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Photometric Stereo, Shape
from Shading SfS
F&P Ch 5 (old) Ch 2 (new)

Guido Gerig
CS 6320, Spring 2015

Credits: M. Pollefey UNC CS256, Ohad Ben-Shahar CS BGU, Wolff JUN
(http://www.cs.jhu.edu/~wolff/course600.461/week9.3/index.htm)
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Photometric Stereo
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Depth from Shading?

First step: Surface
Normals from Shading

Second step:
Re-integration of
surface from Normals
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Examples
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http://www.youtube.com/watch?v=sfCQ7f7PMbc&feature=related

|

Simulated voyage over the surface of Neptune's large moon Triton

http://www.youtube.com/watch?v=nwzVrC2GQXE

http://www.youtube.com/watch?v=KiTA6ftyQuY

Original Image
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Shape from Shading
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Inverting the image formation process
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Image formation = “Shading from shape” (and light sources)

Credit: Ohad Ben-Shahar CS BGU
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Shape from Shading
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Authors: Emmanuel Prados and Olivier Faugeras

CVPR'2005, International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA_ June 2005.

a) Synthetic image generated from the classical Mozart's face [Zhang-Tsai-etal'99]; b) reconstructed surface from a) by new algorithm;
c) real image of a face; d)-e) reconstructed surface from c) by new algorithm.
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Photometric Stereo
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e Assume:
— a local shading model

— a set of point sources that are infinitely
distant

— a set of pictures of an object, obtained In
exactly the same camera/object
configuration but using different sources

— A Lambertian object (or the specular
component has been identified and
removed)
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Setting for Photometric Stereo
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Multiple images with different lighting (vs
binocular/geometric stereo)

Camera ‘
1

~
: 1 NI/
5 s @S
. Surface Plane/




Goal: 3D from One View and
multiple Source positions
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Usable Data

Input 1
nput images Mask
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Projection model for surface recovery -
usually called a Monge patch
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Image
Plane

direction
of projection

height
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Lambertian Reflectance Map
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LAMBERTIAN MODEL

E =p<nn>=pCOSHO
Y.

(p,q,'l) ®

1+ pp,_+qq,

COS@ =
\/1+ D +q2\/1+ p°+q,’




REFLECTANCE MAP IS A VIEWER-CENTERED
REPRESENTATION OF REFLECTANCE

(G, T, -1 =

Surface

Orientatior?

A / ;

('fX1 'fy J 1)
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X

IMAGE PLANE




REFLECTANCE MAP IS A VIEWER-CENTERED
REPRESENTATION OF REFLECTANCE

(-fx Ty, 1) = ('p1 -d, 1)

P, d comprise a gradient or gradient space representation for
local surface orientation.

Reflectance map expresses the reflectance of a material directly
In terms of viewer-centered representation of local surface
orientation.
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1face from overhead source

The Reflectance Map — Lambertian su

Reflectance Map (ps
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Reflectance Map
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Shading on Lambertian surface — Overhead point source
1
2 2
VP’ +q+1

I(x,y) = p(N-[0,0,1]) = p = R(p,q)

. -

(X,y,H(x,y)) L N

Credit: Ohad Ben-Shahar CS BGU
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Shading on Lambertian surface — General point source
. -p-L.—q-L +L, P-Pr+q-q.+l1
I=p(N-L)y=p : =p
quzJrqz+1\/sz+ij2+Lz2 ,/p2+q2+1\/pL2+qL2+1
&
AT
(x:-y:H(xay)) N
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L= (_ Pr—q; =1)
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Credit: Ohad Ben-Shahar CS BGU




1
)

'Algi’l,

Reflectance Map
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The Reflectance Map — Lambertian surface from general source position

Py +q-q; +1
R(p.q) = ? P .f)L q Q; :
\/p‘+q‘+1\/pL +gy; +1

(5]
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Gradient point of maximum brightness
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Reflectance Map (General)
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Figure 10-13. The reflectance map is a plot of brightness as a function of
surface orientation. Here it is shown as a contour map in gradient space. In the
case of a Lambertian surface under point-source illumination, the contours turn
out to be nested conic sections. The maximum of R(p,q) occurs at the point
(p,q) = (ps,qs), found inside the nested conic sections, while R(p,q) = 0 all
along the line on the left side of the contour map.
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Reflectance Map
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oz
there are multiple (p,q) s
combinations (= surface oz
orientations). = \\

Figure 10-13. The reflectance map is a plot of brightness as a function of

= Use mu Itl ple |mag es Wlth surface orientation. Here it is shown as a contour map in gradient space. In the

case of a Lambertian surface under point-source illumination, the contours turn

d|f‘fe rent ||ght source out to be nested conic sections. The maximum of R(p,q) occurs at the point

; . (p,q) = (ps,4s), found inside the nested conic sections, while R(p,q) = 0 all
directions. along the line on the left side of the contour map.
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Multiple Images = Multiple
Maps
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Can isolate p, g as contour intersection

Figure 10-21. In the case of a Lambertian surface illuminated successively by
two different point sources, there are at most two surface orientations that pro-
duce a particular pair of brightness values. These are found at the intersection
of the corresponding contours in two superimposed reflectance maps.




Example: Two Views

Photometric Stereo

[(x,y)=R(p.q)
]2 (x.ay) — RZ (pa Q)

-5

L L
=23 =& =15 =1 =5 [ a5 ] 15 £ 25 ¥

Still not unique for certain intensity pairs.



Constant Albedo

I, =pS, N

Photometric Stereo

Solve linear equation system
to calculate N.
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Varying Albedo
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Solution Forsyth & e QOut of shadow:
Ponce:
I(z,y) = kB(z)

For each point source, we = kB(x,y)

know the source vector (by ~(Bp(z le z,y) - @
assumption). We assume we B v
know the scaling constant of = g(:r:, y) - Vi

the linear camera (k). Fold
the normal (N) and the
reflectance (p(Xx,y)) into one _
vector g, and the scaling = In shadow:
constant and source vector I (X, Y) =0
into another V;.

where g(z,y) = p(z,y)N(x,y) and V| = kS, where k is the constant connecting
the camera response to the input radiance.
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Multiple Images:
Linear Least Sguares Approach

Combine albedo and normal
e Separate lighting parameters
e More than 3 images => overdetermined system
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i(z,y) = {[1(z,y), L(2,y), ..., In(z,y)}

i(z,y) = Vg(z,y) .
g is obtained by solving this linear system: g_ (X,y)ZV_ll(X,y)

e How to calculate albedo p and N?
g(x,y) = p(x, yIN(x,y)

~> N==. p(xy) = gl
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Example LLS Input

Problem: Some regions in some 1images are in
the shadow (no image intensity).
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—— gor cach point source, ® Out of shadow:
know the source
. (X,¥)=kB(X,

tor (by assumption). (%) (%.y)
> assume we know the = Ko(X, y)(N (X,y)®S j)
ling constant of the =g(x,y)eV,
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Matrix Trick for Complete
Shadows

e Matrix from Image Vector:

Liz,y) ... 0 0
T(x,y) = ':] L{xz,y) ... 0

0 0 con In(z,y)

gy
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e Multiply LHS and RHS with diag matrix
It =1Vg(z,y)
(1200y)) (1,(x,y) 0 ) o v

| ; 0 1, (X, . . i
2<x,y>J _{ (x.y) : J[v Jg(x,y)
12(x,Y) 0 0 Lol T
| | e

Unknown
Known Known Known

= Relevant elements of the left vector and the matrix
are zero at points that are in shadow.
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Obtaining Normal and Albedo
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Given sufficient sources, we can solve the
previous equation (most likely need a least
squares solution) for g(x, vy).

R T———

Recall that N(X, y) Is the unit normal.

This means that p(Xx,y) is the magnitude of
a(x, y).
This yields a check

— If the magnitude of g(Xx, y) is greater than 1,
there’s a problem.

And N(X, y) = g(X, y) / p(X,y).
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Example LLS Input
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Example LLS Result
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e Reflectance / albedo:
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Shape as surface with depth and normal
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Recovering a surface from
normals - 1
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ecall the surface is ® If we write the known
ritten as vector g as

(XY, f(X,y)) (9, (%))

X = X
his means the normal 9%.Y) G, (%.¥)
as the form: g;(X,Y)

(—-f)@® Then we obtain values
)= [ 1 ) _ for the partial derivatives
g L\/fx2 + £+ lJl 1yJ of the surface:

£, (% Y)=(9,(X,¥)/9;(X,y))
f,(%Y)=(9,(X%Y)/9;(X.Y))
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Recovering a surface from
normals - 2
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® Recall that mixed second ® We can now recover the

partials are equal --- this surface height at any
gives us an integrability point by integration
check. We must have: along some path, e.g.

A9, ¥)/9:(x.Y)) _ X

oy f(x,y)= f,(s,y)ds+
a(9,(%,¥)/9;(x,¥)) 0

OX

y
j f,(x,t)dt+c
0
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Height Map from Integration
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How to integrate?



Possible Solutions

Engineering approach: Path integration
(Forsyth & Ponce)

In general: Calculus of Variation
Approaches

Horn: Characteristic Strip Method

Kimmel, Siddiqi, Kimia, Bruckstein: Level
set method

Many others ....



Shape by Integation (Forsyth&Ponce)

The partial derivative gives the change in surface height
with a small step 1n either the x or the y direction

We can get the surface by summing these changes in
height along some path.

" (Of O
flz,y) :}g (5;,&5) -dl + ¢

For example, we can reconstruct the surface at (u,v) by starting at (0,0), sum-
ming the y-derivative along the line x = 0 to the point (0,v), and then summing
the x-derivative along the line y = v to the point (u,v)

v [ 2 o g T
f(m)—'/0 oy [ S

J0



Obtain many images in a fixed view under different illuminants

Simple Algorithm
Forsyth & Ponce

Determine the matrix V from source and camera information

Create arrays for albedo, normal (3 components),
p (measured value of gi) and

q (measured value of ;”)

For each point in the image array

Stack image values into a vector i PrOblem: NOISC and

Construct the diagonal matrix I

Solve TVg=Ti numerical (in)accuracy are
to obtain g for this point .
I added up and result in
albedo at this point is |g| .
normal at this point is distorted surface.
p at this point is i
q at this peint is %%

end

Solution: Choose several
different integration paths,
and build average height

Check: is (22 — 21)? gmall everywhere?
oy i/

top left corner of height map is zero

for each pixel in the left column of height map
height value=previous height value + corresponding gq value II]ElI).
end

for each row
for each element of the row except for leftmost
height value = previous height value + corresponding p value
end
end
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Mathematical Property:
Integrability
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e Smooth, C2 continuous surface:
Z(XY)uy=Z(X,Y)yx

0 B -
L _21y2 s small

= check If (ay ™




SHAPE FROM SHADING
(Calculus of Variations Approach)
* First Attempt: Minimize error 1n agreement

with Image Irradiance Equation over the
region of interest:

|| (10, y) = R(p, a))* dxdy

object




SHAPE FROM SHADING
(Calculus of Variations Approach)

* Better Attempt: Regularize the Minimization of
error 1n agreement with Image Irradiance Equation
over the region of interest:

[[ 2 +p,2 + 0% +0% + 2(1(x.y) — R(p,q))* dxdy

object
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Horn: Characteristic Strip Method
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Small step in X,y — change in depth: Chagt%r 121 ;
. 250-255
bz=pbdxr+qdy PP

New values of p,q at this new point (x,y):

bp=rér+séy and Og=sbéz+1tdy

(1, s, t: second partial derivatives of z(x,y) w.r.t. x and y)

P\ _m (%) H=(" °) Hessian: curv. of surface

OX oy OX oy

I
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Horn: Characteristic Strip Method

Horn,
Irradiance Equation, Reflectance Map: | Chapterll,

pp. 250-255
E(z,y) = R(p, q)

Derivatives (chain rule):

E;=rRy,+sR; and  Ey=sR,+1tR,,

() =5 (%)

Relationship between gradient
in the image and gradient in the
reflectance map




==~ Horn: Characteristic Strip Method
?E Horn,
2 Equations for 3 unknowns (r,s,t): We Chapterl 1,
can’t continue in artibrary direction. pp. 250-255

— Trick: Specially chosen direction

bx _ (R 5¢ Step in.image E(x,y) parallel
-\ Ry to gradient in R
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Horn: Characteristic Strip Method

Horn,
2 Equations for 3 unknowns (r,s,t): We Chapterl1,
can’t continue in artibrary direction. pp. 250-255

— Trick: Specially chosen direction

Step in 1image E(x,y) parallel
to gradient in R

Solvmg for new walues for p,q:
5::
ﬂy

Change in (p,q) can
(6 ) ( ) 6¢. be computed via

6 gradient of 1mage
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Horn: Characteristic Strip Method
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Figure 11-6. Curiously, the step taken in pg-space is parallel to the gradient of
E(z,y), while the step taken in ry-space is parallel to the gradient of R(p, g).
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Horn: Characteristic Strip Method
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dots denote differentiation with respect to &

Solution of differential equations: Curve on surface

X+68X, y+dy, Z+48zZ. p+ép. q+8q
X Y. 2.D.Q
Figure 11-5. The solution of the shape-from-shading problem is determined by

solving five differential equations for z, y, 2, p, and ¢. The result is a characteristic
strip, a curve in space along which surface orientation is known.




i
,/f

L

-

A

F

i e—

Horn: Characteristic Strip Method

Shape recovery via characteristic strips

Shape from Shading via Characteristic Curves
Given
* I{x,v) of an (orthographic) projection of unknown Hyx,v)
* The reflectance map R(p.q)
* Initial data x, v, H(X,¥,), P(X,V,), (X))

Develop a curve solution on Hfx,v) by taking small steps of size 0s
via the system & =R &

§=R
& =(pR, +qR, |
P=15
=1 &
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Horn: Characteristic Strip Method
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Horn,
Chapterll,
pp. 250-255

Figure 11-7. The shape-from-shading method is applied here to the recovery
of the shape of a nose. The first picture shows the (crudely quantized) gray-level
image available Lo the program. The second picture shows the base characteristies
superimposed, while the third shows a contour map eomputed from the elevations
found along the characteristic curves,




Another Solution to SFS:
Kimmel, Siddiqgi, Kimia, Bruckstein
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Proposed Solution: Evolve a curve such that
it tracks the height contours of z(x, y).
[Kimmel et al., IJCV9I5]

Height climbed while progressing a distance
IACT in the direction n in_the (z.y) plane is
given by |AC| = |Az|cot(a).

LAC

Let » denote time in the course of evolution,

i.e., z=1t. Since E = pAcos(a), we have r?AZ\\
AC _ E/pA ol
il cot(a) = : (11) -

V1 (E/pA)2 n

pdf document
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Kimmel, Siddiqgi, Kimia, Bruckstein
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Proposed Solution: Evolve a curve such that
it tracks the height contours of z(x, y).
[Kimmel et al., IJCV9I5]

T he curve evolution equation is:

{ oc E/pA

2 /\2
C(s.0) 8/1 —E</(pA)
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Kimmel, Siddigi, Kimia, Bruckstein
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Examples - Pyramids "
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shaded image equal height contours

numerical solution true surface
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== Kimmel, Siddiqi, Kimia, Bruckstein
( 1 .
E_ | W, Examples - Three Mountains Sl
Sl —_
N, e—
shaded image equal height contours

numerical solution true surface
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Application Area: Geography
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Application: Braille Code
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Abbildung 3

Ciben imks: Messanordnung mit einer Kamera und vier blauen LED-Leuchtfeldern.
Linten finks: Ausschnit einer [altschachtel mit Glindenschrift-IMragung.

Rechts: 30D-Bild nach SF3-Analyse. Damunter ist ein Hohenprofil durch drei Braille-Punkte dargestelit

pdf document
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Mars Rover Heads to a New
Crater NYT Sept 22, 2008
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Limitations
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e Controlled lighting environment
— Specular highlights?
— Partial shadows?
— Complex interrreflections?

e Fixed camera
— Moving camera?
— Multiple cameras?

== Another approach: binocular /
geometric stereo




