Geometric Transformations and Image Warping
 Chapter 2.6.5
 Ross Whitaker

(modified by Guido Gerig)
SCI Institute, School of Computing
University of Utah

Geometric Transformations

- Greyscale transformations -> operate on range/output
- Geometric transformations -> operate on image domain
- Coordinate transformations
- Moving image content from one place to another
- Two parts:

1. Define transformation
2. Resample greyscale image in new coordinates

Geom Trans: Distortion From Optics

Computer
Vision

Radial distortion example

Geom Trans: Distortion From Optics

Geom. Trans.: Brain Template/Atlas

Geom. Trans.: Mosaicing of Series of Images

Univ of Utah, CS6640 2010

Domain Mappings Formulation

$$
\begin{aligned}
f & \longrightarrow g \quad \text { New image from old one } \\
\binom{x^{\prime}}{y^{\prime}} & =T(x, y)=\binom{T_{1}(x, y)}{T_{2}(x, y)} \begin{array}{l}
\text { Coordinate transformation } \\
\text { Two parts - vector valued }
\end{array} \\
g(x, y) & =f\left(x^{\prime}, y^{\prime}\right) \\
g(x, y) & =f\left(x^{\prime}, y^{\prime}\right)=\tilde{f}(x, y) \quad \begin{array}{l}
\text { g is the same (intensity) } \\
\text { image as } f, \text { but sampled on } \\
\text { these new coordinates }
\end{array}
\end{aligned}
$$

Domain Mappings Formulation

(E. H. W. Meijering)
g is the same (intensity) image as f, but sampled on these new coordinates

Domain Mappings Formulation

$$
\begin{gathered}
\bar{x}^{\prime}=T(\bar{x}) \quad \begin{array}{l}
\text { Vector notation is convenient. } \\
\text { Bar used some times, depends } \\
\text { on context. }
\end{array} \\
\bar{x}=\tilde{x})=\tilde{f}(\bar{x})=f\left(\bar{x}^{\prime}\right)=f(T(\bar{x})) \\
\begin{array}{l}
\text { T may or may not have an } \\
\text { inverse. If not, it means that } \\
\text { information was lost. }
\end{array}
\end{gathered}
$$

Domain Mappings

No Inverse?

Not "one to one"

Not "onto" doesn't cover f

Example

Transformation Examples

- Linear $\bar{x}^{\prime}=A \bar{x}+\bar{x}_{0} \quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

$$
\begin{aligned}
& x^{\prime}=a x+b y+x_{0} \\
& y^{\prime}=c x+d y+y_{0}
\end{aligned}
$$

- Rotation, Translation, Scaling?

2D Rotation

- Rotate counter-clockwise about the origin by an angle θ

Rotating About An Arbitrary Point

- What happens when you apply a rotation transformation to an object that is not at the origin?

?

Rotating About An Arbitrary Point

- What happens when you apply a rotation transformation to an object that is not at the origin?
- It translates as well

Now: First Rotate, then Translate

- Rotation followed by translation is not the same as translation followed by rotation:
- $\mathrm{T}(\mathrm{R}($ object $))$ \# $\mathrm{R}(\mathrm{T}$ (object $)$)

Series of Transformations

2D Object: Translate, scale, rotate, translate again

$$
\overrightarrow{P^{\prime}}=T 2+(R \cdot S \cdot(T 1+\stackrel{\rightharpoonup}{P}))
$$

- Problem: Rotation, scaling, shearing are multiplicative transforms, but translation is additive.

Excellent Materials for self study

http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide01.html

Problems with this Form

- Must consider Translation and Rotation separately
- Computing the inverse transform involves multiple steps
- Order matters between the R and T parts

$$
R(T(\bar{x})) \neq T(R(\bar{x}))
$$

These problem can be remedied by considering our 2 dimensional image plane as a 2D subspace within 3D.

Homogeneous Coordinates

- Use three numbers to represent a point
- $(x, y)=(w x, w y, w)$ for any constant $w \neq 0$
- Typically, (x, y) becomes $(x, y, 1)$
- Togo backwards,divideby w
- Translation can now be done with matrix multiplication!

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{x x} & a_{x y} & b_{x} \\
a_{y x} & a_{y y} & b_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
1
\end{array}\right]
$$

Basic Transformations

- Translation: $\left[\begin{array}{ccc}1 & 0 & b_{x} \\ 0 & 1 & b_{y} \\ 0 & 0 & 1\end{array}\right]$
Rotation: $\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
- Scaling: $\left[\begin{array}{ccc}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1\end{array}\right]$

Transformation Examples

- Linear $\bar{x}^{\prime}=A \bar{x}+\bar{x}_{0} \quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

$$
\begin{aligned}
& x^{\prime}=a x+b y+x_{0} \\
& y^{\prime}=c x+d y+y_{0}
\end{aligned}
$$

- Homogeneous coordinates

$$
\begin{aligned}
\bar{x} & =\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \quad A=\left(\begin{array}{ccc}
a & b & x_{0} \\
c & d & y_{0} \\
0 & 0 & 1
\end{array}\right) \\
\bar{x}^{\prime} & =A \bar{x}
\end{aligned}
$$

Special Cases of Linear

- Translation $A=\left(\begin{array}{ccc}0 & 0 & x_{0} \\ 0 & 0 & y_{0} \\ 0 & 0 & 1\end{array}\right)$
- Rotation $A=\left(\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$
- Rigid $=$ rotation + translation
- Scaling

$$
A=\left(\begin{array}{lll}
p & 0 & 0 \\
0 & q & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Include forward and backward rotation for arbitary axis
- Skew

- Reflection

Linear Transformations

Transformation Name	Affine Matrix, T	Coordinate Equations	Example		$\left[\begin{array}{lll}t_{11} & t_{12} & 0\end{array}\right]$
Identity	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$x-v$ $y-w$		$\left[\begin{array}{lll}x & y & 1\end{array}\right]=\left[\begin{array}{lll}v & w & 1\end{array}\right] \mathbf{T}=\left[\begin{array}{ll}v & w\end{array}\right.$	$\left[\begin{array}{lll}t_{21} & t_{22} & 0 \\ t_{31} & t_{32} & 1\end{array}\right]$
Scaling	$\left[\begin{array}{lll}c_{x} & 0 & 0 \\ 0 & c_{y} & 0 \\ 0 & 0 & 1\end{array}\right]$	$x-c_{x} v$ $y=c_{y} w$			
Rotation	$\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$	$\begin{aligned} & x-v \cos \theta-w \sin \theta \\ & y-v \cos \theta+w \sin \theta \end{aligned}$			
Translation	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ t_{x} & t_{y} & 1\end{array}\right]$	$\begin{aligned} & x=v+t_{x} \\ & y=w+t_{y} \end{aligned}$			
Shear (vertical)	$\left[\begin{array}{lll}1 & 0 & 0 \\ s_{=} & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$x-v+s_{z} w$ $y=w$			
Shear (horizontal)	$\left[\begin{array}{ccc}1 & s_{k} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$x-v$ $y=s_{h} v+w$	$\sqrt{7}$		25

Cascading of Transformations

Demo:
http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide09.html

Homogeneous Coordinates: A general view

- Acknowledgement: Greg Welch, Gary Bishop, Siggraph 2001 Course Notes (Tracking).

Series of Transformations

2D Object: Translate, scale, rotate, translate again

$$
\overrightarrow{P^{\prime}}=T 2+(R \cdot S \cdot(T 1+\vec{P}))
$$

- Problem: Rotation, scaling, shearing are multiplicative transforms, but translation is additive.

Solution: Homogeneous Coordinates

- In 2D: add a third coordinate, w
- Point $[x, y]^{\top}$ expanded to $[x, y, w]^{\top}$
- Scaling: force w to 1 by $[x, y, w]^{\top} / w \rightarrow[x / w, y / w, 1]^{\top}$

$$
\vec{P}=\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \text { where } w \neq 0 \text { and typically } w=1
$$

Resulting Transformations

$$
S=\left[\begin{array}{lll}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \quad R=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \quad T=\left[\begin{array}{ccc}
1 & 0 & d_{x} \\
0 & 1 & d_{y} \\
0 & 0 & 1
\end{array}\right]
$$

new:

$$
\stackrel{\rightharpoonup}{P^{\prime}}=T 2 \cdot R \cdot S \cdot T 1 \cdot \vec{P}
$$

before: $\quad \overrightarrow{P^{\prime}}=T 2+(R \cdot S \cdot(T 1+\vec{P}))$

Linear Transformations

- Also called "affine"
- 6 parameters
- Rigid -> 3 parameters
- Invertability
- Invert matrix $\quad T^{-1}(\bar{x})=A^{-1} \bar{x}$
- What does it mean if A is not invertible?

Affine: General Linear Transformation

$$
\bar{x}=\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \quad A=\left(\begin{array}{ccc}
a & b & x_{0} \\
c & d & y_{0} \\
0 & 0 & 1
\end{array}\right)
$$

6 parameters for Trans (2), Scal (2), Rot (1), Shear X and Shear $Y \rightarrow 7$ Parameters?????
$\bar{x}^{\prime}=A \bar{x}$

Transformation Name	Affine Matrix, T	Coordinate Equations	Example
Identity	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$x-v$ $y-w$	
Scaling	$\left[\begin{array}{lll}c_{x} & 0 & 0 \\ 0 & c_{y} & 0 \\ 0 & 0 & 1\end{array}\right]$	$x-c_{x} v$ $y-c_{,} w$	
Rotation	$\left[\begin{array}{ccc}\cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$	$\begin{aligned} & x-v \cos \theta-w \sin \theta \\ & y-v \cos \theta+w \sin \theta \end{aligned}$	
Translation	$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ t_{x} & t_{y} & 1\end{array}\right]$	$\begin{aligned} & x=v+t_{x} \\ & y=w+t_{y} \end{aligned}$	
Shear (vertical)	$\left[\begin{array}{lll}1 & 0 & 0 \\ s_{z} & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$\begin{gathered} x-v+s_{z} w \\ y-w \end{gathered}$	
Shear (horizontal)	$\left[\begin{array}{ccc}1 & s_{k} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	$\begin{gathered} x-v \\ y=s_{h} v+w \end{gathered}$	

Affine: General Linear Transformation

$$
\bar{x}=\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \quad A=\left(\begin{array}{ccc}
a & b & x_{0} \\
c & d & y_{0} \\
0 & 0 & 1
\end{array}\right)
$$

6 parameters for Trans (2), Scal (2), Rot (1), Shear X and Shear $\mathrm{Y} \rightarrow 7$ Parameters?????
$\bar{x}^{\prime}=A \bar{x}$
1)

Rot 90deg
Shear X

2)

> Shear Y can be formulated as Shear X applied to rotated image -> There is only one Shear parameter

Implementation

Two major procedures:

1. Definition or estimation of transformation type and parameters
2. Application of transformation: Actual transformation of image

Implementation - Two Approaches to Apply Transf.

1. Pixel filling - forward mapping g to f

- $\quad \mathrm{T}()$ takes you from coords in g() to coords in f()
- Need random access to pixels in f()
- Sample grid for $g()$, interpolate $f()$ as needed

Interpolation: Bilinear

- Successive application of linear interpolation along each axis

$$
f\left(R_{1}\right) \approx \frac{x_{2}-x}{x_{2}-x_{1}} f\left(Q_{11}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(Q_{21}\right)
$$

$$
f\left(R_{2}\right) \approx \frac{x_{2}-x}{x_{2}-x_{1}} f\left(Q_{12}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(Q_{22}\right)
$$

$$
f(P) \approx \frac{y_{2}-y}{y_{2}-y_{1}} f\left(R_{1}\right)+\frac{y-y_{1}}{y_{2}-y_{1}} f\left(R_{2}\right)
$$

Source: WIkipedia

Bilinear Interpolation

- Not linear in x, y

$$
\begin{aligned}
f(x, y) & \approx \frac{f\left(Q_{11}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)}\left(x_{2}-x\right)\left(y_{2}-y\right) \\
& +\frac{f\left(Q_{21}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)}\left(x-x_{1}\right)\left(y_{2}-y\right) \\
& +\frac{f\left(Q_{12}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)}\left(x_{2}-x\right)\left(y-y_{1}\right) \\
& +\frac{f\left(Q_{22}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)}\left(x-x_{1}\right)\left(y-y_{1}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& b_{1}+b_{2} x+b_{3} y+b_{4} x y \\
& b_{1}= f(0,0) \\
& b_{2}= f(1,0)-f(0,0) \\
& b_{3}= f(0,1)-f(0,0) \\
& b_{4}= f(0,0)-f(1,0) \\
&-f(0,1)+f(1,1) .
\end{aligned}
$$

Bilinear Interpolation

- Convenient form
- Normalize to unit grid $[0,1] \times[0,1]$

$$
\begin{aligned}
& f(x, y) \approx f(0,0)(1-x)(1-y)+f(1,0) x(1-y)+f(0,1)(1-x) y+f(1,1) x y . \\
& f(x, y) \approx\left[\begin{array}{ll}
1-x & x
\end{array}\right]\left[\begin{array}{ll}
f(0,0) & f(0,1) \\
f(1,0) & f(1,1)
\end{array}\right]\left[\begin{array}{c}
1-y \\
y
\end{array}\right] .
\end{aligned}
$$

Implementation - Two Approaches

2. Splatting - backward mapping f to g

- $\quad \mathrm{T}^{-1}()$ takes you from coords in f() to coords in g()
- You have $f()$ on grid, but you need $g()$ on grid
- Push grid samples onto g() grid and do interpolation from unorganized data (kernel)

Scattered Data Interpolation With Kernels Shepard's method

- Define kernel
- Falls off with distance, radially symmetric

$$
\begin{aligned}
& K\left(\bar{x}_{1}, \bar{x}_{2}\right)=K\left(\left|\bar{x}_{1}-\bar{x}_{2}\right|\right) \\
& g(x)=\frac{1}{\sum_{j=1}^{N} w_{j}} \sum_{i=1}^{N} w_{i} f\left(x_{i}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kernel examples } \\
& K\left(\bar{x}_{1}, \bar{x}_{2}\right)=\frac{1}{2 \pi \sigma^{2}} e^{\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|^{2}}{2 \sigma^{2}}} \\
& K\left(\bar{x}_{1}, \bar{x}_{2}\right)=\frac{1}{\left|\bar{x}_{1}-\bar{x}_{2}\right|^{p}}
\end{aligned}
$$

$$
\begin{aligned}
& w_{j}=K\left(\mid \bar{x}-T^{-1}\left(\bar{x}_{j}^{\prime}\right)\right) \\
& \begin{array}{l}
\text { Required } \\
\text { grid }
\end{array} \\
& \text { Grid coordinates in f }
\end{aligned}
$$

coordinates
in g
Transformed coord. from f

Shepard's Method Implementation

- If points are dense enough
- Truncate kernel
- For each point in f()
- Form a small box around it in $g()$ - beyond which truncate
- Put weights and data onto grid in g()
- Divide total data by total weights: B/A

$$
A=\sum_{j=1}^{N} w_{j} \quad B=\sum_{i=1}^{N} w_{i} f\left(T^{-1}\left(x_{i}^{\prime}\right)\right)
$$

ESTIMATION OF TRANSFORMATIONS

Determine Transformations

- All polynomials of (x, y)
- Any vector valued function with 2 inputs
- How to construct transformations?
- Define form or class of a transformation
- Choose parameters within that class
- Rigid - 3 parameters (T, R)
- Affine - 6 parameters

Correspondences

- Also called "landmarks" or "fiducials"

$$
\begin{aligned}
& \bar{c}_{1}, \bar{c}_{1}^{\prime} \\
& \bar{c}_{2}, \bar{c}_{2}^{\prime} \\
& \bar{c}_{3}, \bar{c}_{3}^{\prime} \\
& \bar{c}_{4}, \bar{c}_{4}^{\prime} \\
& \bar{c}_{5}, \bar{c}_{5}^{\prime} \\
& \bar{c}_{6}, \bar{c}_{6}^{\prime}
\end{aligned}
$$

Question: How many landmarks for affine T?

- Estimation of 6 parameters $\rightarrow 3$ corresponding point pairs with (x, y) coordinates

The coordinates of three corresponding points uniquely determine and Affine Transform

If we know where we would like at least three points to map to, we can solve for an Affine transform that will give this mapping.

Transformations/Control Points Strategy

1. Define a functional representation for T with k parameters $(\beta) T(\beta, \bar{x})$
. \quad fin $=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{K}\right)$
2. Define (pick) N correspondences
3. Find β so that

$$
\bar{c}_{i}^{\prime}=T\left(\beta, \bar{c}_{i}\right) i=1, \ldots, N
$$

4. If overconstrained $(\mathrm{K}<2 \mathrm{~N})$ then solve

$$
\arg \min _{\beta}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\overline{\mathrm{c}}_{\mathrm{i}}^{\prime}-\mathrm{T}\left(\beta, \overline{\mathrm{c}}_{\mathrm{i}}\right)\right)^{2}\right]
$$

Example Affine Transformation: 3 Corresponding Landmarks

Solution Method

Example: Quadratic

Transformation

$$
\begin{aligned}
& T_{x}=\beta_{x}^{00}+\beta_{x}^{10} x+\beta_{x}^{01} y+\beta_{x}^{11} x y+\beta_{x}^{20} x^{2}+\beta_{x}^{02} y^{2} \\
& T_{y}=\beta_{y}^{00}+\beta_{y}^{10} x+\beta_{y}^{01} y+\beta_{y}^{11} x y+\beta_{y}^{20} x^{2}+\beta_{y}^{02} y^{2}
\end{aligned}
$$

$$
\text { Denote } \bar{c}_{i}=\left(c_{x, i}, c_{y, i}\right)
$$

Correspondences must match

$$
\begin{aligned}
c_{y, i}^{\prime} & =\beta_{y}^{00}+\beta_{y}^{10} c_{x, i}+\beta_{y}^{01} c_{y, i}+\beta_{y}^{11} c_{x, i} c_{y, i}+\beta_{y}^{20} c_{x, i}^{2}+\beta_{y}^{02} c_{y, i}^{2} \\
c_{x, i}^{\prime} & =\beta_{x}^{00}+\beta_{x}^{10} c_{x, i}+\beta_{x}^{01} c_{y, i}+\beta_{x}^{11} c_{x, i} c_{y, i}+\beta_{x}^{20} c_{x, i}^{2}+\beta_{x}^{02} c_{y, i}^{2}
\end{aligned}
$$

Note: these equations are linear in the unkowns

Write As Linear System

$$
\begin{aligned}
& A x=b
\end{aligned}
$$

A - matrix that depends on the (unprimed) correspondences and the transformation
x - unknown parameters of the transformation
b - the primed correspondences

Linear Algebra Background

$$
\begin{array}{cc}
A x=b & \\
& \\
a_{11} x_{1}+\ldots+a_{1 N} x_{N} & =b_{1} \\
a_{21} x_{1}+\ldots+a_{2 N} x_{N} & =b_{2} \\
\ldots & \ldots \\
a_{M 1} x_{1}+\ldots+a_{M N} x_{N} & =b_{M}
\end{array}
$$

Simple case: A is square $(\mathrm{M}=\mathrm{N})$ and invertable (det[A] not zero)

$$
A^{-1} A x=I x=x=A^{-1} b
$$

(Numerics: Don't find A inverse. Use Gaussian elimination or some kind of decomposition of A.)

Linear Systems - Other Cases

- $(\mathrm{M}<\mathrm{N})$ or $(\mathrm{M}=\mathrm{N}$ and the equations are degenerate or singular):
- System is underconstrained - lots of solutions
- Approach
- Impose some extra criterion on the solution
- Find the one solution that optimizes that criterion
- Regularizing the problem

Linear Systems - Other Cases

- $\mathrm{M}>\mathrm{N}$ (e.g. more points than parameters):
- System is overconstrained
- No solution
- Approach
- Find solution that is best compromise
- Minimize squared error (least squares)

$$
x=\arg \min _{\mathrm{x}}|\mathrm{Ax}-\mathrm{b}|^{2}
$$

Solving Least Squares Systems

- Pseudoinverse (normal equations)

$$
\begin{gathered}
A^{T} A x=A^{T} b \\
x=\left(A^{T} A\right)^{-1} A^{T} b
\end{gathered}
$$

- Issue: often not well conditioned (nearly singular)
- Alternative: singular value decomposition SVD

Singular Value Decomposition

$$
\begin{gathered}
\left(\begin{array}{c}
\\
A
\end{array}\right)=U W V^{T}=\left(\begin{array}{ccc}
w_{1} & & \\
& & 0 \\
& w_{2} & \\
\\
& & \cdots \\
& & \\
& & \\
& \\
& \\
& w_{N}
\end{array}\right)\left(\begin{array}{l}
\\
V^{T} \\
\end{array}\right) \\
I=U^{T} U=U U^{T}=V^{T} V=V V^{T}
\end{gathered}
$$

Invert matrix A with SVD

$$
A^{-1}=V W^{-1} U^{T} \quad W^{-1}=\left(\begin{array}{cccc}
\frac{1}{w_{1}} & & & 0 \\
& \frac{1}{w_{2}} & & \\
& & \ldots & \\
0 & & & \frac{1}{w_{N}}
\end{array}\right)
$$

SVD for Singular Systems

- If a system is singular, some of the w's will be zero

$$
\begin{gathered}
x=V W^{*} U^{T} b \\
w_{j}^{*}=\left\{\begin{array}{cl}
1 / w_{j} & \left|w_{j}\right|>\epsilon \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

- Properties:
- Underconstrained: solution with shortest overall length
- Overconstrained: least squares solution

SPECIFYING "WARPS" VIA SPARSE SET OF LANDMARKS

Specifying Warps - Another Strategy

- Let the \# DOFs in the warp equal the \# of control points (x1/2)
- Interpolate with some grid-based interpolation
- E.g. binlinear, splines

Landmarks Not On Grid

- Landmark positions driven by application
- Interpolate transformation at unorganized correspondences
- Scattered data interpolation
- How do we do scattered data interpolation?
- Idea: use kernels!
- Radial basis functions
- Radially symmetric functions of distance to landmark

Concept

Figure 1. Warping a 2D mesh with RBFs: a) original mesh; b) mesh after warping.

Concept

Fig. 5 Radial basis interpolation of a regular grid, based on the random motion of 7 landmarks.

Warping a Neuro-Anatomy Atlas on 3D MRI Data with Radial Basis Functions
H.E. Bennink, J.M. Korbeeck, B.J. Janssen, B.M. ter Haar Romeny

Concept

Figure 8: Generalizing affine mappings in different ways. Top: Position of source and target anchor points. Bottom (left to right): thin-plate warp, Gaussian warp, affine least-square warp $(\lambda=\infty)$. In all cases the mapping can be well approximated by an affine mapping far away from the anchors. In the thin-plate case this affine map is different at different regions, unlike the Gaussian case in which the same affine component appearing in the definition of the mapping dominates the transformation in all areas away from the anchors.

RBFs - Formulation

- Represent T as weighted sum of basis functions

$$
\mathrm{T}(\bar{x})=\underbrace{\sum_{i=1}^{N} k_{i} \phi_{i}(\bar{x})}_{\text {Sum of radial basis functions }} \phi_{i}(\bar{x})=\underbrace{\phi\left(\left\|\bar{x}-\bar{x}_{i}\right\|\right)}_{\begin{array}{c}
\text { Basis functions centered } \\
\text { at positions of data }
\end{array}}
$$

- Need interpolation for vector-valued function, T :

$$
\begin{aligned}
T^{x}(\bar{x}) & =\sum_{i=1}^{N} k_{i}^{x} \phi_{i}(\bar{x}) \\
T^{y}(\bar{x}) & =\sum_{i=1}^{N} k_{i}^{y} \phi_{i}(\bar{x})
\end{aligned}
$$

Choices for ϕ

- Gaussian: $g(t)=\exp \left(-0.5\left(t^{2} / \sigma^{2}\right)\right.$
- Multiquadratics: $\mathrm{g}(\mathrm{t})=1 / \mathrm{Sqrt}\left(\mathrm{t}^{2}+\mathrm{c}^{2}\right)$, where c is least distance to surrounding points

Solve For k's With Landmarks as Constraints

- Find the k's so that $T(x)$ fits at data points

$$
\left(\begin{array}{cc}
B & 0 \\
0 & B
\end{array}\right)\left(\begin{array}{c}
k_{1}^{x} \\
k_{2}^{x} \\
\vdots \\
k_{N}^{x} \\
k_{1}^{y} \\
k_{2}^{y} \\
\vdots \\
k_{N}^{y}
\end{array}\right)=\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{N}^{\prime} \\
y_{1}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
y_{N}^{\prime}
\end{array}\right) \quad B=\left(\begin{array}{cccc}
\phi_{1}\left(\bar{x}_{1}\right) & \phi_{2}\left(\bar{x}_{1}\right) & \ldots & \phi_{N}\left(\bar{x}_{1}\right) \\
\phi_{1}\left(\bar{x}_{2}\right) & \phi_{2}\left(\bar{x}_{2}\right) & \cdots & \phi_{N}\left(\bar{x}_{2}\right) \\
\vdots & & & \\
\phi_{1}\left(\bar{x}_{N}\right) & \phi_{2}\left(\bar{x}_{N}\right) & \ldots & \phi_{N}\left(\bar{x}_{N}\right)
\end{array}\right)
$$

Issue: RBFs Do Not Easily Model Linear Trends

RBFs - Formulation w/Linear

Term

- Represent T as weighted sum of basis functions and linear part
$\mathrm{T}(\bar{x})=\underbrace{\sum_{i=1}^{N} k_{i} \phi_{i}(\bar{x})}_{\text {Sum }}+\underbrace{p_{2} y+p_{1} x+p_{o}}_{\text {Linear part of transformation }}$

- Need interpolation for vector-valued function, T :

$$
\begin{aligned}
T^{x}(\bar{x}) & =\sum_{i=1}^{N} k_{i}^{x} \phi_{i}(\bar{x})+p_{2}^{x} y_{+} p_{1}^{x} x+p_{o}^{x} \\
T^{y}(\bar{x}) & =\sum_{i=1}^{N} k_{i}^{y} \phi_{i}(\bar{x})+p_{2}^{y} y_{+} p_{1}^{y} x+p_{o}^{y}
\end{aligned}
$$

RBFs - Linear System

$$
\left(\begin{array}{cc}
B & 0 \\
0 & B
\end{array}\right)\left(\begin{array}{c}
k_{1}^{x} \\
k_{2}^{x} \\
\vdots \\
k_{N}^{x} \\
p_{2}^{x} \\
p_{1}^{x} \\
p_{0}^{x} \\
k_{1}^{y} \\
k_{2}^{y} \\
\vdots \\
k_{N}^{y} \\
p_{2}^{y} \\
p_{1}^{y} \\
p_{0}^{y}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{N}^{\prime} \\
0 \\
0 \\
0 \\
y_{1}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
y_{N}^{\prime}
\end{array}\right) \quad B=\left(\begin{array}{ccccccc}
x_{1} & x_{2} & \ldots & x_{N} & 0 & 0 & 0 \\
y_{1} & y_{2} & \ldots & y_{N} & 0 & 0 & 0 \\
1 & 1 & \cdots & 1 & 0 & 0 & 0 \\
\phi_{11} & \phi_{12} & \ldots & \phi_{1 N} & y_{1} & x_{1} & 1 \\
\phi_{21} & \phi_{22} & \ldots & \phi_{2 N} & y_{2} & x_{2} & 1 \\
\vdots & & & & & & \\
\phi_{N 1} & \phi_{N 2} & \cdots & \phi_{N N} & y_{N} & x_{N} & 1
\end{array}\right)
$$

RBFs - Solution Strategy

- Find the k's and p's so that $T()$ fits at data points
- The k's can have no linear trend (force it into the p's)
- Constraints -> linear system

$$
\left.\left.\begin{array}{ll}
T^{x}\left(\bar{x}_{i}\right)=x_{i}^{\prime} & \\
T^{y}\left(\bar{x}_{i}\right)=y_{i}^{\prime} \\
\sum_{i=1}^{N} k_{i}^{x}=0 & \sum_{i=1}^{N} k_{i}^{y}=0 \\
\sum_{i=1}^{N} k_{i}^{x} \bar{x}_{i}=\overline{0} & \sum_{i=1}^{N} k_{i}^{y} \bar{x}_{i}=\overline{0}
\end{array}\right\} \begin{array}{l}
\substack{\text { Coressonde } \\
\text { ncossmst } \\
\text { match }}
\end{array}\right\} \begin{aligned}
& \substack{\text { Keen inear } \\
\text { papssenarae } \\
\text { doeformaion }}
\end{aligned}
$$

RBF Warp - Example

What Kernel Should We Use

- Gaussian
- Variance is free parameter - controls smoothness of warp

$\sigma=2.5$

$\sigma=2.0$

$\sigma=1.5$

RBFs - Aligning Faces

Mona Lisa - Target

Venus - Source

Venus - Warped

Symmetry?

Figure 2. Image metamorphasis with RBFs: a) source image I_{0}; b) destination image I_{1}; c) forward warping I_{0} with $d_{0 \rightarrow 1}$; d) backward warping I_{1} with $d_{1 \rightarrow 0}$; e) result of morphing between I_{0} and $I_{1} ;$ f) cross-dissolved image.

Image-based Talking Heads using Radial Basis Functions James D. Edge and Steve Maddock

Application

- Modeling of lip motion in speech with few landmarks.
- Synthesis via motion of landmarks.

Figure 4. Synthesized viseme transitions. Central column contains transitional frames between the source and destination visemes.

RBFs - Special Case: Thin Plate Splines

- A special class of kernels

$$
\phi_{i}(x)=\left\|x-x_{i}\right\|^{2} \lg \left(\left\|x-x_{i}\right\|\right)
$$

- Minimizes the distortion function (bending energy)

$$
\int\left[\left(\frac{\partial^{2} f}{\partial x^{2}}\right)^{2}+2\left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2}+\left(\frac{\partial^{2} f}{\partial y^{2}}\right)^{2}\right] d x d y
$$

- No scale parameter. Gives smoothest results - Bookstein, 1989

Application: Image Morphing

- Combine shape and intensity with time parameter t
- Just blending with amounts t produces "fade"

$$
I(t)=(1-t) I_{1}+t I_{2}
$$

- Use control points with interpolation in t

$$
\bar{c}(t)=(1-t) \bar{c}_{1}+t \bar{c}_{2}
$$

- Use $\mathrm{c}_{1}, \mathrm{c}(\mathrm{t})$ landmarks to define T_{1}, and $\mathrm{c}_{2}, \mathrm{c}(\mathrm{t})$ landmarks to define T_{2}

Image Morphing

- Create from blend of two warped images $I_{t}(\bar{x})=(1-t) I_{1}\left(T_{1}(\bar{x})\right)+t I_{2}\left(T_{2}(\bar{x})\right)$

Image Morphing

Application: Image Templates/Atlases

- Build image templates that capture statistics of class of images
- Accounts for shape and intensity
- Mean and variability
- Purpose
- Establish common coordinate system (for comparisons)
- Understand how a particular case compares to the general population

Templates - Formulation

- N landmarks over M different subjects/samples

Correspondences

$$
\begin{array}{llll}
\text { Images } & & \bar{c}_{N}^{j}(\bar{x}) & \bar{c}_{i}^{j}
\end{array} \quad\left(\begin{array}{ccc}
\bar{c}_{1}^{1} & \ldots & \bar{c}_{N}^{1} \\
\vdots & & \vdots \\
\bar{c}_{1}^{M} & \ldots & \bar{c}_{N}^{M}
\end{array}\right)
$$

Mean of correspondences (template)

$$
\hat{c}_{i}=\frac{1}{M} \sum_{j=1}^{M} \bar{c}_{i}^{j}
$$

Transformations from mean to subjects

$$
\bar{c}_{i}^{j}=T^{j}\left(\hat{c}_{i}\right)
$$

$$
\hat{I}(\bar{x})=\frac{1}{M} \sum_{j} I^{j}\left(T^{j}(\bar{x})\right)
$$

Cars

Univ of Utah, CS6640 2010

Car Landmarks and Warp

Univ of Utah, CS6640 2010

Car Landmarks and Warp

Univ of Utah, CS6640 2010

Car Mean

Cars

Cats

Brains

Brain Template

Univ of Utah, CS6640 2010

APPLICATIONS

Warping Application: Lens Distortion

- Radial transformation - lenses are generally circularly symmetric
- Optical center is known
- Model of transformation:

$$
\begin{aligned}
\bar{x}^{\prime}= & \bar{x}\left(1+k_{1} r^{2}+\right. \\
& \left.k_{2} r^{4}+k_{3} r^{6}+\ldots\right)
\end{aligned}
$$

Correspondences

- Take picture of known grid - crossings

- Measure set of landmark pairs \rightarrow

Estimate transformation Snvoruan, cs66020210 correct imageşo

Image Mosaicing

- Piecing together images to create a larger mosaic
- Doing it the old fashioned way
- Paper pictures and tape
- Things don't line up
- Translation is not enough
- Need some kind of warp
- Constraints
- Warping/matching two regions of two different images only works when...

Applications

Microscopy (Morane Eye Inst, UofU, T. Tasdizen et al.)

Special Cases

- Nothing new in the scene is uncovered in one view vs another
- No ray from the camera gets behind another

2) Arbitrary views of planar surfaces

3D Perspective and Projection

- Camera model

Perspective Projection Properties

- Lines to lines (linear)

- Conic sections to conic sections

- Convex shapes to convex shapes
- Foreshortening

Image Homologies

- Images taken under cases 1,2 are perspectively equivalent to within a linear transformation
- Projective relationships - equivalence is

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \equiv\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right) \Leftrightarrow\left(\begin{array}{c}
a / c \\
b / c \\
1
\end{array}\right)=\left(\begin{array}{c}
d / f \\
e / f \\
1
\end{array}\right)
$$

Transforming Images To Make Mosaics

Linear transformation with matrix P

$$
\bar{x}^{*}=P \bar{x} \quad P=\left(\begin{array}{ccc}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & 1
\end{array}\right) \quad \begin{aligned}
& x^{*}=p_{11} x+p_{12} y+p_{13} \\
& y^{*}=p_{21} x+p_{22} y+p_{23} \\
& z^{*}=p_{31} x+p_{32} y+1
\end{aligned}
$$

Perspective equivalence

$$
\begin{aligned}
x^{\prime} & =\frac{p_{11} x+p_{12} y+p_{13}}{p_{31} x+p_{32} y+1} \\
y^{\prime} & =\frac{p_{21} x+p_{22} y+p_{23}}{p_{31} x+p_{32} y+1}
\end{aligned}
$$

Multiply by denominator and reorganize terms

$$
\begin{aligned}
& p_{31} x x^{\prime}+p_{32} y x^{\prime}-p_{11} x-p_{12} y-p_{13}=-x^{\prime} \\
& p_{31} x y^{\prime}+p_{32} y y^{\prime}-p_{21} x-p_{22} y-p_{23}=-y^{\prime}
\end{aligned}
$$

Linear system, solve for P

$$
\left(\begin{array}{cccccccc}
-x_{1} & -y_{1} & -1 & 0 & 0 & 0 & x_{1} x_{1}^{\prime} & y_{1} x_{1}^{\prime} \\
-x_{2} & -y_{2} & -1 & 0 & 0 & 0 & x_{2} x_{2}^{\prime} & y_{2} x_{2}^{\prime} \\
& & & \vdots & & & & \\
-x_{N} & -y_{N} & -1 & 0 & 0 & 0 & x_{N} x_{N}^{\prime} & y_{N} x_{2}^{\prime} \\
0 & 0 & 0 & -x_{1} & -y_{1} & -1 & x_{1} y_{1}^{\prime} & y_{1} y_{1}^{\prime} \\
0 & 0 & 0 & -x_{2} & -y_{2} & -1 & x_{2} y_{2}^{\prime} & y_{2} y_{2}^{\prime} \\
& & & \vdots & & & & \\
0 & 0 & 0 & -x_{N} & -y_{N} & -1 & x_{N} y_{N}^{\prime} & y_{N} y_{N}^{\prime}
\end{array}\right)\left(\begin{array}{c}
p_{11} \\
p_{12} \\
p_{13} \\
p_{21} \\
p_{23} \\
p_{23} \\
p_{31} \\
p_{32}
\end{array}\right)=\left(\begin{array}{c}
-x_{1}^{\prime} \\
-x_{2}^{\prime} \\
\vdots \\
-x_{N}^{\prime} \\
-y_{1}^{\prime} \\
-y_{2}^{\prime} \\
\vdots \\
-y_{N}^{\prime}
\end{array}\right)
$$

Image Mosaicing

4 Correspondences

5 Correspondences

6 Correspondences

Mosaicing Issues

- Need a canvas (adjust coordinates/origin)
- Blending at edges of images (avoid sharp transitions)
- Adjusting brightnesses
- Cascading transformations

