3D Computer Vision
Introduction

Guido Gerig
CS 6320, Spring 2015
gerig@sci.utah.edu

Acknowledgements: some slides from Marc Pollefeys and Prof. Trevor Darrell, trevor@eecs.berkeley.edu
Administrivia

- Classes: M & W, 1.25-2:45
 Room WEB L126
- Instructor: Guido Gerig
 gerig@sci.utah.edu
- TA: Padmashree Teeka
- Prerequisites: CS 6640 ImProc (or equiv.)
- Textbook:
 “Computer Vision: A Modern Approach” by Forsyth & Ponce
- Organization:
 Admin/Grading/Uploads:
 UofU canvas
 Slides, documents and assignments:
 Course Website
Administrivia

• Textbook:
 “Computer Vision: A Modern Approach” by Forsyth & Ponce
 Version 1 Version 2e 2012

• The Version 1 is sufficient for this course, but you can also buy the new updated version.

• Electronic version:
Web-Site

- Linked to canvas CS 6320-001 home page
- Linked to my home page (teaching):

CS6320 3D Computer Vision, Spring 2015

Computing properties of our 3-D world from passive and active sensors

Syllabus, Guido Gerig (home)

Goal and Objectives:

- To introduce the fundamental problems of 3D computer vision.
- To introduce the main concepts and techniques used to solve those.
- To enable participants to implement solutions for reasonably complex problems.
- To enable participants to understand basic methodology that is discussed in the computer vision literature.
TA / SW Tools / Office Hours

- **TA:** Padmashree Teeka

- **HW/SW:** Matlab+ ev. Imaging Toolbox
 CADE lab WEB 130
 http://www.cade.utah.edu/

- **Office Hours TA (MEB 3115) Hours:** tbd

- **Office Hours instructor:** Mo/Wed 3-5pm after class (tbd)
MATLAB

• This course will support MATLAB for practical parts of assignments. C++ or other languages can be used but there will be no support and we need proof that code is fully developed by the student.

• Access via COE CADE computer lab, Matlab licences available. Remote access possible, but very slow.

• Matlab is also installed on the computers in the Knowledge Commons at the Mariott Library on Campus:
 - http://www.lib.utah.edu/services/knowledge-commons/index.php
 - According to this webpage, it is also available to use remotely: http://www.lib.utah.edu/services/labs/software.php

• If students want to purchase their own copy, Matlab for students is $50, or $99 (including 10 toolboxes.), [link](http://www.lib.utah.edu/services/labs/software.php)

• We will **NOT USE Toolboxes** but implement our own code.
Prerequisites

• General Prerequisites:
 – Data structures
 – A good working knowledge of MATLAB programming (or willingness and time to pick it up quickly!)
 – Linear algebra
 – Vector calculus

• Assignments include theoretical paper questions and programming tasks (Matlab or C++).

• **Image Processing CS 6640** (or equivalent).

• Students who do not have background in signal processing / image processing: Eventually possible to follow class, but requires **significant special effort** to learn basic image processing.

• **THIS IS NOT AN IMAGE PROCESSING COURSE BUT FOCUSES ON 3D VISION ASPECTS.**
Grading - Weights

• Assignments (4-5 theory/prog.): 60%
• Final project (incl. design, proposal, demo, presentation, report): 30%
• Class participation (active participation in summaries and discussions): 10%
• Quizzes with discussions to check understanding (scoring part of partic.)
• Final project replaces final exam
• Successful final project required for passing grade
Assignments & Projects

• Assignments: Theoretical and Practical Part: Example
• Strict deadlines: 10% deduction per day late, no more accepted after 3 days.
• Assignments solutions include:
 – Solutions to theoretical parts (can be handwritten and scanned)
 – Detailed report on practical solution (pdf document)
 – Code used to solve practical part
• Important:
 – Be creative with own images and experiments with your code. Try different scenarios and discuss pro’s and con’s.
 – Report needs to include description of what you did, description of results, and critical assessment of results, limitations, etc.
 – Code with image data submitted a separate tar/zip file.
Other Resources

- Cvonline: http://homepages.inf.ed.ac.uk/rbf/CVonline/
- A first point of contact for explanations of different image related concepts and techniques. CVonline currently has about 2000 topics, 1600 of which have content.
- See list of other relevant books in syllabus.
Some Basics

• Instructor and TA do not use email as primary communication tool.

• It will be your responsibility to regularly read the Announcements on canvas.

• We don’t need a laptop for the class, please keep them closed !!!!!

• Please interact, ask questions, clarifications, input to instructor and TA.

• Cell phones, you surely know.
Syllabus

- See separate syllabus (linked to web-site and included on canvas).
- Document
Goal and objectives

• To introduce the fundamental problems of computer vision.

• To introduce the main concepts and techniques used to solve those.

• To enable participants to implement solutions for reasonably complex problems.

• To enable the student to make sense of the literature of computer vision.
CV: What is the problem?

Image Formation: From World to Image
- Camera model (optics & geometry): From points in 3D scene to points on 2D image.
- Photometry: From lights and surfaces in scene to intensity (brightness) and color in image.

Vision: From Image to (Knowledge of the) World
- Reconstruct scene (world model) from images.
- Extract sufficient information for detection/control task.
CV: A Hard Problem

- Under-constrained inverse problem – 3D world from 2D image.
- Images are **noisy** – shadows, reflections, focus, (ego-)motion blur – and noise is hard to model.
- Appearances – shape, size, color – of objects change with pose and lighting conditions.
- Image understanding requires cognitive ability ("AI-complete").
- Robotics & Control: massive data rate, real-time requirements.
What is Computer Vision?

• Automatic understanding of images and video
 – Computing properties of the 3D world from visual data (*measurement*)
 – Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities. (*perception and interpretation*)
Inverse problems: analysis and synthesis.
Related disciplines

- Graphics
- Image processing
- Artificial intelligence
- Machine learning
- Cognitive science
- Algorithms
- Computer vision
Object recognition (in mobile phones)

- This is becoming real:
 - **Lincoln** Microsoft Research
 - **Point & Find**, **Nokia**
 - SnapTell.com (now amazon)
Smart cars

- **Mobileye**
 - Vision systems currently in high-end BMW, GM, Volvo models
 - By 2010: 70% of car manufacturers.
 - Video demo
 - YouTube, TestMovie

Slide content courtesy of Amnon Shashua
Modeling 3D Structure from Pictures or 3D Sensors
Modeling ctd.
Main topics

• Shape (and motion) recovery
 "What is the 3D shape of what I see?"

• Segmentation
 "What belongs together?"

• Tracking
 "Where does something go?"

• Recognition
 "What is it that I see?"
Why study Computer Vision?

- Images and movies are everywhere
- Fast-growing collection of useful applications
 - building representations of the 3D world from pictures
 - automated surveillance (who’s doing what)
 - movie post-processing
 - CAM (computer-aided manufacturing)
 - Robot navigation
 - face finding
- Various deep and attractive scientific mysteries
 - how does object recognition work?
- Greater understanding of human vision
Clothing

- Scan a person, custom-fit clothing
Forensics
3D urban modeling

drive by modeling in Baltimore
Earth viewers (3D modeling)

Image from Microsoft’s **Virtual Earth**
(see also: **Google Earth**
Industrial inspection

- Verify specifications
- Compare measured model with CAD
Scanning industrial sites

as-build 3D model of off-shore oil platform
Vision in space

NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read “Computer Vision on Mars” by Matthies et al.
Robot navigation

ESA project
our task: Calibration + Terrain modelling + Visualization

small tethered rover

pan/tilt stereo head
Robotics

NASA’s Mars Spirit Rover

http://www.robocup.org/
Architecture

Survey
Stability analysis
Plan renovations
Architecture

Survey
Stability analysis
Plan renovations
Cultural heritage

Stanford’s Digital Michelangelo

Digital archive
Art historic studies
IBM’s pieta project
Photometric stereo + structured light

more info:
Archaeology

accuracy ~1/500 from DV video
(i.e. 140kb jpegs 576x720)
Visual Cues:
Stereo and Motion
Disparity map from Stereo

image $I(x,y)$

Disparity map $D(x,y)$

image $I'(x',y')$

$(x',y') = (x+D(x,y), y)$
Dynamic Programming (Ohta and Kanade, 1985)

Optical flow

Where do pixels move?
Optical flow

Where do pixels move?
Results
Active Vision: Structured Light
Active Vision: Structured Light
Binary Coding

Example: 7 binary patterns proposed by Posdamer & Altschuler

Projected over time

Codeword of this pixel: 1010010 → identifies the corresponding pattern stripe
“Cheap and smart” Solution

Example: Bouguet and Perona, ICCV’98
Structured Light Using a Rotating Table
James Clark, 3D CV F2009
Structured Light
Anuja Sharma, Abishek Kumar
Structured Light
Anuja Sharma, Abishek Kumar
Range Sensor Data Processing to get 3D Shapes
Input Data: Depth Maps

Range Image (left) and gray level image (right)

Figure 9: Continuation of the example scene consisting of four objects. (e) and (f) grasping the Scotch tape roller, and (g) and (h) grasping the coffee cup.
3D Shape Cues: Shape from Silhouettes
3D Shape from Silhouettes
3D shape from silhouettes: Two Mirrors and uncalibrated camera

Forbes et al., ICCV2005

Christine Xu, Computer Vision Student Project
3D shape from silhouettes

Build 3D model

Visualize 3D model from arbitrary viewing angles
Example

- Compute visual hull with silhouette images from multiple calibrated cameras
- Compute Silhouette Image
- Volumetric visual hull computation
- Display the result
Shape from Shading
Photometric Stereo
Christopher Bireley

Bandage Dog

Imaging Setup
Preprocessing

- Remove background to isolate dog
- Filter with NL Means
Photometric Stereo
Christopher Bireley

Albedo image
Surface Normals
3D mesh
Results – Lord Buddha Images – Pre-Processed Images
Guozhen Fan and Aman Shah

Original Image
Albedo Map
Surface Normals

Obtained Surfaces from different angles
Object Tracking
Object Tracking: Using Deformable Models in Vision
Object Tracking: Using Deformable Models in Vision: II

Unifying Boundary and Region-based information for Geodesic Active Tracking
Object Tracking III
Computer Vision Systems
Webcam Based Virtual Whiteboard
Jon Bronson James Fishbaugh

- Blackboards came first
- Whiteboards eventually followed
- Virtual Whiteboards are coming

Basic Idea:
- Write on any surface
- Use no ink/chalk
- Store all information to disk
Webcam Based Virtual Whiteboard
Jon Bronson James Fishbaugh
Real-Time 3D Glowstick Detection
Computer Vision Project 2009
Andrei Ostanin

Detecting the 3D position of glowsticks in real-time using two cameras.
Realtime Glowstick Detection
Andrei Ostanin

- Capture the 3D position of glowsticks in real-time using two webcams
- Environment dark enough that glowsticks are easily segmented out
- Prefer speed over correctness
Student Project: Playing Chess, Recognition and Simulation

- Track individual chess pieces
- Maintain state of board
- Graphically represent state changes and state
- D. Allen, D. McLaurin UNC
- Major ideas:
 - 3D from stereo
 - detect and describe changes
 - Use world knowledge (chess)
Calibration, Rendering & Replay

Movie
Goal and objectives

From Snapshots, a 3-D View
NYT, August 21, 2008, Personal Tech

Stuart Goldenberg
Next class: Image Formation
Chapter 1: Cameras

• Please find pdf copies of Chapters 1&2, Forsyth&Ponce, on the website.
• Purchase the course book on your own.

Assignment:

• Read Chapter 1: Cameras, Lenses and Sensors: See Course home page