Mathematical Morphology

Mathematical Morphology:
 Binary Morphology

CS 650: Computer Vision

- The analysis of signals and images based on shape (Morphology = "study of shape")
- Uses a set-theoretic approach to modify shapes based on local operators
- Many operations are similar to convolution but use set operations
- Useful for
- enhancing structural properties
- segmentation
- quantitative description

Set Operations on Binary Images

Translation

A	the image ("on" pixels)
A^{c}	the compliment of the image (inverse)
$A \cup B$	the union of images A and B
$A \cap B$	the intersection of images A and B
$A-B=A \cap B^{c}$	the difference between A and B
$\# A$	(the pixels in A that aren't in B)
the cardinality of A (area of the object(s))	

- The image A translated by movement vector t is

$$
A_{t}=\{c \mid c=a+t \text { for some } a \in A\}
$$

- Literally, pick up each pixel in A and move it by the movement vector t

Dilation

- Everywhere the structuring element B overlaps the shape:

$$
A \oplus B=\{c \mid c=a+b \text { for some } a \in A \text { and } b \in B\}
$$

- Unioned copies of the shifted image:

$$
A \oplus B=\bigcup_{t \in B} A_{t}
$$

- Unioned copies of the shifted B :

$$
A \oplus B=\bigcup_{t \in A} B_{t}
$$

Dilation


```
Mathematical Morphology: Binary Morphology
Mathematical Morphology: Binary Morphology

\section*{Dilation}
Historicaliy, certain computer
programs were written using
oniy two digits rather than
four to cefine the applicable
year. Accordingly, the
company's software may
recognize a date using "00"
as 1900 rather than the year
2000 .

\section*{Properties of Dilation}
\({ }^{\mathrm{a}} \mathrm{b}\)
FIGURE 9.5
(a) Sample text of
poor resolution
with broken
characters
(magnified view).
(b) Structuring
element.
(c) Dilation of (a)
by (b). Broken
segments were joined.
\begin{tabular}{|l|l|l|}
\hline 0 & 1 & 0 \\
\hline 1 & 1 & 1 \\
\hline 0 & 1 & 0 \\
\hline
\end{tabular}

Mathematical Morphology: Binary Morphology

\section*{Erosion}
- All the positions where the structuring element \(B\) fits entirely inside the shape:
\[
A \ominus B=\{x \mid x+b \in A \text { for every } b \in B\}
\]
- Intersected copies of the shifted image
\[
A \ominus B=\bigcap_{t \in B} A_{-t}
\]

Mathematical Morphology: Binary Morphology
LErosion

\section*{Erosion}

\[
(A \oplus B) \oplus C=A \oplus(B \oplus C))
\]

\section*{Erosion}

abc
FIGURE 9.7 (a) Image of squares of size \(1,3,5,7,9\), and 15 pixels on the side. (b) Erosion of (a) with a square structuring element of 1's, 13 pixels on the side. (c) Dilation of (b) with the same structuring element.

\section*{Properties of Erosion}
- Not commutative:
\[
A \ominus B \stackrel{?}{=} B \ominus A
\]
- Not associative:
\[
(A \ominus B) \ominus C \stackrel{?}{=} A \ominus(B \ominus C)
\]

\section*{Duality of Erosion and Dilation}
- Dual operations are ones that can be defined in terms of each other
- Duals are not inverse operations
- Dilation and erosion are dual operations:
\[
\begin{aligned}
& (A \oplus B)^{c}=A^{c} \ominus \breve{B} \\
& (A \ominus B)^{c}=A^{c} \oplus \breve{B}
\end{aligned}
\]
where \(\breve{B}\) denotes the reflection of \(B\)
- Intuition: dilating the foreground is the same as eroding the background-the structuring just element flips

\section*{Example Application: Finding Boundary Pixels}
- Can find all of the boundary pixels by dilating the object and subtracting the original:
\[
\text { Bound }_{\mathrm{ext}}(A)=(A \oplus B)-A
\]
where \(B\) is a \(3 \times 3\) structuring element containing all 1 s
- Or by eroding the original and subtracting that from the original:
\[
\text { Bound }_{\mathrm{int}}(A)=A-(A \ominus B)
\]

\section*{Example Application: Finding Boundary Pixels}

\section*{Hit-and-Miss}
- Hit-and-miss operators find target pixel configurations:
\[
A \otimes(J, K)=(A \ominus J) \cap\left(A^{c} \ominus K\right)
\]
- \(J\) is the target that must be "hit" (foreground)
- \(K\) is the target that must be "missed" (background)
- Example:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 0 & 0 & 0 & 1 & 1 & \multirow{3}{*}{\(\rightarrow\)} & x & 0 & 0 & \\
\hline 1 & 1 & 0 & 0 & 0 & 1 & & 1 & 1 & 0 & \\
\hline 0 & 1 & 0 & 0 & 0 & 0 & & x & 1 & X & \\
\hline \multicolumn{3}{|c|}{\(J\)} & \multicolumn{3}{|c|}{K} & \multicolumn{5}{|r|}{Effective Targe} \\
\hline
\end{tabular}

\section*{Opening}
- An opening operation is an erosion followed by a dilation:
\[
A \circ B=(A \ominus B) \oplus B
\]
- Used to remove small objects, protrusions, connections

abcd
FIGURE 9.8 (a) Structuring element \(B\) "rolling" along the inner boundary of \(A\) (the dot indicates the origin of \(\boldsymbol{B}\) ). (c) The heavy line is the outer boundary of the opening. (d) Complete opening (shaded).

\section*{Closing}
- A closing operation is a dilation followed by an erosion:
\[
A \bullet B=(A \oplus B) \ominus B
\]
- Used to remove small holes, gaps, etc.

a b c
FIGURE 9.9 (a) Structuring element \(B\) "rolling" on the outer boundary of set \(A\). (b) Heavy line is the outer boundary of the closing. (c) Complete closing (shaded).

\section*{Duality of Opening and Closing}
- Opening and closing are also duals:
\[
(A \circ B)^{c}=A^{c} \bullet \breve{B}
\]
- Intuition: opening to remove small foreground objects is the same as closing small holes in the background

\section*{Example: Opening and Closing for Noise Removal}

- An operation is idempotent if applying it once is as good as applying it many times
- Opening and closing are idempotent
\[
\begin{aligned}
& (A \circ B) \circ B=A \circ B \\
& (A \bullet B) \bullet B=A \bullet B
\end{aligned}
\]```

