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Geometric Transformations

• Greyscale transformations -> operate on 
range/output

• Geometric transformations -> operate on 
image domain
– Coordinate transformations
– Moving image content from one place to another

• Two parts:
1. Define transformation
2. Resample greyscale image in new coordinates
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Geom Trans: Distortion From 
Optics

Barrel Distortion Pincushion Distortion



Computer
Vision

Radial distortion example
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Geom Trans: Distortion From 
Optics
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Geom. Trans.: Brain 
Template/Atlas
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Geom. Trans.: Mosaicing of 
Series of Images
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Domain Mappings 
Formulation

New image from old one

Coordinate transformation
Two parts – vector valued

g is the same (intensity) 
image as f, but sampled on 
these new coordinates
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Domain Mappings 
Formulation

g is the same (intensity) image as f, but 
sampled on these new coordinates

(E. H. W. Meijering)
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Domain Mappings 
Formulation

Vector notation is convenient.  
Bar used some times, depends 
on context.

T may or may not have an 
inverse.  If not, it means that 
information was lost.  
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Domain Mappings

f g

f g
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No Inverse?

f g

f g
Not “one to 
one”

Not “onto” -
doesn’t 
cover f



Example
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Transformation Examples

• Linear

• Rotation, Translation, Scaling?
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2D Rotation

• Rotate counter-clockwise about the origin by an angle θ
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Rotating About An Arbitrary Point

• What happens when you apply a rotation transformation to 
an object that is not at the origin?

x

y

?
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Rotating About An Arbitrary 
Point

• What happens when you apply a rotation transformation to 
an object that is not at the origin?
– It translates as well

x

y

x
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Now: First Rotate, then Translate

• Rotation followed by translation is not the same as 
translation followed by rotation: 

• T(R(object)) ≠ R(T(object))

x

θ

x

θ
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Series of Transformations

2D Object: Translate, scale, rotate, translate again

 Problem: Rotation, scaling, shearing are 
multiplicative transforms, but translation is additive.



Excellent Materials for self study
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http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide01.html

http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide01.html�
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Homogeneous Coordinates

• Use three numbers to represent a point
• (x,y)=(wx,wy,w) for any constant w≠0

– Typically, (x,y) becomes (x,y,1)
– To go backwards, divide by w

• Translation can now be done with matrix multiplication!
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Basic Transformations

• Translation:                     Rotation:

• Scaling:
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Transformation Examples

• Linear

• Homogeneous coordinates
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Special Cases of Linear

• Translation

• Rotation

• Rigid = rotation + translation

• Scaling

– Include forward and backward 
rotation for arbitary axis

• Skew

• Reflection

p, q < 1 : expand



Linear Transformations
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Cascading of Transformations
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Demo:
http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide09.html

http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide09.html�
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Homogeneous Coordinates:  
A general view

• Acknowledgement: Greg Welch, Gary 
Bishop, Siggraph 2001 Course Notes 
(Tracking).
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Series of Transformations

2D Object: Translate, scale, rotate, translate again

 Problem: Rotation, scaling, shearing are 
multiplicative transforms, but translation is additive.
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Solution: Homogeneous 
Coordinates

• In 2D: add a third coordinate, w

• Point [x,y]T expanded to [x,y,w]T

• Scaling: force w to 1 by [x,y,w]T/w → [x/w,y/w,1]T
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Resulting Transformations

new:

before:
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Linear Transformations

• Also called “affine”
– 6 parameters

• Rigid -> 3 parameters
• Invertability

– Invert matrix
• What does it mean if A is not invertible? 



Affine: General Linear 
Transformation
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6 parameters for Trans (2), Scal 
(2), Rot (1), Shear X and Shear 
Y → 7 Parameters ?????



Affine: General Linear 
Transformation
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Rot 90deg Shear X Rot -90deg

Shear Y

6 parameters for Trans (2), Scal 
(2), Rot (1), Shear X and Shear 
Y → 7 Parameters ?????

Shear Y can be formulated as 
Shear X applied to rotated 
image -> There is only one 
Shear parameter

1) 

2) 



Implementation

Two major procedures:
1. Definition or estimation of 

transformation type and parameters
2. Application of transformation: Actual 

transformation of image
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Implementation – Two 
Approaches to Apply Transf.

1. Pixel filling – forward mapping g to f
• T() takes you from coords in g() to coords in f()
• Need random access to pixels in f()
• Sample grid for g(), interpolate f() as needed

f g

Interpolate 
from 
nearby grid 
points
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Interpolation: Bilinear

• Successive application of linear 
interpolation along each axis

Source: WIkipedia
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Bilinear Interpolation

• Not linear in x, y
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Bilinear Interpolation

• Convenient form
– Normalize to unit grid [0,1]x[0,1]
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Implementation – Two 
Approaches

2. Splatting – backward mapping f to g
• T-1() takes you from coords in f() to coords in g()
• You have f() on grid, but you need g() on grid
• Push grid samples onto g() grid and do 

interpolation from unorganized data (kernel)

f g

Nearby points 
are not 
organized –
”scattered”

?
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Scattered Data Interpolation With Kernels
Shepard’s method

• Define kernel
– Falls off with distance, radially symmetric

g

?

Kernel examples

Grid coordinates in fRequired 
grid 
coordinates 
in g

Transformed 
coord. from f
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Shepard’s Method 
Implementation

• If points are dense enough
– Truncate kernel
– For each point in f()

• Form a small box around it in g() – beyond 
which truncate

• Put weights and data onto grid in g()

– Divide total data by total weights: B/A g

Data and weights 
accumulated here



ESTIMATION OF 
TRANSFORMATIONS
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Determine Transformations
• All polynomials of (x,y)
• Any vector valued function with 2 inputs
• How to construct transformations?

– Define form or class of a transformation
– Choose parameters within that class

• Rigid - 3 parameters (T, R)
• Affine - 6 parameters
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Correspondences

• Also called “landmarks” or “fiducials”



Question: How many 
landmarks for affine T?

• Estimation of 6 parameters → 3 corresponding 
point pairs with (x,y) coordinates
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Transformations/Control Points
Strategy

1. Define a functional representation for 
T with k parameters (β)

2. Define (pick) N correspondences
3. Find β so that

4. If overconstrained (K < 2N) then solve 



Example Affine Transformation: 3 
Corresponding Landmarks
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Example: Quadratic
Transformation

Denote

Correspondences must match

Note: these equations are linear in the unkowns
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Write As Linear System

A – matrix that depends on the (unprimed) 
correspondences and the transformation

x – unknown parameters of the 
transformation

b – the primed correspondences
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Linear Algebra Background

Simple case: A is square (M=N) and invertable (det[A] not zero)

(Numerics: Don’t find A inverse.  Use Gaussian elimination or 
some kind of decomposition of A.)



Univ of Utah, CS6640 2010 51

Linear Systems – Other 
Cases

• (M<N) or (M = N and the equations are 
degenerate or singular): 
– System is underconstrained – lots of 

solutions
• Approach

– Impose some extra criterion on the solution
– Find the one solution that optimizes that 

criterion
– Regularizing the problem
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Linear Systems – Other 
Cases

• M > N (e.g. more points than parameters): 
– System is overconstrained
– No solution

• Approach
– Find solution that is best compromise 
– Minimize squared error (least squares)
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Solving Least Squares 
Systems

• Pseudoinverse (normal equations)

– Issue: often not well conditioned (nearly 
singular)

• Alternative: singular value 
decomposition SVD
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Singular Value Decomposition

Invert matrix A with SVD
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SVD for Singular Systems

• If a system is singular, some of the w’s 
will be zero

• Properties:
– Underconstrained: solution with shortest 

overall length
– Overconstrained: least squares solution



SPECIFYING “WARPS” VIA 
SPARSE SET OF LANDMARKS
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Specifying Warps – Another Strategy

• Let the # DOFs in the warp equal the # of 
control points (x1/2)
– Interpolate with some grid-based interpolation

• E.g. binlinear, splines
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Landmarks Not On Grid

• Landmark positions driven by application
• Interpolate transformation at unorganized 

correspondences
– Scattered data interpolation

• How do we do scattered data interpolation?
– Idea: use kernels!

• Radial basis functions
– Radially symmetric functions of distance to 

landmark



Concept
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Concept
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Warping a Neuro-Anatomy Atlas on 3D MRI Data with Radial Basis Functions 
H.E. Bennink, J.M. Korbeeck, B.J. Janssen, B.M. ter Haar Romeny



Concept
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• Represent T as weighted sum of basis functions

• Need interpolation for vector-valued function, T:

RBFs – Formulation

Sum of radial basis functions
Basis functions centered 
at positions of data

T



Choices for ϕ

• Gaussian: g(t) = exp(-0.5(t2/σ2)
• Multiquadratics: g(t) = 1/Sqrt(t2+c2), 

where c is least distance to surrounding 
points
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Solve For k’s With Landmarks as 
Constraints

• Find the k’s so that T(x) fits at data points
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Issue: RBFs Do Not Easily Model 
Linear Trends

f(x)

x

f1

f2

f3

x1 x2 x3
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• Represent T as weighted sum of basis functions and 
linear part

• Need interpolation for vector-valued function, T:

RBFs – Formulation w/Linear 
Term

Sum of radial basis functions
Linear part of transformation Basis functions centered 

at positions of data

T
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RBFs – Linear System
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RBFs – Solution Strategy
• Find the k’s and p’s so that T() fits at data points

– The k’s can have no linear trend (force it into the p’s)

• Constraints -> linear system
Corresponde
nces must 
match

Keep linear 
part separate 
from 
deformation
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RBF Warp – Example
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What Kernel Should We Use

• Gaussian
– Variance is free parameter – controls 

smoothness of warp

σ = 2.5 σ = 2.0 σ = 1.5

From: Arad et al. 1994 
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RBFs – Aligning Faces

Mona Lisa – Target Venus – Source Venus – Warped



Symmetry?
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Image-based Talking Heads using Radial Basis 
Functions James D. Edge and Steve Maddock



Application

• Modeling of lip 
motion in 
speech with 
few landmarks.

• Synthesis via 
motion of 
landmarks.
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RBFs – Special Case: Thin Plate 
Splines

• A special class of kernels

• Minimizes the distortion function (bending 
energy)

– No scale parameter.  Gives smoothest results
– Bookstein, 1989
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Application: Image Morphing

• Combine shape and intensity with time 
parameter t
– Just blending with amounts t produces “fade”

– Use control points with interpolation in t

– Use c1, c(t) landmarks to define T1, and c2,c(t) 
landmarks to define T2
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Image Morphing

• Create from blend of two warped 
images

T2
T1

I1 It I2
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Image Morphing
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Application:  Image 
Templates/Atlases

• Build image templates that capture statistics 
of class of images
– Accounts for shape and intensity
– Mean and variability

• Purpose
– Establish common coordinate system (for 

comparisons)
– Understand how a particular case compares to the 

general population
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Templates – Formulation

• N landmarks over M different 
subjects/samples

Images

Correspondences

Mean of correspondences 
(template)

Transformations from mean to subjects Templated image
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Cars
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Car Landmarks and Warp
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Car Landmarks and Warp
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Car Mean
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Cars
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Cats
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Brains
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Brain Template



APPLICATIONS
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Warping Application: Lens 
Distortion

• Radial transformation – lenses are 
generally circularly symmetric
– Optical center is known
– Model of transformation:
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Correspondences
• Take picture of known grid – crossings

• Measure set of landmark pairs → 
Estimate transformation, correct images
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Image Mosaicing

• Piecing together images to create a larger 
mosaic

• Doing it the old fashioned way
– Paper pictures and tape
– Things don’t line up
– Translation is not enough

• Need some kind of warp
• Constraints

– Warping/matching two regions of two different 
images only works when…



Applications
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Microscopy (Morane Eye Inst, 
UofU, T. Tasdizen et al.)
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Special Cases

• Nothing new in the scene is uncovered in one 
view vs another
– No ray from the camera gets behind another

1) Pure rotations–arbitrary scene 2) Arbitrary views of planar surfaces
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3D Perspective and Projection

• Camera model

z

x
y

f

Image 
coordinates 
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Perspective Projection 
Properties

• Lines to lines (linear)

• Conic sections to conic sections

• Convex shapes to convex shapes

• Foreshortening
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Image Homologies

• Images taken under cases 1,2 are 
perspectively equivalent to within a 
linear transformation
– Projective relationships – equivalence is 
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Transforming Images To Make 
Mosaics

Linear transformation with matrix P

Perspective equivalence Multiply by denominator and reorganize terms

Linear system, solve for P
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Image Mosaicing
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4 Correspondences
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5 Correspondences
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6 Correspondences
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Mosaicing Issues

• Need a canvas (adjust 
coordinates/origin)

• Blending at edges of images (avoid 
sharp transitions)

• Adjusting brightnesses
• Cascading transformations
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