Mathematical Morphology

Mathematical Morphology: Binary Morphology

Dilation

• Everywhere the *structuring element B* overlaps the shape:

 $A \oplus B = \{ c \mid c = a + b \text{ for some } a \in A \text{ and } b \in B \}$

Unioned copies of the shifted image:

$$A\oplus B=\bigcup_{t\in B}A_t$$

Unioned copies of the shifted B:

$$A\oplus B=\bigcup_{t\in A}B_t$$

Dilation

Dilation

Mathematical Morphology: Binary Morphology

All the positions where the structuring element B fits entirely inside the shape:

$$A \ominus B = \{x \mid x + b \in A \text{ for every } b \in B\}$$

Intersected copies of the shifted image

$$A \ominus B = \bigcap_{t \in B} A_{-t}$$

Erosior

Mathematical Morphology: Binary Morphology

Erosion

Erosion

Mathematical Morphology: Binary Morphology

a b c

FIGURE 9.7 (a) Image of squares of size 1, 3, 5, 7, 9, and 15 pixels on the side. (b) Erosion of (a) with a square structuring element of 1's, 13 pixels on the side. (c) Dilation of (b) with the same structuring element.

Properties of Erosion

Not commutative:

$$A \ominus B \stackrel{?}{=} B \ominus A$$

Not associative:

$$(A \ominus B) \ominus C \stackrel{?}{=} A \ominus (B \ominus C)$$

Mathematical Morphology: Binary Morphology Erosion

Duality of Erosion and Dilation

- > Dual operations are ones that can be defined in terms of each other
- Duals are not inverse operations
- Dilation and erosion are dual operations:

$$(A \oplus B)^c = A^c \ominus \breve{B}$$
$$(A \ominus B)^c = A^c \oplus \breve{B}$$

where **B** denotes the reflection of **B**

Intuition: dilating the foreground is the same as eroding the background-the structuring just element flips

Example Application: Finding Boundary Pixels

Can find all of the boundary pixels by dilating the object and subtracting the original:

$$Bound_{ext}(A) = (A \oplus B) - A$$

where *B* is a 3×3 structuring element containing all 1s

Or by eroding the original and subtracting that from the original:

$$\mathsf{Bound}_{\mathsf{int}}(A) = A - (A \ominus B)$$

Mathematical Morphology: Binary Morphology Mathematical Morphology: Binary Morphology Hit-and-Miss

Example Application: Finding Boundary Pixels

a b c d FIGURE 9.13 (a) Set A. (b) Structuring element B. (c) A		Origin B
eroded by \vec{B} . (d) Boundary, given by the set difference between A and its erosion.	$A \ominus B$	$\beta(A)$

Hit-and-Miss

Mathematical Morphology: Binary Morphology

Erosion

Hit-and-miss operators find target pixel configurations:

$$A \otimes (J, K) = (A \ominus J) \cap (A^c \ominus K)$$

- ► J is the target that must be "hit" (foreground)
- K is the target that must be "missed" (background)

Example:

Mathematical Morphology: Binary Morphology Copening and Closing

Opening

-Opening and Closing

Mathematical Morphology: Binary Morphology

Erosion

An opening operation is an erosion followed by a dilation:

$$A \circ B = (A \ominus B) \oplus B$$

Used to remove small objects, protrusions, connections

abcd

FIGURE 9.8 (a) Structuring element *B* "rolling" along the inner boundary of *A* (the dot indicates the origin of *B*). (c) The heavy line is the outer boundary of the opening. (d) Complete opening (shaded).

Closing

A closing operation is a dilation followed by an erosion:

$$A \bullet B = (A \oplus B) \ominus B$$

Used to remove small holes, gaps, etc.

FIGURE 9.9 (a) Structuring element B "rolling" on the outer boundary of set A. (b) Heavy line is the outer boundary of the closing. (c) Complete closing (shaded).

Duality of Opening and Closing

Opening and closing are also duals:

$$(A \circ B)^c = A^c \bullet \breve{B}$$

Intuition: opening to remove small foreground objects is the same as closing small holes in the background

Example: Opening and Closing for Noise Removal

Mathematical Morphology: Binary Morphology

Idempotence of Opening and Closing

- An operation is *idempotent* if applying it once is as good as applying it many times
- Opening and closing are idempotent

$$(A \circ B) \circ B = A \circ B$$

$$(A \bullet B) \bullet B = A \bullet B$$