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Motion

Eppur si muove. !

Galileo

This chapter concerns the analysis of the visual motion observed in time-varying image se-
quences.

Chapter Overview

Section 8.1 presents the basic concepts, importance and problems of visual motion.

Section 8.2 introduces the notions of motion field and motion parallax, and their fundamental
equations.

Section 8.3 discusses the image brightness constancy equation and the optical flow; the approxi-
mation of the motion field which can be computed from the changing image brightness pattern.

Section 8.4 presents methods for estimating the motion field, divided in differential and feature-
matching/tracking methods.

Section 8.5 deals with the reconstruction of 3-D motion and structure.
Section 8.6 discusses motion-based segmentation based on change detection.

What You Need to Know to Understand this Chapter

Working knowledge of Chapters 2 and 7.

Eigenvalues and eigenvectors of a matrix.

Least squares and SVD (Appendix, section A.6).
* The basics of Kalman filtering (Appendix, section A.8).

' And yet it is moving.
177
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178 Chapter 8 Motion

8.1 Introduction

Until now, we have studied visual computations on single images, or two images ac-
quired simultaneously. In this chapter, we broaden our perspective and focus on the
processing of images over time. More precisely, we are interested in the visual informa-
tion that can be extracted from the spatial and temporal changes occurring in an image
sequence.

Definition: Image Sequence

An image sequence is a series of N images. or frames. acquired at discrete time instants 7, =
fo + kAr. where At is a fixed time interval,and k =0, 1. ... N —1.

% Inorder to acquire an image sequence, you need a frame grabber capable of storing frames
at a fast rate. Typical rates are the so called frame rate and field rate, corresponding to a time
interval At of 1/24sec and 1/30sec respectively. If you are allowed to choose a different time

to guarantee that the discrete seéquence is arepresentative sampling of the continuous image
evolving over time; as a rule of thumb. this means that the apparent displacements over the
image plane between frames should be at most a few pixels.

Assuming the illumination conditions do not vary, image changes are caused by a

8.1.1 The Importance of Visual Motion

The temporal dimension in visual processing is important primarily for two reasons.
First, the apparent motion of objects onto the image plane is a strong visual cue for
understanding structure and 3-D motion. Second, biological visual systems use visual
motion to infer properties of the 3-D world with little a priori knowledge of it. Two
simple examples may be useful to illustrate these points.

Example 1: Random Dot Sequences. Consider an image of random dots, gener-
ated by assigning to each pixel a random grey level. Consider a second image obtained
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Figure 8.1 A sequence of two random dot images: a square has been
displaced between the two frames.

visual system bases its judgement on the only information available in the sequence:;
. . - . . 7 )
that is, the displacement of the square in the two images.-

Example 2: Computing Time-to-Impact. Visual motion allows us to compute
useful properties of the observed 3-D world with very little knowledge about it. Con-
sider a planar version of the usual pinhole camera model. and a vertical bar perpendic-
ular to the optical axis, travelling towards the camera with constant velocity as shown in
Figure 8.2. We want to prove a simple but very important fact: It is possible to compute
the time, t, taken by the bar to reach the camera only from image information; that is.
without knowing either the real size of the bar or its velocity in 3-D space.’

Asshown in Figure 8.2, we denote with L the real size of the bar. with V its constant
velocity, and with f the focal length of the camera. The origin of the reference frame is
the projection center. If the position of the bar on the optical axis is D(0) = Dy at time
t = 0, its position at a later time ¢ will be D =Dy — Vr. Note that L. V, f, Dy, and the
choice of the time origin are all unknown, but that r can be written as

T=—. 8.1
= (8.1)
From Figure 8.2, we see that /(z), the apparent size of the bar at time r on the image
plane, is given by

L

: Incidentally, you can look at the two images of Figure 8.1 as a random-dot Stereogram 1o perceive a square
floating in the background. Stand a diskette (or a sheet of paper of the same size) between the two images
and touch your nose against the diskette, so that each eye can see only one image. Focus your eyes behind
the page. After a while, the two images should fuse and produce the impression of a square floating against
the background.

3 Inthe biologically-oriented community of computer vision.  is called. rather pessimistically, time-to-collision
or even lime-to-crash!
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Figure 8.2 How long before the bar reaches the camera?

If we now compute the time derivative of I(1r),

i dl(r) L dD LV
!(r): =

a - I = D2’

take the ratio between [(t) and !'(¢), and use (8.1). we obtain
—— (8.2)

This is the equation we were after: since both the apparent size of the bar, /(¢), and its
time derivative, //(r), are measured from the images, (8.2) allows us to compute t in the
absence of any 3-D information, like the size of the bar and its velocity.

8.1.2 The Problems of Motion Analysis

It is now time to state the main problems of motion analysis. The analogies with stereo
suggest to begin by dividing the motion problem into two subproblems.

Two Subproblems of Motion

Correspondence: Which elements of a frame correspond to which elements of the next frame of
the sequence?

Reconstruction: Given a number of corresponding elements, and possibly knowledge of the
camera’s intrinsic parameters, what can we say about the 3-D motion and structure of the observed

Main Differences between Motion and Stereo

-

Reconstruction: Unlike stereo, in motion the relative 3-D displacement between the viewing
camera and the scene is not necessarily caused by a single 3-D rigid transformation.
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Figure 8.3 Three frames from a long image sequence (left to right and top to bottom) and the
optical flow computed from the sequence, showing that the plant in the foreground is moving
towards the camera. and the soft toys away from it.

Regarding correspondence, the fact that motion sequences make many, closely
sampled frames available for analysis is an advantage over the stereo case for at least
two reasons. First, feature-based approaches can be made more effective by tracking
techniques, which exploit the past history of the features’ motion to predict disparities
in the next frame. Second, due to the generally small spatial and temporal differences
between consecutive frames, the correspondence problem can also be cast as the prob-
lem of estimating the apparent motion of the image brightness pattern, usually called
optical flow (see Figure 8.3).

e
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We shall use two strategies for solving the correspondence problem.

Differential methods (section 8.4.1) lead to dense measures; that is, computed at each
image pixel. They use estimates of time derivatives, and require therefore image
sequences sampled closely.

Matching methods (section 8.4.2) lead to sparse measures: that is, computed only at a
subset of image points. We shall place emphasis on Kalman filtering as a technique
for matching and tracking efficiently sparse image features over time.

Unlike correspondence. and perhaps not surprisingly, reconstruction is more diffi-
cult in motion than in stereo. Even in the presence of only one 3-D motion between the
viewing camera and the scene, frame-by-frame recovery of motion and structure turns
out to be more sensitive to noise. The reason is that the baseline between consecutive
frames, regarded as a stereo pair, is very small (see Chapter 7). 3-D motion and struc-
ture estimation from both sparse and dense estimates of the image motion is discussed
in sections 8.5.1 and 8.5.2. respectively.

This chapter discusses and motivates methods for solving correspondence and
reconstruction under the following simplifying assumption.

Assumption

There is only one. rigid, relative motion between the camera and the observed scene, and the
illumination conditions do not change.

This assumption of single, rigid motion implies that the 3-D objects observed cannot
move of different motions. This assumption is violated, for example, by sequences of
football matches, motorway traffic or busy streets, but satisfied by, say, the sequence of a
building viewed by a moving observer. The assumption also rules out flexible (nonrigid)
objects: deformable objects like clothes or moving human bodies are excluded.

If the camera is looking at more than one moving object, or you simply cannot

assume a moving camera in a static environment. a third subproblem must be added.

The Third Subproblem of Motion

The segmentation problem: What are the regions of the image plane which correspond to different
moving objects?

The main difficulty here is a chicken and egg problem: should we first solve
the matching problem and then determine the regions corresponding to the different
moving objects, or find the regions first. and then look for correspondences? This
question is addressed in section 8.6 in the hypothesis that the viewing camera is not
moving. Pointers to solutions to this difficult problem in more general cases are given
in the Further Readings.

,¥
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We now begin by establishing some basic facts.

8.2 The Motion Field of Rigid Objects

Definition: Motion Field

The motion field is the 2-D vector field of velocities of the image points, induced by the relative
motion between the viewing camera and the observed scene.

The motion field can be thought of as the projection of the 3-D velocity field
on the image plane (to visualize this vector field. imagine to project the 3-D velocity
vectors on the image). The purpose of this section is to get acquainted with the theory
and geometrical properties of the motion field. We shall work in the camera reference
frame, ignoring the image reference frame and the pixelization.* The issue of camera
calibration will be raised in due time.

This section presents some essential facts of motion fields, compares disparity
representations in motion and stereo, analvzes two special cases of rigid motion leading

to generally useful facts, and introduces the concept of motion parallax.

8.2.1 Basics

Notation. We let P=[X,v, Z] be a 3-D point in the usual camera reference
frame: The projection center is in the origin, the optical axis is the Z axis, and f denotes
the focal length. The image of a scene point, P, is the point p given by

==

P
P=/3. (8.3)

As usual (see Chapter 2), since the third coordinate of p is always equal to f, we write
P=[x,y] instead of p=[x, y, f]7. The relative motion between P and the camera can
be described as

V=-T-wxP, (8.4)
where T is the translational component of the motion,? and w the angular velocity. As
the motion is rigid, T and w are the same for any P. In components, (8.4) reads

Vei=~T, — wyZ + w.Y
Vi=—Ty —~w-X+wZ (8.5)
V.=-T. —w.Y + wy X.

*Remember, this means that we consider the intrinsic parameters known.

3Note that T denotes a velocity vector only in this chapter, not a displacement vector as in the rest of the
book.
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The Basic Equations of the Motion Field. To obtain the relation between the
velocity of P in space and the corresponding velocity of p on the image plane, we take
the time derivative of both sides of (8.3). which gives an important set of equations.

The Basic Equations of the Motion Field

The motion field. v, is given by

f_ZV— V.P (8.6)
V= e 0.
5 73 .
[n components, and using (8.5). (8.6) read
Ix—-T.f - WeXY  wext
by = — —w S Tw-y + - —_
zZ ¥ f .
i (8.7)
I.y —T. f . WXV Wy V-
Uy = ———— 4w, [ — w-x — = 2 i =
4 f f

translation only, the other on rotation only. In particular, the translational components
of the motion field are

Notice that the motion field is the sum of two components, one of which depends on

T _ T.x — I.f
L“. = Z
o] = ——Tz'\. —tef
y Z
and the rotational components are
,
: Wy XV Wy X"~
Uy = —wy f +w.v + — - —
5
Wy XV W V™
W =wof —w.x — == 4 L
: f f

Since the component of the motion field along the optical axis is always equal to 0, we
shall write v = [u,, vy] instead of v = [, vy, 0] . Notice that, in the last two pairs of
equations, the terms depending on the angular velocity, w, and depth, Z, are decoupled.

This discloses an important property of the motion field: separe of the motion field thar
depends on angular velocity does not carry information on depth.

Comparing Dispariry Representations in Stereo and Motion. As we said before,
stereo and motion pose similar computation problems, and one of these is correspon-
dence. Point displacements are represented by disparity maps in stereo, and by motion
fields in motion. An obvious question is, how similar are disparity maps and motion
fields? The key difference is that the motion field is a differential concept, stereo dis-
partty is not. The motion field is based on velocity, and therefore on time derivatives:
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Consecutive frames must be as close as possible to guarantee good discrete approxi-
mations of the continuous time derivatives. [n stereo, there is no such constraint on the
two images, and the disparities can take. in principle. any value.

Stereo Disparity Map and Motion Field

The spatial displacements of corresponding points between the images of a stereo pair (forming
the stereo disparity map) are finite. and, in principle. unconstrained.

The spatial displacements of corresponding points between consecutive frames of a motion
sequence (forming the motion field) are discrete approximations of time-varying derivatives, and
must therefore be suitably small.

The motion field coincides with the stereo disparity map only if spatial and temporal differ-
ences between frames are sufficiently small.

8.2.2 Special Case 1: Pure Translation

We now analyze the case in which the relative motion between the viewing camera and
the scene has no rotational component. The resulting motion field has a peculiar spatial
structure, and its analysis leads to concepts very useful in general.
Since w =0, (8.7) read
Trx~T.f
Uy =
z
Ly—T,f
vy = .
’ &

(8.8)

We first consider the general case in which Z: # 0. Introducing a point py = [x0, o] "
such that

xo= fT./ T.
o= f1,/T,, (8.9)
(8.8) become
Uy = (x — XD)?:

(8.10)

=(y— )—:
U j Vi :
y : -3 Z

Equation (8.10) say that the motion field of a pure translation is radial- It consists of
vectors radiating from a common origin, the point py, which is therefore the vanishing
point of the translation direction. In particular, ifi#3%<0, the vectors point away from
#Po. and py is called the ch_zgg[_gxgan;ionr(l—"igure 8.4 (a)); if ﬁ;}gfthe motion field
vectors point tewardsipg, and py is called the fmpf,em cion (Figure 8.4 (b)). In
addition, the length of v = v(p) is proportional to the distance between p and pg, and
inversely proportional to the depth of the 3-D point P.
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(a)

Figure 8.4 The three types of motion field generated
marks the instantaneous epipole.

(b)

(c)

by translational motion. The filled square

&  Notice that the point py retains its significance and many of its properties even in the
presence of a rotational component of 3-D motion (section 8.5.2).

If 7. vanishes (a rather special case), (8.8) become

T,
U.t:'—f_z;

Ty

Therefore, if T, = 0, all the motion field vectors are parallel (see Figure 8.4 (¢)) and their

lengths are inversely proportional to the depth of the corresponding 3-D points.

|

@ In homogeneous coordinates, there would be no need to distinguish between the two cases [
=0, po is the vanishing point of |
the 3-D line through the center \

: #0and T. = 0: For all possible values of T., including 7.
the direction in 3-D space of the translation vector T, and

of projection and py is parallel to T.

Following is a summary of the main

translational motion.

~

properties of the motion field of a purely

Pure Translation: Properties of the Motion Field

L IfT. 30, the motion field is radial (see
a single point, py, given by (8.8). If y

2. The length of motion field vectors is inversel

also inversely proportional to the distance from p to po.

3. po is the vanishing point of the direction of translation (see (8.10)).

4. pois the intersection of the ray parallel to the translation vector with the image plane.

(8.10)), and all vectors point towards (or away from)
=0, the motion field is parallel.

Yy proportional to the depth Z: if 7. # 0, it is
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8.2.3 Special Case 2: Moving Plane

Planes are common surfaces in man-made objects and environments, so it is useful to
investigate the properties of the motion field of amoving plane. Assume that the camera
is observing a planar surface, . of equation

n'P=4g (8.11)

where n = [nx. Ry, n:]T is the unit vector normal to 7. and 4 the distance between =
and the origin (the center of projection). Let x be moving in space with translational
velocity T and angular velocity w, so that both n and ¢ in (8.11) are functions of time.
By means of (8.3), (8.11) can be rewritten as

ReX +nyv+n.f

f

Z =d. (8.12)
Solving for Z in (8.12), and plugging the resulting expression into (8.7), we have

Ve = —(a1x° + axy+azfx+agfy+ asfz)

fd
: (8.13)
Wy ﬁ(mxy +a2y® +afy + a7 fx + ag f2)
where

aj = -—dw'V -+ T;nx. az = dwx ks T:rz_\..

as = T:n:.——- ]._rﬂ,_r, ag = d(.t): = xn.\'v

as = "dw_v _ Tx":s ag = T;R; == T:‘,-fl_\-,

ay = ‘—dCU;_' === -Tyn,n ag = dw-\' — dyn;.
The (8.13) states, interestingly, that the motion field of a moving planar at

any insiant , is a quadratic polynomial in the coordinates (x, 3. f)-of the image points.
"~ The remarkable symmetry of the time-dependent coefficients aj . ..ag is not co-
incidental. You can easily verify that the a; remain unchanged if d, n, T, and w are

replaced by

d=d
n'=T/|T|
T’ =|T|n

©=w+nxT/d.

;;
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This means that, apart from the special case in which n and T are parallel, the same

motion field can be produced by two different planes undergoing two different 3-D
e 6

motions.

, &  The practical consequence is that it is usually impossible to recover uniquely the 3-D
B structure parameters, n and 4, and motion parameters, T and w, of a planar set of points
from the motion field alone.

You might be tempted to regard this discussion on the motion field of a planar
surface as a mere mathematical curiosity. On the contrary, we can draw at least two
important and general conclusions from it.

1. Since the motion field of a planar surface is described exactly and globally by a
polynomial of second degree (see (8.13)), the motion field of any smooth surface
is likely to be approximated well by a low-order polynomial even over relatively
large regions of the image plane (Exercise 8.1). The useful consequence is that
very simple parametric models enable a quite accurate estimation of the motion
field in rather general circumstances (section 8.4.1 Y.

2. As algorithms recoverying 3-D motion and structure cannot be based on motion
estimates produced by coplanar points, measurements must be made at many
different locations of the image plane in order to minimize the probability of
looking at points that lie on planar or nearly planar surfaces.” We will return to
this point in sections 8.5.1 and 8.5.2.

We conclude this section with a summary of the main properties of the motion
field of a planar surface.

Moving Plane: Properties of Motion Field

1. The motion field of a planar surface is, at any time instant. a quadratic polynomial in the
image coordinates.

2. Due to the special symmetry of the polynomial coefficients, the same motion field can be
produced by two different planar surfaces undergoing different 3-D motions.

8.2.4 Motion Parallax

The decoupling of rotational parameters and depth in the (8.7) is responsible for what
is called motion parallax. Informally, motion parallax refers to the fact that thewrelativeny
motion field of two instantaneously coincident points does not depend on the rotational

®This result should not surprise you. Planar surfaces lack generality: The eight-point algorithm (Chapter 7),
for example, fails to yield a unique solution if the points are all coplanar in 3-D space.

TA “nearly planar” surface is a surface that can be approximated by a plane within a given tolerance, which
is typically proportional to the distance of the surface from the image plane.
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—

(a) (b)

Figure 8.5 Three couples of instantaneously coincident image points and their flow vectors (a):
the difference vectors point towards the instantaneous epipole (b).

\€omponent of motion in 3-D space; this section makes this statement more precise.
Motion parallax will be used in section 8.5.2 to compute structure and motion from
optical flow.

Let two points P=[X,¥,Z]" and P = [X, 7, Z]T be projected into the image
points p and p, respectively. We know that the corresponding motion field vectors can
be written as

T T
vy = vl 4+ v¥
. .
and
Uy =0y + 5%
= o 7T g
Uy =0, +v_v.

If, at some instant r, the points p and p happen to be coincident (Figure 8.5(a)), we have
- T
P=pP=[x.y] .
and the rotational components of the observed motion. (v7, vY) and (3¢, 93), become

-
WeXy — @yx~

Ve =0 =—w,f +wy+ = 7
3 (8.14)
_ @Wyxy @Wyy
v =0y =wy f — wx — 2= 4 X
B2 i f
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Therefore, by taking the difference between v and v. the rotational components cancel
out, and we obtain

l
Ave = UZ' - ﬁ_z- =(T-x — T‘f)(}- — %)

1 1
F =7 :
Ay, = p =V, =(T.v—T, ) (= — —=).
¥ b 1 g b f Z Z
The vector (Avy, Avy) can be thought of as the relative motion field. Other factors being
equal, Av, and Avy increase with the separation in depth between P and P.
Notice that the ratio between Avy and Av, can be written as
Av, ¥ =W

Av, X —Xxg

with [xg, vo] T image coordinates of Po. the vanishing point of the translation direction
(Figure 8.5(b)).% Hence, forall possible rotational motions, the vector (A Ur, AvT) points
in the direction of Po- Consquently, the dot product between the motion field, v, and
the vector [y — yg, —(x — xp)] ', which is perpendicular to p — py, depends neither on
the 3-D structure of the scene nor on the translational component of motion, and can
be written as

w @
V) =Y =) = (x~ x0)vy.

We will make use of this result in section 8.5.2, where we will learn how to compute
motion and structure from dense estimates of the motion field.

= Be aware that the vanishing point of translation, pg. and the point at which v vanishes, call

component only. Somewhat deceptively. the flow field in the neighborhood of q might still
look very much like a focus of expansion or contraction (see Figure 8.3).

And here is the customary summary of the main ideas,

Motion Parallax

The relative motion field of two instantaneously coincident points:

L. does not depend on the rotational component of motion
2. points towards (away from) the point py, the vanishing point of the translation direction

—_—
¥Section 8.2.5 makes it clear that this point can be regarded as an instantaneous epipole.
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Figure 8.6 The point py as instantaneous
epipole.

8.2.5 The Instantaneous Epipole

We close this introductory section with an important remark. The point Po. being
the intersection of the image plane with the direction of translation of the center of
projection, can be regarded as the instantaneous epipole between pairs of consecutive
frames in the sequence (Figure 8.6). The main consequence of this property is that
it is possible to locate py without prior knowledge of the camera intrinsic parameters
(section 8.3.2).

&  Notice that. as in the case of stereo, knowing the epipole’s location in image coordinates
is not equivalent to knowing the direction of translation (the baseline vector for stereo).
The relation between epipole location and translation direction is specified by (8.9), which
is written in the camera (not image) frame, and contains the focal length f. Therefore,
the epipole’s location gives the direction of translation only if the intrinsic parameters of the
viewing camera are known.

8.3 The Notion of Optical Flow

We now move to the problem of estimating the motion field from tmage sequences, that
is, from the spatial and temporal variations of the image brightness. To do this, we
must model the link between brightness variations and motion field, and arrive at a
fundamental equation of motion analysis, the image brightness constancy equation. We
want also to analyze the power and validity of this equation, that is, understand how
much and how well it can help us to estimate the motion field. For simplicity, we will
assume that the image brightness is continuous and di fferentiable as many times as needed
in both the spatial and temporal domain.

s
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8.3.1 The Image Brightness Constancy Equation

[t is common experience that, under most circumstances, the apparent brightness of
moving objects remains constant. We have seen in Chapter 2 that the image irradiance
is proportional to the scene radiance in the direction of the optical axis of the camera;
if we assume that the proportionality factor is the same across the entire image plane,
the constancy of the apparent brightness of the observed scene can be written as the
stationarity of the image brightness E over time:
dE ;
o 0. (8.15)
&  In (8.15), the image brightness, £. should be regarded as a function of both the spatial
coordinates of the image plane, x and v, and of time, that is, £ = E(x, y, 1). Since x and
y are in turn functions of ¢, the roral derivative in (8.15) should not be confused with the
partial derivative 3 E/dr.

Via the chain rule of differentiation. the total temporal derivative reads

dE(x(t),y(r),t) @dEdx dEdy JE
= ot — =t —— =) 8.16
dr dx dr ' 3y dr | ar (516)
The partial spatial derivatives of the image brightness are simply the components of
the spatial image gradient, VE, and the temporal derivatives, dx/dt and dy/dr, the
components of the motion field, v. Using these facts, we can rewrite (8.16) as the image
brightness constancy equation.

The Image Brightness Constancy Equation
Given the image brightness, £ = E(x. ¥, 1), and the motion field, v,
(VE) v+ E, =0. : (8.17)

The subscript ¢ denotes partial differentiation with respect to time.

We shall now discuss the relevance and applicability of this equation for the
estimation of the motion field.

8.3.2 The Aperture Problem

How much of the motion field can be determined through (8.17)? Only its component
in the direction of the spatial image gradient,’ v,. We can see this analytically by isolating
the measurable quantities in (8.17):

E, _(VE)TV
IVEI —~ |VE]

=it (8.18)

° This component is sometimes called the normal component, because the spatial image gradient is normal to
the spatial direction along which image intensity remains constant.
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(a) (b)

Figure 8.7 The aperture problem: the black and grey lines show two positions of
the same image line in two consecutive frames. The image velocity perceived in (a)
through the small aperture, v,, is only the component parallel to the image gradient of
the true image velocity, v, revealed in (b).

The Aperture Problem

The component of the motion field in the direction orthogonal to the spatial image gradient is
not constrained by the image brightness constancy equation.

The aperture problem can be visualized as follows. Imagine to observe a thin, black
rectangle moving against a white background through a small aperture. “Small” means
that the corners of the rectangle are not visible through the aperture (Figure 8.7(a));
the small aperture simulates the narrow support of a differential method. Clearly, there
are many, actually infinite, motions of the rectangle compatible with what you see
through the aperture (Figure 8.7(b)); the visual information available is only sufficient
to determine the velocity in the direction orthogonal to the visible side of the rectangle;
the velocity in the parallel direction cannot be estimated.

%  Notice that the parallel between (8.17) and Figure 8.7 is not perfect. Equation (8.17) relates
the image gradient and the motion field at the same image point, thereby establishing
a constraint on an infinitely small spatial support; instead, Figure 8.7 describes a state
of affairs over a small but finite spatial region. This immediately suggests that a possible
strategy for solving the aperture problem is to look at the spatial and temporal variations
of the image brightness over a neighborhood of each point. 10

' Incidentally, this strategy appears to be adopted by the visual system of primates.
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8.3.3 The Validity of the Constancy Equation: Optical Flow

How well does (8.17) estimate the normal component of the motion field? To answer
this question, we can look at the difference, Av, between the true value and the one
estimated by the equation. To do this, we must introduce a model of image formation.
accounting for the reflectance of the surfaces and the illumination of the scene.

For the purposes of this discussion. we restrict ourselves to a Lambertian surface.
S, illuminated by a pointwise light source infinitely far away from the camera (Chap-
ter 2). Therefore, ignoring photometric distorsion, we can write the image brightness,
E, as

E = pl'n, (8.19)

where p is the surface albedo, I identifies the direction and intensity of illumination.
and n is the unit normal to § at P.

Let us now compute the total temporal derivative of both sides of (8.19). The only
quantity that depends on time on the right hand side is the normal to the surface. If
the surface is moving relative to the camera with translational velocity T and angular
velocity w, the orientation of the normal vector n will change according to

dn

dt
where x indicates vector product. Therefore, taking the total temporal derivative of
both sides of (8.19), and using (8.17) and (8.20), we have

R T (8.20)

VE w4 E== o (@ m): (8.21)
We can obtain the desired expression for Av from (8.18) and (8.21):

ITew x n|

Av| =
Avi= =S

We conclude that, even under the simplifying assumption of Lambertian reflectance,
the image brightness constancy equation yields the true normal component of the
motion field (that is, [Av| is identically O for every possible surface) only for (a) purely
translational motion, or (b) for any rigid motion such that the illumination direction is
parallel to the angular velocity.

Other factors being equal, the difference Au decreases as the magnitude of the
spatial gradient increases: this suggests that points with high spatial image gradient are
the locations at which the motion field can be best estimated by the image brightness
constancy equation.

In general, |Av]| is unlikely to be identically zero, and the apparent motion of the
image brightness is almost always different from the motion field. For this reason, to
avoid confusion, we call the apparent motion an oprical flow, and refer to techniques
estimating the motion field from the image brightness constancy equation as optical flow
techniques. Here is a summary of similarities and differences between motion field and
optical flow.
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Definition: Optical Flow

The optical flow is a vector field subject to the constraint (8.17). and loosely defined as the apparent
motion of the image brightness pattern.

Optical Flow and Motion Field

The optical flow is the approximation of the motion field which can be computed from time-varying
image sequences. Under the simplifying assumptions of

* Lambertian surfaces
® pointwise light source at infinity
® no photometric distortion

the error of this approximation is

® small at points with high spatial gradient

® exactly zero only for translational motion or for any rigid motion such that the illumination
direction is parallel to the angular velocity

We are now ready to learn algorithms estimating the motion field.

8.4 Estimating the Motion Field

* They are not iterative: therefore, they are genuinely local, and less biased than
iterative methods by possible discontinuities of the motion field.

* They do not involve derivatives of order higher than the first; therefore, they are
less sensitive to noise than methods requiring higher-order derivatives.

-
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We describe a differential technique that gives good results. The basic assumption
is that the motion field is well approximated by a constant vector field, v, within any
small region of the image plane.!'!

Assumptions

L. The image brightness constancy equation yields a good approximation of the normal
component of the motion field.

2. The motion field is well approximated by a consrant vector field within any small patch of
the image plane.

An Optical Flow Algorithm. Given Assumption 1, for each point p; within a
small. N x N patch, Q. we can write

(VE)'v+E, =0

where the spatial and temporal derivatives of the image brightness are computed at
PL,P2...Py2-

& A typical size of the “small patch” is 5 x 5.

Therefore, the optical flow can be estimated within Q as the constant vector, v,
that minimizes the functional

UUEDY [(VE)'_V + E,.T.
picQ
The solution to this least squares problem can be found by solving the linear system
"ATAv=ATb. . (8.22)
The i-th row of the N2 x 2 matrix A is the spatial image gradient evaluated at point p;:

VE(p1) 7
VE(pz)

- VE(PN:-:N) =

and b is the N*-dimensional vector of the partial temporal derivatives of the image
brightness, evaluated at py, . . . P2, after a sign change:

b=—[E:/(p1).....E(pnxn)] . (8.24)

' Notice that this is in agreement with the first conclusion of section 8.2.3 (motion field of moving planes)
regarding the approximation of smooth motion fields.

D
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The least squares solution of the overconstrained system (8.22) can be obtained as!2
v=(ATA)"'ATb. (8.25)

v is the optical flow (the estimate of the motion field) at the center of patch Q: repeating
this procedure for all iImage points, we obtain a dense optical flow. We summarize the
algorithm as follows:

Algorithm CONSTANT_FLOW

The input is a time-varying sequence of » images. £, E5, ... E,. Let Q be a square region of
N x N pixels (typically. N = 3),

L. Filter each image of the sequence with a Gaussian filter of standard deviation equal to o,
(typically o, = 1.5 pixels) along each spatial dimension.

2. Filter each image of the sequence along the temporal dimension with a Gaussian filter of
standard deviation o, (typically o, = 1.5 frames). If 2k + 1 is the size of the temporal filter,
leave out the first and last & images.

3. For each pixel of each image of the sequence:

(a) compute the matrix A and the vector b using (8.23) and (8.24)
(b) compute the optical flow using (8.25)

The output is the optical flow computed in the last step.

%  The purpose of spatial filtering is to attenuate noise in the estimation of the spatial image
gradient; temporal filtering prevents aliasing in the time domain. For the implementation
of the temporal filtering, imagine to stack the images one on top of the other, and filter
sequences of pixels having the same coordinates, Note that the size of the temporal filter
1s linked to the maximum speed that can be “measured” by the algorithm.

An Improved Optical Flow Algorithm. We can improve CONSTANT_FLOW
by observing that the error made by approximating the motion field at p with its estimate
at the center of a patch increases with the distance of p from the center itself. This
suggests a weighted least-square algorithm. in which the points close to the center of
the patch are given more weight than those at the periphery. If W is the weight matrix,
the solution, v, is given by

Vu=(ATW2A) "1 AT w2h.

Concluding Remarks on Optical Flow Methods. Tt is instructive to examine the
image locations at which CONSTANT_FLOW fails. As we have seen in Chapter 4, the
2 x 2 matrix

wan DELE i

> EE, Y E? (8:26)
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computed over an image region Q, is singular if and only if all the spatial gradients in
Q are null or parallel. In this case the aperture problem cannot be solved, and the only
possibility is to pick the solution of minimum norm. that is, the normal flow. The fact
that we have already met the matrix AT A in Chapter 4 is not a coincidence: the next
section tells you why.

Notice that CONSTANT_FLOW gives good results because the spatial structure
of the motion field of a rigid motion is well described by a low-degree polynomial in the
image coordinates (as shown in section 8.2.3). For this reason, the assumption of local
constancy of the motion field over small image patches is quite effective.

8.4.2 Feature-based Techniques

The second class of methods for estimating the motion field is formed by so-called
matching techniques, which estimate the motion field at feature points only. The result
is a sparse motion field. We start with a two-frame analysis (finding feature disparities
between consecutive frames), then illustrate how tracking the motion of a feature across
a long image sequence can improve the robustness of frame-to-frame matching.

Two-Frame Methods: Feature Martching. 1f motion analysis is restricted to two
consecutive frames, the same matching methods can be used for stereo and motion. !
This is true for both correlation-based and feature-based methods (Chapter 7). Here we
concentrate on matching feature points. You can easily adapt this method for the stereo
case too.

The point-matching method we describe is reminiscent of the CONSTANT_
FLOW algorithm, and based on the features we met in Chapter 4. There, we looked at
the matrix AT A of (8.26), computed over small, square image regions: the features were
the centers of those regions for which the smallest eigenvalue of AT A was larger than
a threshold. The idea of our matching method is simple: compute the displacement of
such feature points by iterating algorithm CONSTANT_FLOW.

The procedure consists of three steps. First, the uniform displacement of the
square region Q is estimated through CONSTANT_FLOW, and added to the current
displacement estimate (initially set to 0). Second. the patch Q is warped according to
the estimated flow. This means that Q is displaced according to the estimated flow, and
the resulting patch, Q’, is resampled in the pixel grid of frame [>. If the estimated flow
equals (v, v,), the gray value at pixel (i, j) of Q' can be obtained from the gray values
of the pixels of Q close to (i — Vy, J — vx). For our purpose, bilinear interpolation'* is
sufficient. Third, the first and second steps are iterated until a stopping criterion is met.
Here is the usual algorithm box. containing an example of stopping criterion.

'3 But keep in mind the discussion of section 8.2.1 on the differences between stereo and motion disparities,

14 Bilinear interpolation means that the interpolation is linear in each of the four pixels closest to (i — v,, j —
Ue).







