
Image Compression

CS 6640
School of Computing
University of Utah

Compression

•  What
– Reduce the amount of information (bits)

needed to represent image
•  Why

– Transmission
–  Storage
–  Preprocessing…

Redundant & Irrelevant
Information

•  “Your wife Helen will meet you at O’Hare
Airport in Chicago at 5 minutes past 6pm
tomorrow night”

•  Irrelevant or redudant can depend on
context
– Who is receiving the message?

Compression Model

Image 1 compress

Save/transmit
(File 2)

decompress Image 2

Image1 == Image2 -> “lossless” <- reduces redundant info

Image1 != Image2 -> “lossy” <- tries to reduce redundant & irrelevant info

Size(File1)/Size(File2) -> “compression ratio”

Save/transmit
(File 1)

“channel”

Redundancy

•  Coding redundancy
– More bits than necessary to create unique

codes
•  Spatial/geometric redundancy

–  Correlation between pixels
–  Patterns in image

•  Psychopysical redundancy (irrelevancy?)
– Users cannot distinguish
– Applies to any application (no affect on

output)

Transform Coding�
Standard Strategy

Image 1 Transform
(mapper) Quantizer Symbol

encoder Channel

Image 2 Transform
inverse

Symbol
decoder Channel

•  Note: can have special source or channel
modules
– Account for specific properties of image/

application
– Account for specific properties of channel (e.g.

noise)

Fundamentals
•  Information content of a signal -> entropy

•  Lower bound on #bits need to unambiguously
represent a sequence of symbols

x

Low entropy

High entropy

p(x)

Strategy (optimal)

•  Variable-Length Codes
•  Devote fewer bits to those symbols that

are most likely
– More generally -> sequences of symbols

•  Where do the statistics come from?
– A-priori knowledge
– The signal itself (send dictionary)
– Ad hoc schemes

Huffman Coding
•  Input: sumbols and probabilities
•  Output: variable length symbol table

–  Coded/decoded one at a time
•  Tree

1

Symbol Pr()

A1 1/2

A2 1/4

A3 1/8

A4 1/8

1

1

0

0

0

1/4

1/2

Code

0

10

110

111

Huffman Coding

1

Symbol Pr()

A2 0.4

A6 0.3

A1 0.1

A4 0.1

A3 0.06

A5 0.04

0
1

0

0
0.1

0.3

Code

1

00

011

0100

01010

01011

0.2

1

0

0.6
1

1

0

Fixed Length Codes

•  Dictionary with strategy to capture
special structure of data

•  Example: LZW (Lempel-Ziv-Welch)
–  Start with basic dictionary (e.g. grey levels)
– As new sequences of symbols are encountered

add them to dictionary
•  Hope: encode frequently occuring sequences of

symbols
–  Greedy

–  Can decompress w/out table (first occurance
not replaced)

LSW Compress

LSW Decompress

Run Length Enoding (RLE)
•  Good for images with few, discrete color values
•  Assumption: images have homogeneous regions
•  Strategy

–  Row-major order
–  Encode value of “run” and it’s length
–  Can combine with symbol encoder

•  Issues
–  How homogeneous is the data?
–  Is there enough continuity in rows?

RLE For 2D
•  Complex -> lots of strategies
•  Trace contours surrounding regions
•  Encode contours using a incremental

scheme with a differential strategy (to
improve statistics)

1
(0)

(1) (0) (0)
(1)

(0)
(1)

(0)
(1) (0) (0) (0) (2)

(0)
(0)

1
1

2 2 3
3

4
5

5
6 7 7 7 0

0
0

Predictive Coding

•  Take advantage of correlations
•  Have a simple model that predicts data

–  Encode differences from prediction
– Residual should be lower entropy

Prediction–encode
 difference

Lossy Compression

•  Transforms
– Move to another representation where

“importance” of information is more readily
discernable

– Usually reversible
•  Quantization

–  Strategy for reducing the amount of
information in the signal

– Typically not reversible (lossy)

Quantization
•  Eliminate symbols that are too small or

not important
•  Find a small set of approximating

symbols (less entropy)
–  Grey level or “vector quantization”
–  Find values that minimize error
–  Related to “clustering” in pattern

recognition

Block Transform Coding: JPEG
•  International standard (ISO)
•  Baseline algorithm with

extensions
•  Transform: discrete cosine

transform (DCT)
–  Encodes freq. Info w/out

complex #s
–  FT of larger, mirrored signal
–  Does not have other nice prop.

of FT

JPEG Algorithm

•  Integer grey-level image broken into 8x8
sub blocks

•  Set middle (mean?) grey level to zero
(subtract middle)

•  DCT of sub blocks (11 bit precision) ->
T(u,v)

•  Rescale frequency components by Z(u,v)
and round

Rescaling

•  Different scalling matrices possible, but
recommended is:

Reordering
•  DCT entries reordered in zig-zag fashion to

increase coherency (produce blocks of zeros)

Coding

•  Each sub-block is coded as a difference
from previous sub-block

•  Zeros are run-length encoded and nonzero
elements are Huffman coded
– Modified HC to allow for zeros

JPEG Example�
Compression Ratio ~10:1

Loss of high frequencies Block artifacts Ringing

Other Transformations
•  Sub-band coding

– Band-pass transformations that partition the
Fourier domain into pieces

–  Convolve with those filters and take advantage
of sparse structure

•  Hopefully many values near zero (quantization)

•  Wavelets
– Multiscale filters
–  Like subband filters but typically other

properties
•  Eg. Orthogonal (inner between diff filters in bank is

zero)

Wavelets as Hierarchical Decomposition

•  Image pyramids
– Represent low-frequency information at

coarser scale (less resolution)

Convolution with LP
 and subsampling

Wavelet Example: Harr
Mother wavelet Scaling function

Orthogonality

1D signal, discrete, 8 samples ->

Transformation Matrix

Extending to 2D
•  Must take all combinations of wavelet and

scaling function at a given scale
–  LL, HL, LH, HH

•  Typically organized in blocks, recursively
–  LL is futher decomposed by lower frequency

wavelets
– Apply recursively to LL

HH

HL

LH

HH

HL

LH

HH
HL

LH

LL

HH

HL

LH

LL

Wavelet Decomposition
LL HL

HH LH

Wavelet Decomposition
HL

HH LH

Wavelet Decomposition

Wavelet Compression Algorithm

•  Like JPEG, but use DWT instead of DCT
•  Steps

– Transform
– Weights (emprical)
– Quantize
–  Entropy (lossless encoding) through RLE, VLC,

or dictionary

Wavelet Compression

DWT Compression Artifacts

~80:1

Smarter Ways To Encode

•  Embedded zero-tree wavelets (Shapiro
1993)
– Zeros (threshold) at coarse level likely to be

indicative of finer level
–  E.g. edges
–  Continue through levels to hit bit quota

Other Wavelets

•  Harr is orthogonal, symmetric,
discontinuous

•  Daubechies biorthogonal wavelet
–  Continuous, but not symmetric
–  Family of wavelets with parameters
–  JPEG 2000 calls for “Daubechies 9/7

biorthogonal”

Comparisons of Compression

Grgic et al., 2001

