# An Introduction to Images Chapter 01/02 G\&W 

## CS6640/BIOENG6640

Guido Gerig, modified from Ross Whitaker
SCI Institute, School of Computing
University of Utah

## Module 1: Goals

- Understand images as mappings
- Understand the difference - continuous vs discrete
- Be able to identify domain and range of an image in a precise way
- Know several examples of images
- How they are used
- How they are formed
- Understand domain topology, physical dimensions, and resolution of images
- Understand and be able to use (e.g. reason about and implement)
- Arithmetic operations, neighborhoods, adjacency, 2 connected components


## What Is An Digital Image?

- A file you download from the web (e.g. image.jpg)
- What you see on the screen
- An array (regular grid) of data values
- A mapping from one domain to another

- A discrete sampling (approximation) of a function


## Digital Image Acquisition Process



FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

## Image As A Mapping (Function)


$f: \mathcal{D} \mapsto \mathcal{R}$
$\mathcal{D} \subset \Re^{n}$ and $\mathcal{R} \subset \Re^{\mathrm{m}}$

## Image As A Mapping:

 Issues- Dimensionality of domain ( $\mathrm{n}=$ ?)
- Dimensionality of range ( $m=$ ?)
- Typically use shorthand of $R^{n}$ or $R^{m}$
- Discrete or continuous
- Discrete reasoning/math
- Continuous math (calculus) -> discrete approximation
- Issues for both domain and range


## Examples of "Images" as Functions



## Images As 2D Functions



## 3D Images - Volumes



Impossible to graph:
Slicing
Volume rendering
Scientific visualization

## Digital Image: Continuous to Discrete



Sampling (space) and Quantization (intensity)
a b
c d
FIGURE 2.16
Generating a digital image. (a) Continuous image. (b) A scan line from $A$ to $B$ in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization.
(d) Digital
scan line.


FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image sampling and quantization.

## Multivalued Images

- Color images: mappings to some subset of R3
- Color spaces: RBG, HSV, etc.
- Spectral imagery
- Measure energy at different bands within the electromagnetic spectrum



## Image As Grid of Values

Unstructured grid

- Two views
- Domain is a discrete set of samples
- Samples are points from an underlying continuous function
- How is the grid organized?
- Unstructured
- Points specified by position and value

- Structured grids
- Position inferred from structure/inde
- Position inferred from str
- 1D, 2D, 3D, ...
- Sizes w, w $\times \mathrm{h}, \mathrm{w} \times \mathrm{h} \times \mathrm{d}$
- Position inferred from str
- 1D, 2D, 3D, $\ldots$
- Sizes w, w $\times \mathrm{h}, \mathrm{w} \times \mathrm{h} \times \mathrm{d}$



## Sampling Effect of spatial resolution


ab
c d
FIGURE 2.20 Typical effects of reducing spatial resolution. Images shown at: (a) 1250 dpi, (b) 300 dpi (c) 150 dpi , and (d) 72 dpi . The thin black borders were added for clarity. They are not part of the data.

# Quantization: Effect of intensity levels 



FIGURE 2.21
(a) $452 \times 374$ 256 -level image (b)-(d) Image displayed in 128 64, and 32 gray kevels, while kevels, whing the keeping the spatial res courtesy of Dr. David R. Pickens, Depariment of Radiology \& Radiological Sciences. Vanderbilt University Medical Center.)


## Where Do Digital Images Come From?

- Digitizing film or paper
- Rasterize, sample reflectance/transmission on grid



## CCD Cameras



## X-Rays



## X-Ray Images



## Computed Tomography

Series of projections


Reconstruction Volume


## CT (CAT)



## Magnetic Resonance Imaging



Random
orientation (water molecules)

Generate field


Magnetic field align spins

Detect/measure field


Spins become
random (generate field)

## MRI



## Nuclear Medicine PET, SPECT, ...

Injection\&detection


Reconstruction


## Serial Sectioning



# Serial Section Transmission Electron Microscopy 



## Examples

- Quality control of surface-mount packaging

- Retinal
architecture from serial section


TEM

- Image-based phenotyping



## Fingerprint images

- Ink technique
- spread ink
- press on paper
- capture with CCD camera or scanner
- Latent fingerprints
- Live-scan
- Optical sensors
- Capacitive sensor
- Thermal sensor
- Pizoelectric (pressure)



## Fingerprint matching

- Fingerprint patterns are unique to the individual
- Matching
- using the ridges directly is hard
- often singularity points are used
- Local: Minutiae
- Global: Loop, delta, ...



## Array vs. Matrix Operations

$$
\underbrace{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)}_{A} \times \underbrace{\left(\begin{array}{ll}
x & y \\
w & z
\end{array}\right)}_{X}=\left(\begin{array}{ll}
a x+b w & a y+b z \\
c x+d w & c y+d z
\end{array}\right)
$$

Matrix multiply ( MATLAB A*X)
$\underbrace{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)}_{A} \times \underbrace{\left(\begin{array}{ll}x & y \\ w & z\end{array}\right)}_{X}=\left(\begin{array}{ll}a x & b y \\ c w & d z\end{array}\right)$
Array multiply
( MATLAB A.*X)

Images can be represented as matrices, but the operations refer to array operations unless otherwise specified

## Arithmetic Operations on Images

- Arithmetic operations on pixel values
- Multiple images with the same domain
- Image become arguments
- Implied that the operation is applied pointwise across the domain
- Addition, subtraction, multiply, divide, boolean
$h=f+g \Rightarrow h(i, j)=f(i, j)+g(i, j)$

$$
\forall(i, j) \in \mathcal{D}
$$

## Arithmetic operations: $f+g$

## Averaging (adding) multiple images can reduce noise


a b c
d e f
FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)-(f) Results of averaging $5,10,20,50$, and 100 noisy images, respectively. (Original image courtesy of NASA.)

## Arithmetic operations: $\mathrm{f}-\mathrm{g}$

Digital Subtractive Angiography (DSA)


## Image Subtraction: Motion Detection



## Arithmetic operations: f x g


a b c
FIGURE 2.30 (a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to 1 and black corresponds to 0 ). (c) Product of (a) and (b).

## Arithmetic operations: f/g



Captured image


Illumination


Corrected image

# Operations on Cartesian Image Grids 

- Grid resolution
- Neighborhoods
- Adjacency and connectivity
- Paths
- Connected components
- Flood fill


## Image Coordinates and Resolution

- A single point on an image grid is a "pixel"
- Sometimes this is just the location, sometimes also the value
- References to pixels
- Single index (implied ordering) "i" or "f(i)"
- Multiple index (gives position on logical grid) "i,j" or "f(i,j)"
- Physical coordinates $\left(x_{i j}, y_{i j}\right)=\left(r_{x} i+o_{x}, r_{y} j+o_{y}\right)$
- Logical coordinates place the pixel in physical space
-r-resolution (e.g. mm's)
- o - origin

Resolution vs size vs dimension

Different physical realizations of the same logical grid

## Index Sets

- An index set is a collection of pixel locations
- Used to specify subsets of an image
- All boolean set operations apply
- Convention
- Represent the set as an image with 0 indicating non
 membership and $>0$ indicating membership
- Logical operations become arithmetic operations


## Neighborhood

- Neighborhood ( $N$ ): a set of relative indices that satisfy the symmetry condition
- Symmetry:

$$
(i, j) \in \mathcal{N} \Leftrightarrow(-i,-j) \in \mathcal{N}
$$

- Applying neighborhoods:

$$
\mathcal{N}(i, j)=\{(k, l) \mid(k-i, l-j) \in \mathcal{N}\}
$$

- I.e. you translate neighborhoods to different locations
- Notice: $(p, q) \in \mathcal{N}(i, j) \Leftrightarrow(i, j) \in \mathcal{N}(p, q)$


## Adjacency

- Impose topological structure on the grid
- Local relationships between pixels
- Help to establish distances, paths, connectedness, etc.
- Typically adjacency is local and symmetric
- For 2D images we consider:


## 4 connected 8 connected



Denote
$I \sim J$

## Paths

- Path: Ordered set of indices such that consecutive indices are adjacent

$$
\begin{gathered}
\mathcal{P}=\left(I_{1}, I_{2}, \ldots I_{n}\right) \text { such that } \mathrm{I}_{\mathrm{i}} \sim \mathrm{I}_{\mathrm{i}+1} \\
\forall \mathrm{i}=1, \ldots \mathrm{n}-1
\end{gathered}
$$

- Noncylic path - unique indices
- Closed path - noncyclic and first and last adjacent


## Distances in Images

- Grid distance vs physical distance
- Physical distance between pixels I and J

$$
D(I, J)=\sqrt{\left(x_{I}-x_{J}\right)^{2}+\left(y_{I}-y_{J}\right)^{2}}
$$

## Distances in Images

- Grid distance vs physical distance
- Physical distance between pixels I and J

$$
D(I, J)=\sqrt{\left(x_{I}-x_{J}\right)^{2}+\left(y_{I}-y_{J}\right)^{2}}
$$

- Grid distance: options
- Grid Euclidean $D((i, k),(j, l))=\sqrt{(i-j)^{2}+(k-l)^{2}}$
- Manhattan (city block) $D((i, k),(j, l))=|i-j|+|k-l|$
- Shortest path
- Assign cost to each transition between adjacent pixels
- Find path with shortest cost



# Manhattan Distance / City Block Distance 



# Manhattan Distance / City Block Distance 



## Manhattan Distance / City Block Distance



## Pixels with $\mathrm{D}_{4}$ distance from center

$$
\begin{array}{lllll} 
& & 2 & & \\
& 2 & 1 & 2 & \\
2 & 1 & 0 & 1 & 2 \\
& 2 & 1 & 2 & \\
& & 2 & &
\end{array}
$$

The pixels with $D_{4}=1$ are the 4-neighbors of $(x, y)$.

## Pixels with $D_{8}$ distance from center

The $D_{8}$ distance (called the chessboard distance) between $p$ and $q$ is defined as

$$
\begin{equation*}
D_{8}(p, q)=\max (|x-s|,|y-t|) \tag{2.5-3}
\end{equation*}
$$

| 2 | 2 | 2 | 2 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 1 | 1 | 2 |
| 2 | 1 | 0 | 1 | 2 |
| 2 | 1 | 1 | 1 | 2 |
| 2 | 2 | 2 | 2 | 2 |

The pixels with $D_{8}=1$ are the 8 -neighbors of $(x, y)$.

## Connected Component

- Consider image with a binary property - I.e. test on each index $B(I)$ returns either true or false
- Correct path : path for which every pixel satisfies $B(I)$
- Connected component (C) : set of pixels such that for every pair of pixels in C there exists a correct path between them


## Connected Component

- How many distinct CC's are there?

|  |  |  |  |  |  | $\square$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

## A Simple Algorithm: Flood Fill

- Highlight regions in an image
- "Test( $\mathrm{i}, \mathrm{j}$ )" - is value at pixel (i,j) between $a$ and b
- Inputs: seed, image, test function
- Data structures: input array, output array, list of grid points to be processed


## A Simple Algorithm: Flood Fill

- Empty list, clear output buffer (=0)
- Start at seed (i,j) and if Test(i,j), put (i,j) on list and mark out[i,j]=1
- Repeat until list of points is empty:
- Remove point (i,j) from list
- (Loop) for all 4 neighbors ( $\mathrm{i}^{\prime}, \mathrm{j}$ ') of ( $\mathrm{i}, \mathrm{j}$ )
- If (Test( $\left.i^{\prime}, j^{\prime}\right)$ and out[l', $\left.\left.{ }^{\prime}\right]==0\right)$ put ( $\left.\mathrm{i}^{\prime}, \mathrm{j}^{\prime}\right)$ on list and mark out[i', $\left.{ }^{\prime}\right]=1$
- Properties
- Guaranteed to stop
- Worst case run time


# Connected Component Analysis 

- Input: image and test
- Output: an integer image (label map) that has either "0" (failed test) or a positive integer associated with each distinct connected component




## CC - Purpose

- When objects are distinguishable by a simple test (e.g. intensity threshold)
- Delineate distinct objects for subsequent processing
- E.g Count the number, sizes, etc.
- Statistics, find outliers irregular objects



## CC Output/Extensions

- Output is typically a "label map"
- How to handle foreground/background, etc
- How to display

