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Intensity transformation 
example

g(x,y) = log(f(x,y))

f(x1,y1) g(x1,y1)

g(x1,y1) = log ( f(x1,y1)  )

f(x2,y2) g(x2,y2)

g(x2,y2) = log ( f(x2,y2)  )

•We can drop the (x,y) and represent this kind of filter as an intensity 
transformation s=T(r). In this case s=log(r)
-s: output intensity 
-r: input intensity
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Intensity transformation

s = T (r)

© 1992–2008  R. C. Gonzalez & R. E. Woods
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Gamma correction

s = crg

© 1992–2008  R. C. Gonzalez & R. E. Woods
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Gamma transformations

© 1992–2008  R. C. Gonzalez & R. E. Woods
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Gamma transformations

© 1992–2008  R. C. Gonzalez & R. E. Woods
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Piecewise linear intensity 
transformation

© 1992–2008  R. C. Gonzalez & R. E. Woods

•More control
•But also more     
parameters for 
user to specify
•Graphical user 
interface can be 
useful
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More intensity transformations

© 1992–2008  R. C. Gonzalez & R. E. Woods
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Histogram of Image Intensities

• Create bins of intensities and count 
number of pixels at each level
– Normalize or not (absolution vs % 

frequency)
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Histograms and Noise

• What happens to the histogram if we 
add noise?  
– g(x, y) = f(x, y) + n(x, y)
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• S = Set of possible outcomes of a random 
event

• Toy examples
– Dice
– Urn
– Cards

• Probabilities

Sample Spaces
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Conditional Probabilities

• Multiple events
– S2 = SxS Cartesian produce - sets
– Dice - (2, 4)
– Urn - (black, black)

• P(A|B) - probability of A in second experiment 
knowledge of outcome of first experiment
– This quantifies the effect of the first experiment on 

the second
• P(A,B) - probability of A in second experiment 

and B in first experiment
• P(A,B) = P(A|B)P(B)
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Independence

• P(A|B) = P(A)
– The outcome of one experiment does not affect 

the other
• Independence -> P(A,B) = P(A)P(B)
• Dice

– Each roll is unaffected by the previous (or history)
• Urn

– Independence -> put the stone back after each 
experiment

• Cards
– Put each card back after it is picked
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Random Variable (RV)

• Variable (number) associated with the 
outcome of an random experiment

• Dice
– E.g. Assign 1-6 to the faces of dice

• Urn
– Assign 0 to black and 1 to white (or vise versa)

• Cards
– Lots of different schemes - depends on application

• A function of a random variable is also a 
random variable



Univ of Utah, CS6640 2010 16

Cumulative Distribution Function 
(cdf)

• F(x), where x is a RV
• F(-infty) = 0, F(infty) = 1
• F(x) non decreasing
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Continuous Random Variables

• f(x) is pdf (normalized to 1)
• F(x) – cdf continuous

– –> x is a continuous RV
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Probability Density Functions
• f(x) is called a probability density function (pdf)

• A probability density is not the same as a probability
• The probability of a specific value as an outcome of 

continuous experiment is (generally) zero
– To get meaningful numbers you must specify a 

range
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Expected Value of a RV

• Expectation is linear
– E[ax] = aE[x] for a scalar (not random)
– E[x + y] = E[x] + E[y]

• Other properties
– E[z] = z –––––– if z is not random
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Mean of a PDF

• Mean: E[x] = m 
– also called “m”
– The mean is not a random variable–it is a 

fixed value for any PDF
• Variance: E[(x - m)2] = E[x2] - 2E[mx] + 

E[m2] = E[x2] - m2 = E[x2] - E[x]2 

– also called “s2”
– Standard deviation is s
– If a distribution has zero mean then: E[x2] 

= s2
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Sample Mean

• Run an experiments
– Take N samples from a pdf (RV)
– Sum them up and divide by N

• Let M be the result of that experiment
– M is a random variable
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Sample Mean
• How close can we expect to be with a sample mean to the true mean?
• Define a new random variable: D = (M - m)2.

– Assume independence of sampling process

Root mean squared difference between true mean and sample mean is stdev/sqrt(N).
As number of samples –> infty, sample mean –> true mean.

Independence –> E[xy] = E[x]E[y]

Number of terms off 
diagonal
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Application: Noisy Images

• Imagine N images of the same scene with 
random, independent, zero-mean noise 
added to each one
– Nuclear medicine–radioactive events are random
– Noise in sensors/electronics

• Pixel value is s+n

True pixel 
value

Random noise:
•Independent from one image to the next

•Variance = s
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Application: Noisy Images
• If you take multiple images of the same scene you have

– si = s + ni
– S = (1/N) Ssi = s + (1/N) Sni 
– E[(S - s)2] = (1/N) E[ni 

2] = (1/N) E[ni 
2] - (1/N) E[ni]2 = (1/N)s2

– Expected root mean squared error is s/sqrt(N)
• Application:

– Digital cameras with large gain (high ISO, light sensitivity)
– Not necessarily random from one image to next

• Sensors CCD irregularity
– How would this principle apply

Zero mean
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Gaussian Distribution

• “Normal”  or “bell curve”
• Two parameters: m - mean,  s – standard 

deviation
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Gaussian Properties

• Best fitting Guassian to some data is gotten 
by mean and standard deviation of the 
samples

• Occurrence
– Central limit theorem: result from lots of random 

variables
– Nature (approximate)

• Measurement error, physical characteristic, physical 
phenomenon

• Diffusion of heat or chemicals
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What is image segmentation?
• Image segmentation is the process of 

subdividing an image into its constituent 
regions or objects.

• Example segmentation with two regions:

Input image
intensities 0-255

Segmentation output
0 (background) 
1 (foreground)
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Thresholding

• How can we choose T? 
– Trial and error
– Use the histogram of f(x,y)

Input image f(x,y)
intensities 0-255

Segmentation output g(x,y)
0 (background) 
1 (foreground)
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Choosing a threshold 

T=100

Histogram
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Role of noise

T=120
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Low signal-to-noise ratio

T=140
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Effect of noise on image 
histogram

Images

Histograms

No noise         With noise        More noise 

© 1992–2008  R. C. Gonzalez & R. E. Woods
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Effect of illumination on 
histogram

Images

Histograms

f             x          g             =          h
Original           Illumination             Final
image image image

© 1992–2008  R. C. Gonzalez & R. E. Woods



Histogram of Pixel Intensity 
Distribution
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Checkerboard with
values 96 and 160.

Histogram:
- horizontal: intensity
- vertical: # pixels

Checkerboard with
additive Gaussian noise 
(sigma 20).

Regions: 50%b,50%w

Histogram: Distribution of intensity values
(count #pixels for each intensity level)
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Classification by Thresholding
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Important!

• Histogram does not represent image 
structure such as regions and shapes, 
but only distribution of intensity values

• Many images share the same histogram
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Is the histogram suggesting 
the right threshold?
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Proportions of
bright and dark
regions are 
different Þ Peak 
presenting bright 
regions becomes
dominant.

Threshold value 128
does not match with
valley in distribution.

0

#

0

#

255

255

36%b
64%w

19%b
81%w

128



Histogram as Superposition of PDF’s
(probability density functions)

Regions with 
2 brightness levels,
different proportions

Corruption with
Gaussian noise,
individual distributions

Histogram:
Superposition of
distributions

Statistical Pattern Recognition



Gaussian Mixture Model
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Example: MRI
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Example: MRI
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Fit with 3 weighted Gaussians
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Nonlinear optimization

Estimate 9 parameters for best fit:

Result: Weighted sum of Gaussians (pdf’s):



Segmentation: Learning pdf’s
• We learned: histogram can be 

misleading due to different size 
of regions.

• Solution: 
– Estimate class-specific pdf’s via 

training (or nonlinear optimization)
– Thresholding on mixed pdf’s.
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Class 2
Class 3
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Segmentation: Learning pdf’s
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Histogram Processing and 
Equalization

• Notes
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Histograms
• h(rk) = nk 

– Histogram: 
number of times 
intensity level rk 
appears in the 
image

• p(rk)= nk/NM
– normalized 

histogram
– also a probability 

of occurence
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Histogram 
equalization
• Automatic 

process of 
enhancing the 
contrast of any 
given image
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Histogram Equalization



Next Class

• Chapter 3 G&W second part on “Spatial 
Filtering”

• Also read chapter 2, section 2.6.5. as 
introduction
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