Mathematical Morphology: Binary Morphology

CS 650: Computer Vision

Mathematical Morphology

- The analysis of signals and images based on shape (Morphology = “study of shape”)
- Uses a set-theoretic approach to modify shapes based on local operators
- Many operations are similar to convolution but use set operations
- Useful for
 - enhancing structural properties
 - segmentation
 - quantitative description

Set Operations on Binary Images

- A the image (“on” pixels)
- A^c the compliment of the image (inverse)
- $A \cup B$ the union of images A and B
- $A \cap B$ the intersection of images A and B
- $A - B = A \cap B^c$ the difference between A and B
 (the pixels in A that aren’t in B)
- $\#A$ the cardinality of A (area of the object(s))

Translation

- The image A translated by movement vector t is $A_t = \{c \mid c = a + t$ for some $a \in A\}$
- Literally, pick up each pixel in A and move it by the movement vector t

Dilation

- Everywhere the structuring element B overlaps the shape:
 $A \oplus B = \{c \mid c = a + b$ for some $a \in A$ and $b \in B\}$
- Unioned copies of the shifted image:
 $A \oplus B = \bigcup_{t \in B} A_t$
- Unioned copies of the shifted B:
 $A \oplus B = \bigcup_{t \in A} B_t$
Dilation

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company’s software may recognize a date using “00” as 1900 rather than the year 2000.

![Dilation Diagram]

Properties of Dilation

▶ Commutative:
\[A \oplus B = B \oplus A \]

▶ Associative:
\[(A \oplus B) \oplus C = A \oplus (B \oplus C) \]

Erosion

▶ All the positions where the structuring element B fits entirely inside the shape:
\[A \ominus B = \{ x | x + b \in A \text{ for every } b \in B \} \]

▶ Intersected copies of the shifted image
\[A \ominus B = \bigcap_{t \in B} A - t \]

![Erosion Diagram]

Properties of Erosion

▶ Not commutative:
\[A \ominus B \neq B \ominus A \]

▶ Not associative:
\[(A \ominus B) \ominus C \neq A \ominus (B \ominus C) \]
Duality of Erosion and Dilation

- **Dual** operations are ones that can be defined in terms of each other
- Duals are **not** inverse operations
- Dilation and erosion are dual operations:
 \[
 (A \ominus B)^c = A^c \ominus \tilde{B} \\
 (A \oplus B)^c = A^c \oplus \tilde{B}
 \]
 where \tilde{B} denotes the reflection of B
- Intuition: dilating the foreground is the same as eroding the background—the structuring just element flips

Example Application: Finding Boundary Pixels

- Can find all of the boundary pixels by dilating the object and subtracting the original:
 \[
 \text{Bound}_{\text{ext}}(A) = (A \oplus B) - A
 \]
 where B is a 3×3 structuring element containing all 1s
- Or by eroding the original and subtracting that from the original:
 \[
 \text{Bound}_{\text{int}}(A) = A - (A \ominus B)
 \]

Hit-and-Miss

- Hit-and-miss operators find target pixel configurations:
 \[
 A \otimes (J, K) = (A \ominus J) \cap (A^c \ominus K)
 \]
 - J is the target that must be “hit” (foreground)
 - K is the target that must be “missed” (background)
- Example:

 $$
 \begin{array}{cccc}
 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 0 \\
 1 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 \end{array}
 \rightarrow
 \begin{array}{cccc}
 x & 0 & 0 & 0 \\
 1 & 1 & 0 & x \\
 x & 1 & x & 0 \\
 \end{array}
 $$

Opening and Closing

- An **opening** operation is an erosion followed by a dilation:
 \[
 A \circ B = (A \ominus B) \oplus B
 \]
- Used to remove small objects, protrusions, connections

- A **closing** operation is a dilation followed by an erosion:
 \[
 A \bullet B = (A \oplus B) \ominus B
 \]
- Used to remove small holes, gaps, etc.
Duality of Opening and Closing

- Opening and closing are also duals:
 \[(A \circ B)^c = A^c \bullet \bar{B}\]

- Intuition: opening to remove small foreground objects is the same as closing small holes in the background

Example: Opening and Closing for Noise Removal

Idempotence of Opening and Closing

- An operation is *idempotent* if applying it once is as good as applying it many times

 Opening and closing are idempotent

\[(A \circ B) \circ B = A \circ B\]

\[(A \bullet B) \bullet B = A \bullet B\]