
Marching Intersections: An Efficient Approach to
Shape-from-Silhouette

M. Tarini, M. Callieri, C. Montani, C. Rocchini
Istituto di Scienza e Tecnologie dell’Informazione

Consiglio Nazionale delle Ricerche
Via G. Moruzzi 1, Pisa - Italy

tarini@di.unipi.it, {callieri | montani | rocchini}@iei.pi.cnr.it

K. Olsson, T. Persson
Media Technology and Engineering
University of Linköping - Sweden

{karol033 | thepe562}@student.liu.se

Abstract

A new shape-from-silhouette algorithm for the cre-
ation of 3D digital models is presented. The al-
gorithm is based on the use of theMarching In-
tersection (MI) data structure, a volumetric scheme
which allows efficient representation of 3D poly-
hedra and reduces the boolean operations between
them to simple boolean operations on linear inter-
vals. MI supports the definition of a direct shape-
from-silhouette approach: the 3D conoids built
from the silhouettes extracted from the images of
the object are directly intersected to form the result-
ing 3D digital model. Compared to existing meth-
ods, our approach allows high quality models to
be obtained in an efficient way. Examples on syn-
thetic objects together with quantitative and quali-
tative evaluations are given.

1 Introduction

The acquisition of natural looking 3D digital mod-
els from real objects is becoming an inalienable
issue in a variety of 3D multimedia applications
like 3D tele-shopping, virtual studio production,
3D teleconferencing, 3D information systems, 3D
archiving, etc..

Between the many different techniques and tools
for shape acquisition [2], the optical systems, that
are based on the acquisition of images of the ob-
ject to be scanned, are particularly developed and
differentiated. Optical systems can be classified in
two large categories: active systems, in which the

scanning process takes advantage of some kind of
structured light cast over the object, and passive
systems, where the shape information is obtained
merely from the analysis of the images of the ob-
ject.

Shape-from-silhouette is certainly among the
cheapest and more robust passive methods. The
earliest work based on this approach is by Mar-
tin and Aggarwal [7]. The needed instrumen-
tation is limited to a digital camera [12], with
the possible integration of an economical turn-
table (Szeliski [23] uses a spring-loaded microwave
turntable for his shape-from-silhouette scanner).
However, the shape-from-silhouette algorithms are
computationally expensive and generally produce
low quality results.

In this paper we present a new approach to shape-
from-silhouette based on the use of a new data
structure and algorithms: theMarching Intersec-
tions [19]. The new method improves the efficiency
of the shape-from-silhouette solutions and the qual-
ity of the generated models.

2 Shape-from-Silhouette basics and
related work

The basic idea of the shape-from-silhouette algo-
rithms (also known as occluding contours methods)
is very simple. Let us suppose to have multiple
viewsV of the 3D object to be scanned. From each
view v we extract the silhouettesv, which is the
region including the object’s interior pixels and de-
limited by the line(s) separating the object from the

VMV 2002 Erlangen, Germany, November 20–22, 2002

background. Generallysv is not convex and can
present holes due to the geometry of the object. For
eachsv we generate a cone-like volumecv (called
extended silhouette or truncated extended silhouette
in the case we consider the portion of the conoid
limited by a couple of near and far planes chosen
by the user), defined by all the rays starting at the
point of view and passing through all the points of
the silhouette on the image plane. The 3D object
is definitely internal tocv and this is true for every
view v′ ∈ V ; it follows that the object is contained
into the volumecV = ∩v∈V cv. As the size ofV
goes to infinity, and includes all possible views,cV

converges to a shape known as thevisual hull vh of
the original geometry.

The visual hull [5] of an object rarely coincides
with the object itself; in general we can only state
that the following relationship holds:

obj ⊆ vhobj ⊆ chobj (1)

wherevhobj andchobj represent the visual hull and
the convex hull of the objectobj, respectively.

Even though the visual hull, and therefore the
digital model obtained from a limited number of
viewscV , is a superset of the 3D object under exam-
ination, in practical cases and for many applications
the geometric modelcV is considered satisfactory.
The level of satisfaction obviously depends on the
kind of object and on the number and position of the
acquired views. The generated model can be sensi-
bly improved from the appearance point of view by
means of color textures obtained by the original im-
ages [13] or it can be refined from a geometric point
of view by means of further (less robust) techniques
like, for example, shape-from-shading [25], etc.

In this paper we propose an efficient and precise
method to generate the digital modelcV of a real
3D object. We will refer tocV as theinferred visual
hull [21] of the object.

The main problem in the computation of the in-
ferred visual hull is the difficulty in designing a ro-
bust and efficient algorithm for the intersection of
the extended silhouettes; due to these difficulties
the few direct methods proposed present strong us-
age limitations [9]; the other existing methods range
from image based to volume carving approaches.

Matusik et al. [8] propose an image based so-
lution which closely resembles the computation of
the intersection between CSG models by means of
a ray casting algorithm; however, the method does

not generate a geometric model of the inferred vi-
sual hull but it produces new views starting from
multiple reference views.

On the other hand, most of the authors adopted
a volume carving approach: once a volume space
which surely contains the object has been de-
fined [11], a regular grid is adopted; the spatial
resolution of the grid is selected by the user and
generally represents a compromise between mem-
ory needs and execution times with respect to out-
put precision and quality. Volume carving is simple:
if a voxel of the grid is internal to all the cone-like
extended silhouettescv, then it is certainly internal
to the inferred visual hullcV . Each voxel overcom-
ing the membership tests is set to thein value; the
assigned value isout as soon as a test fails. The
surface of the inferred visual hull, that is the sur-
face separatingin andout values in the grid, can
be generated, for example, by means of a Marching
Cubes [6] (MC for short) technique.

Volume carving methods differ for three main as-
pects:

• reduction of the number of membership tests
by means of hierarchical design of the volume
grid. Niem [14, 12] adopts the pillars, a stack
of voxels extending from the first to the last
horizontal slice of the grid, as base informa-
tion unit; Hong and Shneier [4], Potmesil [17],
Noborioet al. [16], Srivastava and Ahuja [22],
and Szeliski [23] use the hierarchical octree
data structure;

• reference space in which the membership test
is carried out, i.e. the 2D space of the images
([14, 12, 4, 17, 23]) or the 3D space of the ex-
tended silhouettes ([16, 22]);

• accuracy of the membership test.

We think that many of the mentioned limitations
are due to the adoption of an inverse approach based
on volume carving.

Independently of thegeometric characteristics of
the used shape-from-silhouettes approach, all the
methods are based on the acquisition of multiple
images and on the extraction of the silhouette of
the object from each of these images. It follows
that important aspects of the chosen method refer to
the image acquisition environment (a single digital
camera [12] which changes position at each shutter
release or a digital camera used in conjunction with
a turntable [3, 11, 14, 23]), to the camera model
adopted, to the camera calibration procedure (the

666

method used to identify the interior and exterior pa-
rameters of the camera like, for example, the focal
distance, position, orientation [1, 24]), and to the
silhouette detection algorithm.

We will not describe these aspects here because
they do not represent the innovative part of the pa-
per and we are mainly interested in demonstrat-
ing the accuracy and the efficiency of our method.
Moreover, the examples reported do not derive from
real objects. We simply skipped the acquisition
phase of the method and we generated the start-
ing images as perspective views of digital models.
The image acquisition environment is supposed to
have a digital camera in fixed position and the ob-
ject standing on a turn-table with known rotation
angles between subsequent images.

3 The Marching Intersections Repre-
sentation Scheme

TheMarching Intersections (MI) [19] is a represen-
tation scheme for 3D surfaces and polyhedra based
on the use of a virtual 3D uniform grid; the reso-
lution of the grid is selected by the user depending
on the application needs. MI is suitable for the re-
sampling of surfaces, the removal of high frequency
details, the topological and geometric simplification
of huge 3D meshes, for the fusion of multiple range
maps acquired by means of 3D range scanners [20].
Moreover, MI turns out to be really efficient for
the applications in which scheme conversions and
boolean operations between free-form complex 3D
polyhedra are required. These last characteristic
represent the basis for the computation of the in-
ferred visual hull as proposed in this paper.

A 2D example of the data structure and the dif-
ferent steps of the conversion algorithm is shown in
Fig. 1. Given the curve to be processed, the user
chooses the reference grid which meets her/his ap-
proximation requirements (top-left); all the inter-
sections of the input curve with the horizontal and
vertical lines of the grid are stored in proper data
structures (conversion step) and these structures ac-
tually represent the MI representation scheme.

Similarly, in the 3D case, the MI structure consist
in three orthogonal set ofrays, parallel to theX, Y
or Z axis. Each ray represent a line of the 3D grid,
and is recorded as a list of itsintersections with the
object represented by the MI structure. Each inter-
section is represented in turn by a scalar value, stor-

ing the position of that interception along the ray. In
the original implementation ofMI that value was
coupled by the “sign” of the observation (if we sup-
pose to walk along the ray, a “+” sign means that
we are entering the object, a “-” means that we are
leaving it). In our case, we deal only with closed
objects (both truncated extended silhouettes and vi-
sual hulls are), so we do not need to store the sign
explicitly: every odd intersection is a “+” and every
even one is a “-”.

Rays along theX, Y or Z direction are arranged
in 2D regular arrays, called theX-rayset, Y-rayset,
and Z-rayset respectively. For efficiency reasons,
we want the origin of all the rays to lay on integer
values. For example, theray at position(i, j) of the
Z-rayset refers to the line parallel to theZ axis and
passing through the point[i, j, 0] (an intersection
valuek in its list would represent the point[i, j, k]).
The surface represented by the MI is scaled accord-
ingly before being immersed in the grid.

3.1 Using the MI structure for shape from
silhouette

For each silhouette, we first get a MI structure rep-
resenting the corresponding truncated conoid. Next
Sections 4 describes how this operation is done.

Intersection of conoids (as MI structures) is then
computed performing an AND operation. In a
MI scheme, boolean operations can be easily per-
formed and they boil down to simple ray-by-ray op-
erations on the linear intervals delimited by couple
of intersections (in ray’s intersections list). Actu-
ally, to save memory, rather than computing several
MI representations and then intersecting them, we
keep a single MI structure, initialized as the conoid
for the first silhouette and updated as we process
each subsequent silhouette.

As in most shape from silhouette approaches, we
consider the object as fixed and the camera as mov-
ing around it (even if in typical physical settings
is the other way round, with a fixed camera and
the object rotating). This way conoids computed
from each silhouette will be expressed as MI struc-
tures sharing the same position and axis orientation,
which is a necessary condition to intersect them.

Finally, once we obtain a MI data structure rep-
resenting the intersection of all conoids, we want to
extract a triangle mesh out of it. This is done by
means of a time efficient technique [19] which tra-

666

Figure 1: TheMI data structure and conversion algorithm in a 2D example: (top-left) the curve to be
processed and the MI data structures collecting the intersections between the input curve and the vertical
(top-center) and horizontal (top-right) lines of the user selected grid; (bottom-left) based on the horizon-
tal and vertical intersections, an MC look up table entry code is located for each not empty (virtual) cell;
(bottom-right) the reconstructed curve. The vertical intersections inside the small dotted box are collected
and then deleted from the algorithm because belonging to the same virtual cell. This removal is a prerequi-
site for the correct operation of the algorithm and it leads to the removal of high frequency details.

Figure 2: Reconstruction of a virtual cell and of the
corresponding triangular patch performed by theMI
method, starting from a signed intersection on an
edge.

verses the “virtual cells” implicitly defined by the
MI structure (see Fig. 2), building a proper MC en-
try for them (assigning in/out status to grid vertices)
that in turn is then used to index a MC’s lookup ta-
ble [10].

Note that the mesh extraction phase is required
only to find mesh connectivity: in fact, since each
intersection along any ray define a 3D point, a MI
data structure already contains all the vertices of
the mesh. This is an advantage over standard MC
approaches, where intersections are found with ap-
proximations, for example by interpolation of voxel
values.

4 Representing a polyhedron in MI

In order to represent a given polyhedron in a MI
structure, we need to perform a conversion step con-
sisting in the detection of all the intersections be-
tween that polyhedron and the reference grid.

In the typical, most general use of MI [19], the
input polyhedron is a general mesh, and its conver-
sion occurs on a per-face basis. Each face is scan
converted three times, once per MI ray-set (X, Y ,
andZ ones), finding and storing all its intersections
with rays in the respective ray-set. Once this is done
for each face, theX Y andZ ray-sets will contain
all the intersections between the mesh and the grid
lines.

At the end of the scan conversion process, in each
ray the intersection list is sorted with respect to the
intersection value. Sorting ensures fast detection of
nearby intersections and fast search for specific in-
tervals. The only geometric operation the intersec-
tions undergo is theremoval: each pair of consec-
utive intersectionsi1 andi2 which lie on the same
cell edge (that is,�ici1� = �ici2�) and have dis-
cordant signs is removed from the structure it be-
longs to. As shown in Fig. 3, this operation corre-
sponds to a resampling which implies the removal
of high frequency details and has the effect to get

666

Figure 3: An example of theRemoval of two dis-
cordant intersections belonging to the same virtual
cell.

1 for each ray-set (X,Y,Z)
2 for each ray (i,j) in it
3 compute the projection on I of ray(i,j)
4 scan-convert the corresponding 2D line:
5 for each intersection k with silhouette found
6 remove perspective distortion, obtaining k’
7 add k’ to ray(i,j) of the current ray-set

Figure 4: A pseudo code for the conversion into
a MI structure of a truncated conoid implicitly de-
fined by a 2D silhouette on an imageI and by a
camera position.

an arrangement of the intersections data structures
in a MC-compliant manner, i.e. in such a way that a
MC-like surface reconstruction algorithm could be
successfully applied.

In our case the input surface is the one of a
truncated extended silhouette. A possible approach
would be to compute a mesh representing the trun-
cated extended silhouette (composed by a front
face, a back face1 and a set of trapezoids connecting
each edge of the former with one of the latter), and
then convert it as above. Still, a shortcut is possible
here.

4.1 Conversion of a truncated extended
silhouette

The MI data structure proves ideal for representing
extended silhouettes. In fact it turns out to be easy
to scan convert an extended silhouette surface di-
rectly into theX, Y andZ ray-set structures.

Having a silhouette, a direct way to compute the
MI structure representing its 3D extension is shown
with the algorithm in Fig. 4. We will now describe
some of its phases in more detail.

Step 3 requires the knowledge of camera inter-
nal parameters and its position (that is, the cam-
era matrix to project 3D points into the image). In

1Apparently the frontal front and back faces are not needed
because they will not contribute to the final surface, but in order to
define the AND operator the volume need to be closed.

Figure 5: Surface of a conoid extracted from a MI
structure obtained with algorithm of Fig. 4.

real world implementations these parameters can be
found with calibration methods such as [1, 24]. At
the end of Step 3 we have the 2D line that is the
projection on the image of the currently processed
ray of the MI.

In Step 4 we scan-convert that line to find its in-
tersections with the 2D silhouette (see Fig. 6). This
is a purely 2D operation: the actual implementation
depends on the structure used for representing the
2D silhouette. In our case, we keep the silhouette
as a 2D array of bits,1 for inside and0 for out-
side, and to find intersections we traverse the line
with a Bresenham-like line scan algorithm. Such a
2D silhouette representation is a very natural one,
and can be obtained from real pictures thresholding
a 2D array of RGB distances computed between a
background picture without the object and one with
the object. Scan converting the line in the proper
direction, we get the positive side effect of produc-
ing intersections already in the right order, so that
we can avoid to sort intercepts, as the MI algorithm
would usually require.

In Step 6 we “unproject” the 2D intersections
found, that is, we compute the positionk′ on the
current (3D) ray of the intersection between that ray
with the conoid, starting from the valuek which is
thex (or y) coordinate, on the image, of the inter-
section between the 2D projected line and the sil-
houette. Basic projective geometry gives:

k′ = −Rays · (Rowx − k · Row4)

Rayd · (Rowx − k · Row4)

WhereRowx andRow4 are the 1st and the 4th
row of the view projection matrix,Rays is starting
point of current ray with one as 4th component, and
Rayd is its direction, with zero as 4th component.

666

Figure 6: One object (top left) and its silhouette
with 2D lines traced over it to find intersections
along rays in theX, Y and Z ray-set of the MI,
respectively. The number of lines has been re-
duced for illustration purposes: in typical cases they
would cover most of the area of the image.

For example, for ray(i, j) of theY ray-set,Rays

would be[i, 0, j, 1] andRayd would be[0, 1, 0, 0].
If k represent they coordinate, thenRowy (the 2nd
row of the view projection matrix) should be used
instead ofRowx.

When z′ is computed, we crop it in[0..N] (N
being the size of the volume represented by the MI
structure). Cropped intersections will nicely form
the front and back boundary of the truncated conoid
(see Fig.5 for an example).

The algorithm of Fig.4 is repeated for each sil-
houette. For the 1st processed silhouette, in Step
7 we build the initial MI structure by storing int
its proper ray the unprojected intersections. For
subsequent silhouettes, Step 7 consists in merging
the (unprojected) intersections found along the line
with the ones currently present in the same(i, j) ray
of the MI structure, by computing the boolean AND
of the two interval sets.

The AND operation between intervals can only
reduce them. So if the current ray is empty (no
intersections along it from previously processed
conoids), then we can skip it in Step 2. For this rea-
son, given a set of silhouettes taken from all around
an object (like when a fixed camera is in front of

Figure 7: Some slices of the conoid visible in Fig. 5,
composed by intervals defined by some of the MI
ray alongX andY . Notice that each slice is the
replication of another one at a different scale. Crop-
ping is applied on the sides of the volume to make
the front and back faces.

a rotating plate), it is convenient to process 2 or-
thogonal views first, so that their intersection will
be small, and more rays will be empty and skipped
to speed up subsequent views.

The removal operation (see Section 4) can be
done on the fly while storing the interceptions dur-
ing Step 7.

The asymptotic complexity of the algorithm in
Fig. 4 iterated over all silhouettes isO(KMN2)
where N is the grid size of the MI data struc-
ture (which therefore represents a volume of
N × N × N), M is the number of pictures, and
K is a measure of the complexity of the silhouette,
recording the average number of operations needed
to find intersection of the silhouette along a given
2D direction. (The value ofK is influenced by
many factors like which data structure is used to
represent the silhouette. In our case, the cost of find-
ing intersections is proportional to the resolution of
the image.)

4.2 Optimization by caching and reusing
scan-converted lines

For each processed silhouette, use of the MI data
structure allows to manage aN3 volume in aN2

time. Still, an important optimization can be done.
The basic observation is that, slicing a conoid

with planes parallel to theXY plane (orY X, or
ZY), the sections present the same 2D shape, up to
a resizing and a translation (see Fig. 7).

In practice this means that, in our algorithm, we

666

Size Hits Time0 Time1
Lady silhouettes

64 12.3% 0.692 0.070
128 44.0% 1.805 0.310
256 80.2% 2.643 1.542
512 94.6% 3.190 8.021

Bunny silhouettes
64 15.3% 1.350 0.091

128 52.8% 3.079 0.511
256 85.1% 4.049 2.604
512 96.0% 4.895 13.189

Figure 8: Some results of our application running
on a normal PC (Athlon 1.4 GHz 512 MB).Size is
the grid size,Hits is the percentage of cache hits,
that is, how many out of the 3Size2 rays composing
the structure were found in the cache described in
Sec. 4.2 and were not scan-converted.Time0 is the
time in seconds required to convert a silhouette into
a MI structure for the conoid, and to intersect it with
the previous MI structure.Time1 is the time in sec-
onds to extract the final mesh from the MI structure.
Total time to compute the models shown in Fig. 9 is
((Time0 × number of silhouettes) +Time1), which
is 340 sec. for the Lady and 577 sec. for the Bunny.

can conveniently cache the results of phases 4 to 6;
in each ray-set of the MI all rays are parallel, so
their 2D projections on the image (found in Steps
3) belong to lines all passing from a single point
(the vanishing point of that set of rays). We use a
cache consisting of a 1D array of lists of computed
intersections found along one of those 2D lines (for
best efficiency, in each entry of the cache we store
intersection valuesafter back projection). Cached
results are reused when a different ray of the same
ray-set is used, if that ray projects over the same 2D
line (up to a fraction of a pixel). In that case we
just displace and scale the all previously computed
intersection in the list. Especially for high values of
N this happens very often. For a256× 256× 256
MI and1000× 1000 images, more than80% of the
times a cached line is used (see Table 8): only just
more than a thousands 2D lines are scan converted
and reused for 64K 3D rays. This approach makes
the system very scalable: as Fig. 8 shows, compu-
tation times tend to grow less than linearly (rather
than cubically or quadratically) with the sizeN of
the processed volume.

As an additional optimization, when a ray is

Figure 9: Examples of reconstruction results: the
Lady, obtained by silhouettes like the one in Fig. 6,
and the familiar Stanford bunny. In both cases
a 256x256x256 MI structure has been carved by
128 (synthetic) 1000x1000 silhouettes images taken
from a (virtual) camera rotating around it (like when
a rotating plate is used). The two meshes are com-
posed by 257K and 451K faces respectively.

skipped in Step 2 because it is already empty, we
can tag the corresponding line in cache as empty.

5 Results and conclusions

Some qualitative and visual results are shown in in
table of Fig. 8 and in Fig. 9.

To conclude, we designed and implemented
a volumetric based visual hull extraction tech-
nique that uses the powerfully compact structure of
Marching Intersection. That proved ideal for the
task. The main benefits are twofold:

• first, efficiency in term of memory space
(quadratic rather than cubic with the adopted
resolution) and computation times (efficient
conversion, intersections and mesh extraction)
gives the possibility both to use a higher vol-
ume resolution, and to merge more extended

666

silhouettes, each at higher resolution.
• secondly, explicit handling of intercept points

(rather than their evaluation by interpolation of
voxel values a-la MC) improves, for a given
volume resolution, the quality of the results by
avoiding part of the grid aliasing.

As a future work direction, it would be interest-
ing to investigate whether and in which way the
MI structure could be useful in the open problem
of finely tuning the camera positions and parame-
ters for a given set of uncalibrated or roughly cal-
ibrated images featuring silhouettes (as in [18]).
That would remove, or greatly reduce, the effect of
this source of error, which we ignored in this paper
(see [15] for an estimation of its magnitude).

Acknowledgements

We acknowledge the financial support of the Euro-
pean Project ViHAP3D (IST-2001-32641)

References
[1] Intel Corporation. Reference manual for the open

source computer vision library. Technical report,
http://www.intel.com/research/mrl/research/opencv/, 2000.

[2] B. Curless and S. Seitz. 3D Photography. InACM Siggraph
’00 Course Notes, Course No. 19, August 24th 2000.

[3] A. W. Fitzgibbon, G. Cross, and A. Zisserman. Automatic
3D model construction for turn-table sequences.Lecture
Notes in Computer Science, 1506:155–170, 1998.

[4] T. H. Hong and M. O. Shneier. Describing a robot’S
workspace using a sequence of views from a moving cam-
era. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 7:721–726, 1985.

[5] A. Laurentini. The visual hull concept for silhouette-based
image understanding.IEEE Trans. on Pattern Analysis and
Machine Intelligence, 16(2):150–162, February 1994.

[6] W. E. Lorensen and H. E. Cline. Marching cubes: A high
resolution 3D surface construction algorithm. InACM Com-
puter Graphics (SIGGRAPH ’87 Proceedings), volume 21,
pages 163–170, 1987.

[7] W. N. Martin and J. K. Aggarwal. Volumetric Descriptions
of Objects From Multiple Views. IEEE Transactions on
Pattern Analysis and Machine Intelligence, PAMI-5(2):150–
158, 1983.

[8] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and
L. McMillan. Image-based visual hulls. In Kurt Akeley, ed-
itor, Siggraph 2000, Computer Graphics Proceedings, pages
369–374. ACM Press / ACM SIGGRAPH, 2000.

[9] Wojciech Matusik, Chris Buehler, and Leonard McMillan.
Polyhedral visual hulls for Real-Time rendering. InProceed-
ings of Eurographics Workshop on Rendering, pages 115–
126, London, 2001.

[10] C. Montani, R. Scateni, and R. Scopigno. A modified look-
up table for implicit disambiguation of Marching Cubes.The
Visual Computer, 10(6):353–355, 1994.

[11] A. Y. Mülayim, V. Atalay, O.Özün, and F.Schmitt. On
the silhouette based 3d reconstruction and initial bounding
cube estimation. In5th International Fall Workshop on Vi-
sion Modelling and Visualization - VMV, 2000. Max-Planck-
Institut fur Informatik, Saarbr̈ucken, Germany, Nov., 22-24.

[12] W. Niem. Automatic reconstruction of 3d objects using a
mobile camera.Image and Vision Computing, 17:125–134,
1999.

[13] W. Niem and H. Broszio. Mapping texture from multiple
camera views onto 3d-object models for computer anima-
tion. In International Workshop on Stereoscopic and Three
Dimensional Imaging Conf. Proc., 1995. Santorini, Greece.

[14] W. Niem and R. Buschmann. Automatic modelling of
3d natural objects from multiple views. In Yakup Paker
and Sylvia Wilbur, editors,Image Processing for Broad-
cast and Video Production. Workshops in Computing Series,
Springer, Hamburg 1994, 1994.

[15] Wolfgang Niem. Error analysis for silhouette-based 3d shape
estimation from multiple views. InInternational Work-
shop on Syntetic-Natural Hybrid Coding and 3D Imaging
(IWSNHC3DI’97), Rhodes, Greece, 1997.

[16] H. Noborio, S. Fukuda, and S. Arimoto. Construction of
the octree approximating three-dimensional objects by using
multiple views. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-10(6):769–782, 1989.

[17] M. Potmesil. Generating octree models of 3D objects from
their silhouettes in a sequence of images.Computer Vision,
Graphics and Image Processing, 40:1–29, 1987.

[18] P. Ramamanathan, E. Steinbach, and B Girod. Silhouette-
based multiple-view camara calibration. InProc. of Vision,
Modeling and Visualization, pages 2–10, Saarbrüken, 2000.

[19] C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi,
and R. Scopigno.Marching Intersections: an efficient re-
sampling algorithm for surface manipulation. InProceed-
ings of the International Conference on Shape Modeling and
Applications - SMI 2001, pages 296–305. IEEE Computer
Society Press, 2001. Genova, Italy, 7-11 May 2001.

[20] C. Rocchini, P. Cignoni, C. Montani, and R. Scopigno. The
Marching Intersections algorithm for merging range images.
ISTI-CNR, Pisa, Italy, Submitted for publication, March
2001.

[21] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Schafer.
A survey of methods for volumetric scene reconstruction
from photographs. In K. Mueller and A. Kaufmann, edi-
tors,Proceedings of the Joint IEEE TCVG and Euro graphics
Workshop (VolumeGraphics-01), pages 81–100, Wien, June
21–22 2001. Springer-Verlag.

[22] S. K. Srivastava and N. Ahuja. Octree generation from object
silhouettes in perspective views.Computer Vision, Graphics,
and Image Processing, 49(1):68–84, 1990.

[23] Richard Szeliski. Rapid octree construction from image se-
quences.Computer Vision, Graphics, and Image Processing.
Image Understanding, 58(1):23–32, 1993.

[24] R. Tsai. A versatile camera calibration technique for high ac-
curacy 3D machine vision metrology using off-the-shelf TV
cameras and lenses.IEEE Journal of Robotics and Automa-
tion, RA-3(4), August 1987. a preliminary version appeared
in Proc. 1986 IEEE Int. Conf. Computer Vision and Pattern
Recognition, Miami, FL, June 22-26, 1986.

[25] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah. Shape from
shading: A survey.IEEE Transactions on Pattern Analysis
and Machine Intelligence, 21(8):690–706, 1999.

666

