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Compression 

•  What 
– Reduce the amount of information (bits) 

needed to represent image 
•  Why 

– Transmission 
–  Storage 
–  Preprocessing… 



Redundant & Irrelevant 
Information 

•  “Your wife Helen will meet you at O’Hare 
Airport in Chicago at 5 minutes past 6pm 
tomorrow night” 

•  Irrelevant or redudant can depend on 
context 
– Who is receiving the message? 



Compression Model 

Image 1 compress 

Save/transmit 
(File 2) 

decompress Image 2 

Image1 == Image2 -> “lossless” <- reduces redundant info 

Image1 != Image2 -> “lossy” <- tries to reduce redundant & irrelevant info 

Size(File1)/Size(File2) -> “compression ratio” 

Save/transmit 
(File 1) 

“channel” 



Redundancy 

•  Coding redundancy 
– More bits than necessary to create unique 

codes 
•  Spatial/geometric redundancy 

–  Correlation between pixels 
–  Patterns in image 

•  Psychopysical redundancy (irrelevancy?) 
– Users cannot distinguish 
– Applies to any application (no affect on 

output) 



Transform Coding�
Standard Strategy 

Image 1 Transform 
(mapper) Quantizer Symbol  

encoder Channel 

Image 2 Transform 
inverse 

Symbol  
decoder Channel 

•  Note: can have special source or channel 
modules 
– Account for specific properties of image/

application 
– Account for specific properties of channel (e.g. 

noise) 



Fundamentals 
•  Information content of a signal -> entropy 

•  Lower bound on #bits need to unambiguously 
represent a sequence of symbols 

x 

Low entropy 

High entropy 

p(x) 



Strategy (optimal) 

•  Variable-Length Codes 
•  Devote fewer bits to those symbols that 

are most likely 
– More generally -> sequences of symbols 

•  Where do the statistics come from? 
– A-priori knowledge 
– The signal itself (send dictionary) 
– Ad hoc schemes 



Huffman Coding 
•  Input: sumbols and probabilities 
•  Output: variable length symbol table 

–  Coded/decoded one at a time 
•  Tree 
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Huffman Coding 
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Fixed Length Codes 

•  Dictionary with strategy to capture 
special structure of data 

•  Example: LZW (Lempel-Ziv-Welch) 
–  Start with basic dictionary (e.g. grey levels) 
– As new sequences of symbols are encountered 

add them to dictionary 
•  Hope: encode frequently occuring sequences of 

symbols 
–  Greedy 

–  Can decompress w/out table (first occurance 
not replaced) 



LSW Compress 



LSW Decompress 



Run Length Enoding (RLE) 
•  Good for images with few, discrete color values 
•  Assumption: images have homogeneous regions 
•  Strategy 

–  Row-major order 
–  Encode value of “run” and it’s length 
–  Can combine with symbol encoder 

•  Issues 
–  How homogeneous is the data? 
–  Is there enough continuity in rows? 



RLE For 2D 
•  Complex -> lots of strategies 
•  Trace contours surrounding regions 
•  Encode contours using a incremental 

scheme with a differential strategy (to 
improve statistics) 
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Predictive Coding 

•  Take advantage of correlations 
•  Have a simple model that predicts data 

–  Encode differences from prediction 
– Residual should be lower entropy 

Prediction–encode
 difference 



Lossy Compression 

•  Transforms 
– Move to another representation where 

“importance” of information is more readily 
discernable 

– Usually reversible 
•  Quantization 

–  Strategy for reducing the amount of 
information in the signal 

– Typically not reversible (lossy) 



Quantization 
•  Eliminate symbols that are too small or 

not important 
•  Find a small set of approximating 

symbols (less entropy) 
–  Grey level or “vector quantization” 
–  Find values that minimize error 
–  Related to “clustering” in pattern 

recognition 



Block Transform Coding: JPEG 
•  International standard (ISO) 
•  Baseline algorithm with 

extensions 
•  Transform: discrete cosine 

transform (DCT) 
–  Encodes freq. Info w/out 

complex #s 
–  FT of larger, mirrored signal 
–  Does not have other nice prop. 

of FT 



JPEG Algorithm 

•  Integer grey-level image broken into 8x8 
sub blocks 

•  Set middle (mean?) grey level to zero 
(subtract middle) 

•  DCT of sub blocks (11 bit precision) -> 
T(u,v) 

•  Rescale frequency components by Z(u,v) 
and round 



Rescaling 

•  Different scalling matrices possible, but 
recommended is: 



Reordering 
•  DCT entries reordered in zig-zag fashion to 

increase coherency (produce blocks of zeros) 



Coding 

•  Each sub-block is coded as a difference 
from previous sub-block 

•  Zeros are run-length encoded and nonzero 
elements are Huffman coded 
– Modified HC to allow for zeros 



JPEG Example�
Compression Ratio ~10:1 

Loss of high frequencies Block artifacts Ringing 



Other Transformations 
•  Sub-band coding 

– Band-pass transformations that partition the 
Fourier domain into pieces 

–  Convolve with those filters and take advantage 
of sparse structure 

•  Hopefully many values near zero (quantization) 

•  Wavelets 
– Multiscale filters 
–  Like subband filters but typically other 

properties 
•  Eg. Orthogonal (inner between diff filters in bank is 

zero) 



Wavelets as Hierarchical Decomposition 

•  Image pyramids 
– Represent low-frequency information at 

coarser scale (less resolution) 

Convolution with LP
 and subsampling 



Wavelet Example: Harr 
Mother wavelet Scaling function 

Orthogonality 

1D signal, discrete, 8 samples -> 

Transformation Matrix 



Extending to 2D 
•  Must take all combinations of wavelet and 

scaling function at a given scale 
–  LL, HL, LH, HH 

•  Typically organized in blocks, recursively 
–  LL is futher decomposed by lower frequency 

wavelets 
– Apply recursively to LL 
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Wavelet Decomposition 
LL HL 

HH LH 



Wavelet Decomposition 
HL 

HH LH 



Wavelet Decomposition 



Wavelet Compression Algorithm 

•  Like JPEG, but use DWT instead of DCT 
•  Steps 

– Transform 
– Weights (emprical) 
– Quantize 
–  Entropy (lossless encoding) through RLE, VLC, 

or dictionary 



Wavelet Compression 



DWT Compression Artifacts 

~80:1 



Smarter Ways To Encode 

•  Embedded zero-tree wavelets (Shapiro 
1993) 
– Zeros (threshold) at coarse level likely to be 

indicative of finer level 
–  E.g. edges 
–  Continue through levels to hit bit quota 



Other Wavelets 

•  Harr is orthogonal, symmetric, 
discontinuous 

•  Daubechies biorthogonal wavelet 
–  Continuous, but not symmetric 
–  Family of wavelets with parameters 
–  JPEG 2000 calls for “Daubechies 9/7 

biorthogonal” 



Comparisons of Compression 

Grgic et al., 2001 


