\vdots \\
-y_{N}^{\prime}
\end{array}\right)
$$

Image Stitching

Stitch pairs together, blend, then crop

Image Stitching

A big image stitched from 5 small images

Image Mosaicing

4 Correspondences

5 Correspondences

6 Correspondences

Mosaicing Issues

- Need a canvas (adjust coordinates/origin)
- Blending at edges of images (avoid sharp transitions)
- Adjusting brightnesses
- Cascading transformations

Recognizing panoramas

- A fully automatic 2D image stitcher system

Recognizing panoramas

- A fully automatic 2D image stitcher system

- Image matching with SIFT features
- For every image, find the M best images with RANSAC
- Form a graph and find connected component in the graph
- Stitching and blending.

Automatic Solutions

Intensity Based Image Mosaicing

- Transformation:

$$
\begin{aligned}
x_{i}^{\prime} & =\frac{m_{0} x_{i}+m_{1} y_{i}+m_{2}}{m_{6} x_{i}+m_{7} y_{i}+1} \\
y_{i}^{\prime} & =\frac{m_{3} x_{i}+m_{4} y_{i}+m_{5}}{m_{6} x_{i}+m_{7} y_{i}+1}
\end{aligned}
$$

- Problem: Determining the transformation parameters m_{i} between every two adjacent images, in order to merge the set of images into a single complete image.
- Idea: to choose the parameters m_{i} such that the sum of squared difference between all pixels between the two images is minimized $E=\sum_{i}\left[I^{\prime}\left(x_{i}^{\prime}, y_{i}^{\prime}\right)-I\left(x_{i}, y_{i}\right)\right]^{2}=\sum_{i} e_{i}^{2}$
- Non-linear minimization, e.g. by Levenberg Marquardt algorithm
- See: http://www.umiacs.umd.edu/-hismail/Mosaic/node2.htmI\#SECTION000200000000000000000

