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Preface

The seeds for this book were first planted in 2001 when Steve Seitz at the University of Wash-
ington invited me Lo co-leach a course called “Computer Vision for Computer Graphics”. At
thal time, computer vision techniques were increasingly being used in computer graphics to
create image-based models of real-world objects, to create visual effects, and to merge real-
world imagery using computational photography techniques. Our decision to focus on the
applications of computer vision to fun problems such as image stitching and photo-based 3D
modeling from personal photos seemed to resonate well with our students.

Since that time, a similar syllabus and project-oriented course structure has been used to
teach general compuler vision courses both at the University of Washinglon and at Stanford.
(The latter was a course I co-taught with David Fleet in 2003.) Similar curricula have been
adopled at a number of other universities and also incorporated into more specialized courses
on computational photography. (Forideas on how to use this book in your own course, please
see Table 1.1 in Section 1.4.)

This book also reflects my 20 years’ experience doing computer vision research in corpo-
rate research labs, mosily at Digital Equipment Corporation’s Cambridge Research Lab and
al Microsofl Research. In pursuing my work, I have mostly focused on problems and solu-
tion techniques (algorithms) that have practical real-world applications and that work well in
practice. Thus, Lhis book has more emphasis on basic lechniques that work under real-world
conditions and less on more esoteric mathemaltics that has intrinsic elegance but less practical
applicability.

This book is suitable for teaching a senior-level undergraduate course in computer vision
to students in both computer science and electrical engineering. I prefer students to have
either an image processing or a compuler graphics course as a prerequisite so that they can
spend less time learning general background mathematics and more ime studying computer
vision techniques. The book is also suitable for teaching graduate-level courses in computer
vision (by delving into the more demanding application and algorithmic areas) and as a gen-
eral reference Lo fundamental technigues and the recent research literature. To this end, I have
attempted wherever possible to at least cite the newest research in each sub-field, even if the
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technical details are too complex 10 cover in the book itself.

In teaching our courses, we have found it useful for the students to attempl a number of
small implementation projects, which often build on one another, in order 10 get them vsed to
working with real-world images and the challenges that these present. The students are then
asked to choose an individual topic for each of their small-group, final projects. (Sometimes
these projects even turn into conference papers!) The exercises al the end of each chapter
contain numerous suggestions for smaller mid-term projects, as well as more open-ended
problems whose solutions are still active research topics. Wherever possible, I encourage
students to try their algorithms on their own personal pholographs, since this betler motivates
them, often leads 1o creative varianis on the problems, and better acquaints them with the
variety and complexity of real-world imagery.

In formulating and solving compuler vision problems, I have often found it useful to draw
inspiration from three high-level approaches:

e Scientific: build detailed models of the image formation process and develop mathe-
matical lechniques 1o invert these in order to recover the quantities of interest (where
necessary, making simplifying assumption (o make the mathematics more tractable).

o Statistical: use probabilistic models to quantify the prior likelithood of your unknowns
and the noisy measurement processes that produce the input images, then infer the best
possible estimales of your desired quantities and analyze their resulling uncertainties.
The inference algorithms used are ofien closely related to the oplimization techniques
used 1o invert the (scientific) image formation processes.

e Engineering: develop techniques that are simple to describe and implement but that
are also known to work well in practice. Test these techniques to understand their
limitation and failure modes, as well as their expecled computational costs (run-time
performance).

These three approaches build on each other and are used throughout the book.

My personal research and development philosophy (and hence the exercises in the book)
have a strong emphasis on festing algorithms. It’s (0o easy in computer vision to develop an
algorithm that does something plausible on a few images rather than something correct. The
best way 1o validate your algorithms is 1o use a three-part strategy.

First, test your algorithm on clean synthetic data, for which the exact results are known.
Second, add noise to the data and evaluate how the performance degrades as a function of
noise level. Finally, test the algorithm on real-world data, preferably drawn from a wide
variety of sources, such as pholos found on the Web. Only then can you truly know if your
algorithm can deal with real-world complexity, i.e., images that do not fil some simplified
model or assumptions.
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In arder to help students in this process, this books comes with a large amount of supple-
mentary material, which can be found on the book’s Web site http://szeliski.org/Book. This
material, which is described in Appendix C, includes:

e pointers to commonly used data sets for the problems, which can be found on the Web

e pointers o software libraries, which can help students get started with basic 1asks such
as reading/wriling images or creating and manipulating images

e slide sets corresponding to the material covered in this book
e a BibTeX bibliography of the papers cited in this book.

The latier 1wo resources may be of more interest 1o instruclors and researchers publishing
new papers in this field, but they will probably come in handy even with regular students.
Some of the software libraries contain implementations of a wide variety of computer vision
algorithms, which can enable you to tackle more ambitious projects (with your instructor’s
consent).
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Figure 1.1 The human visual system has no problem interpreting the subtle variations in
translucency and shading in this photograph and correcily segmenting the object from its
background.
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Figure 1.2 Some examples of computer vision algorithms and applications. (a) Srructure
Jrom motion algorithms can reconstruct a sparse 3D point model of a large complex scene
from hundreds of partially overlapping photographs (Snavely, Seitz, and Szeliski 2006) (©
2006 ACM. (b) Stereo matching algorithms can build a detailed 3D mode] of a building fagade
from hundreds of differently exposed photographs taken from the Internet (Goesele, Snavely,
Curless er al. 2007) (©) 2007 [EEE. (c) Person tracking algorithms can track a person walking
in front of a cluttered background (Sidenbladh, Black, and Fleet 2000) (¢) 2000 Springer. (d)
Face derection algorithms, coupled with color-based clothing and hair detection algorithms,
can locate and recognize the individuals in this image (Sivic, Zitnick, and Szeliski 2006) ©)
2006 Springer.
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1.1 What is computer vision?

As humans, we perceive the three-dimensional structure of the world around us with apparent
ease. Think of how vivid the three-dimensional percept is when you look at a vase of flowers
sitting on the table next to you. You can tell the shape and translucency of each petal through
the subtle patterns of light and shading thal play across its surface and effortlessly segment
each flower from the background of the scene (Figure 1.1). Looking at a framed group por-
trait, you can ¢asily count (and name) all of the people in the picture and even guess at their
emotions from their facial appearance. Perceptual psychologists have spent decades irying to
undersiand how the visual system works and, even though they can devise optical illusions!
to lease apart some of its principles (Figure 1.3), a complete solution to this puzzle remains
elusive (Marr 1982; Palmer 1999; Livingstone 2008).

Researchers in computer vision have been developing, in parallel, mathematical tech-
niques for recovering the three-dimensional shape and appearance of objects in imagery. We
now have reliable techniques for accurately computing a partial 3D model of an environment
from thousands of partially overlapping photographs (Figure 1.2a). Given a large enough
sel of views of a particular object or fagade, we can create accurate dense 3D surface mod-
els using stereo matching (Figure 1.2b). We can track a person moving against a complex
background (Figure 1.2¢). We can even, with moderate success, attempt to find and name
all of the people in a photograph using a combination of face, clothing, and hair detection
and recognition (Figure 1.2d). However, despite all of these advances, the dream of having a
computer interprel an image at the same level as a Lwo-year old (for example, counting 21l of
the animals in a picture) remains elusive. ~ Why is vision so difficult? In part, il is because
vision is an inverse problem, in which we seek to recover some unknowns given insufficient
information to fully specify the solution. We must therefore resort to physics-based and prob-
abilistic models to disambiguale between potential solutions. However, modeling the visual
world in all of its rich complexity is far more difficult than, say, modeling the vocal tract that
produces spoken sounds.

The forward models that we use in computer vision are usually developed in physics (ra-
diometry, optics, and sensor design) and in computer graphics. Both of these fields model
how objects move and animate, how light reflects off their surfaces, is scattered by the al-
mosphere, refracted through camera lenses (or human eyes), and finally projecied onto a flat
(or curved) image plane. While computer graphics are not yet perfect (no fully computer-
animated movie with human characters has yet succeeded at crossing the uncanny valley*
thal separales real humans from android robots and computer-animated humans), in limited

! hetp://www.michaelbach.de/ot/sze_muelue
2 The term uncanny valley was origipally coined by roboticist Masahiro Mori as applied to robotics (Mori 1970).
It is also commonly applied 1o computer-animated films such as Final Fantasy and Polar Express (Geller 2008).
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Figure 1.3 Some common optical illusions and what they might tell us about the visual sys-
tem: (a) The classic Miiller-Lyer illusion, where the length of the two horizontal lines appear
different, probably due to the imagined perspective effects. (b) The “white” square B in the
shadow and the “black” square A in the light actually have the same absolute intensity value.
The percept is due to brightness constancy, the visual sysiem’s attempt 1o discount illumi-
nation when interpreting colors. Image courtesy of Ted Adelson, http://web.mit.edu/persci/
people/adelson/checkershadow_illusion.html. (c) A variation of the Hermann grid illusion,
courtesy of Hany Farid, http://fwww.cs.dartmouth.edu/~farid/illusions/hermann.html. As you
move your eyes over the figure, gray spots appear at the intersections. (d) Count the red Xs
in the left half of the figure. Now count them in the right half. [s it significantly harder?
The explanation has 10 do with a pop-out effect (Treisman 1985), which tells us about the
operations of parallel perception and integration pathways in the brain.
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domains, such as rendering a still scene composed of everyday objects or animating extinct
creatures such as dinosaurs, the illusion of reality is perfect.

In computer vision, we are trying to do the inverse, i.e., to describe the world that we see
in one or more images and to reconstruct its properties, such as shape, illumination, and color
disiributions. It is amazing that humans and animals do this so effortlessly, while computer
vision algorithms are so error prone. People who have not worked in the field often under-
estimate the difficulty of the problem. (Colleagues at work often ask me for sofiware to find
and name all the people in photos, so they can gel on with Lthe more “interesting” work.) This
misperception that vision should be easy dates back to the early days of artificial intelligence
(see Section 1.2), when it was initially believed that the cognirive (logic proving and plan-
ning) parts of intelligence were intrinsically more difficult than the perceprual components
(Boden 2006).

The good news is that computer vision is being used 1oday in a wide variety of real-world
applications, which include:

e Optical character recognition (OCR): reading handwritien postal codes on letters
(Figure 1.4a) and automatic number plate recognition (ANPR);

e Machine inspection: rapid parts inspection for quality assurance using slereo vision
with specialized illumination t6 measure 16lerances on aircraft wings or auto body parts
(Figure 1.4b) or looking for defects in sleel castings using X-ray vision;

e Retail: object recognition for automated checkout lanes (Figure 1.4¢);

¢ 3D model building (photogrammetry): fully automated construction of 3D models
from aerial photographs used in systems such as Bing Maps;

e Medical imaging: regisiering pre-operalive and intra-operative imagery (Figure 1.4d)
or performing long-term studies of people’s brain morphology as they age;

e Automotive safety: delecling unexpected obslacles such as pedestrians on the street,
under conditions where aclive vision techniques such as radar or lidar do not work
well (Figure 1.4e; see also Miller, Campbell. Huttenlocher er al. (2008); Montemerlo,
Becker, Bhat et al. (2008); Urmson, Anhalt, Bagnell er al. (2008) for examples of fully
automated driving);

e Match move: merging computer-generated imagery (CGI) with live action footage by
tracking feature points in the source video to estimate the 3D camera motion and shape
of the environment. Such techniques are widely used in Hollywood (e.g.. in movies
such as Jurassic Park) (Roble 1999; Roble and Zafar 2009); they also require the use of
precise marting to insert new elements between foreground and background elements
(Chuang, Agarwala, Curless ez al. 2002).
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Figure 1.4 Some industrial applicalions of cormputer vision: (a) oplical character recognition
(OCR) htp:/fyann.lecun.com/exdb/lenet/; (b) mechanical inspection http://www.cognitens.
com/; (c) retail http://www.evoretail.com/; (d) medical imaging http://www.clarontech.com/;
(e) automotive safety http://www.mobileye.com/; (f) surveillance and traffic moniltoring http:
ffwww.honeywellvideo.com/, courtesy of Honeywell International Inc.
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e Motion capture (mocap): using retro-reflective markers viewed from multiple cam-
eras or other vision-based techniques (o capture actors for compuler animation;

e Surveiltance: monitoring for intrudess, analyzing highway traffic (Figure 1.4f), and
monitoring pools for drowning victims;

¢ Fingerprint recognition and biometrics: for automatic access authentication as well
as forensic applications.

David Lowe’s Web site of industrial vision applications (http://www.cs.ubc.ca/spider/lowe/
vision.html) lists many other interesting industrial applications of computer vision. While the
above applications are all extremely important, they mostly pertain to fairly specialized kinds
of imagery and narrow domains.

In this book, we focus more on broader consumer-level applications, such as fun things
you can do with your own personal photographs and video. These include:

o Stitching: turning overlapping photos into a single seamlessly stitched panorama (Fig-
ure 1.5a), as described in Chapter 9;

e Exposure bracketing: merging multiple exposures taken under challenging lighting
conditions (strong sunlight and shadows) into a single perfectly exposed image (Fig-
ure 1.5b), as described in Section 10.2;

e Morphing: turning a picture of one of your friends into another, using a seamless
morph transition (Figure 1.5¢);

e 3D modeling: converting one or more snapshots into a 3D model of the object or
person you are photographing (Figure 1.5d), as described in Section 12.6

¢ Video match move and stabilization: inserting 2D pictures or 3D models into your
videos by automatically tracking nearby reference points (see Section 7.4.2)* or using
motion eslimales 10 remove shake from your videos (see Section 8.2.1);

e Photo-based walkthroughs: navigating a large collection of photographs, such as the
interior of your house, by flying beiween different photos in 3D (see Sections 13.1.2
and 13.5.5)

e Face detection: for improved camera focusing as well as more relevant image search-
ing (see Section 14.1.1);

e Visual authentication: auiomatically logging family members onto your home com-
puter as they sit down in front of the webcam (see Section 14.2).
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Figure 1.5 Some consumer applications of computer vision: (a) image slitching: merging
different views (Szeliski and Shum 1997) ©) 1997 ACM; (b) expasure bracketing: merging
different exposures; (¢) morphing: blending between two photographs (Gomes, Darsa, Costa
et al. 1999) © 1999 Morgan Kaufmann; (d) turning a collection of photographs into a 3D
model (Sinha, Steedly, Szeliski er al. 2008) (©) 2008 ACM.
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The great thing about these applications is that they are already familiar to most students;
they are, al leasl, technologies that students can immediately appreciate and use with their
own personal media. Since computer vision is a challenging topic, given the wide range
of mathematics being covered® and the intrinsically difficult nature of the problems being
solved, having fun and relevant problems to work on can be highly motivating and inspiring.

The other major reason why this book has a strong focus on applications is that they can
be used 10 formulate and constrain the potentially open-ended problems endemic in vision.
For example, if someone comes to me and asks for a good edge deteclor, my first question is
usually to ask wiy? What kind of problem are they trying to solve and why do they believe
that edge detection is an important component? If they are trying 10 locate faces, T usually
point out that most successful face deteclors use a combination of skin color detection (Exer-
cise 2.8) and simple blob features Section 14.1.1; they do not rely on edge detection. If they
are trying to match door and window edges in a building for the purpose of 3D reconstruction,
I tell them that edges are a fine idea bul it is betler to tune the edge detector for long edges
(see Sections 3.2.3 and 4.2) and link them together inlo straight lines with common vanishing
points before matching (see Section 4.3).

Thus, it is betier to think back from the problem at hand to suitable techniques, rather
than to grab the first technique that you may have heard of. This kind of working back from
problems to solutions is typical of an engineering approach to the study of vision and reflects
my own background in the field. Ficst, | come up with a detailed problem definition and
decide on the constraints and specifications for the problem. Then, I try to find out which
techniques are known to work, implement a few of these, evaluate their performance, and
finally make a selection. In order for this process to work, it is important to have realistic test
data, both synthetic, which can be used (o verify correciness and analyze noise sensitivity,
and real-world dala typical of the way the system will finally be used.

However, this book is not just an engineering text (a source of recipes). It also takes a
scientific approach to basic vision problems. Here, I try to come up with the best possible
models of the physics of the sysitem at hand: how the scene is created, how light interacts
with the scene and atmospheric effects, and how the sensors work, including sources of noise
and uncertainty. The task is then to try to invert the acquisition process to come up with the
best possible description of the scene.

The book often uses a statistical approach to formulating and solving computer vision
problems. Where appropriate, probability distaibulions are used to model the scene and the
noisy image acquisition process. The association of prior distributions with unknowns is often

3 For a fup studeat project oa this topic, see the “PhotoBook” project at http://www.cc.gatech.edu/dvfx/videos/
dvfx2005.html.

# These techniques include physics, Euclidean and projective geometry, statistics, and optimization. They make
computer vision a fascinaring field to study and a great way to learn techniques widely applicable in other fields.
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called Bayesian modeling (Appendix B). It is possible 1o associate a risk or loss function with
mis-estimaling the answer (Section B.2) and to set up your inference algorithm to minimize
the expected risk. (Consider a robot trying to estimate the distance to an obstacle: it is
usually safer 1o underestimate than to overestimate.) With statistical techniques, it often helps
to gather lots of training data from which to learn probabilistic models. Finally, statistical
approaches enable you to use proven inference techniques to estimate the best answer (or
distribution of answers) and to quantify the uncertainty in the resulting estimates.

Because so much of compuler vision involves the solution of inverse problems or the esti-
mation of unknown quantities, my book also has a heavy emphasis on algorithms, especially
those that are known to work well in practice. For many vision problems, it is all too easy to
come up with a mathematical description of the problem that either does not match realistic
real-world conditions or does not lend itself 10 the siable estimation of the unknowns. What
we need are algorithms that are both robust (o noise and deviation from our models and rea-
sonably efficient in terms of run-time resources and space. In this book, I go into these issues
in detail, using Bayesian techniques, where applicable, to ensure robustness, and efficient
search, minimization, and linear system solving algorithms 10 ensure efficiency. Most of the
algorithms described in this book are at a high level, being mostly a list of steps that have to
be filled in by students or by reading more detailed descriptions elsewhere. In fact, many of
the algorithms are sketched out in the exercises.

Now that I've described the goals of this book and the frameworks that T use, I devote the
rest of this chapter to two additional topics. Section 1.2 is a brief synopsis of the history of
computer vision. It can easily be skipped by those who want to get 10 “the meat” of the new
malerial in this book and do not care ag much about who invented what when.

The second is an overview of the book’s contents, Section 1.3, which is useful reading for
everyone who intends 16 make a scudy of this topic (or 1o jump in partway, since it describes
chapler inter-dependencies). This outline is also useful for instructlors looking to structure
one or more courses around this topic, as it provides sample curricula based on the book’s
contents.

1.2 A brief history

In this section, I provide a brief personal synopsis of the main developments in computer
vision over the last 30 years (Figure 1.6); al least, those that I find personally interesting
and which appear to have stood the test of time. Readers not interested in the provenance
of various ideas and the evolution of this field should skip ahead Lo the book overview in
Section 1.3.
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Figure 1.6 A rough timeline of some of the moslt aclive topics of research in computer

vision.

1970s. When computer vision first started oul in the early 1970s, it was viewed as the
visual perception component of an ambitious agenda 1o mimic human intelligence and to
endow robols with intelligent behavior. At the time, it was believed by some of the early
pioneers of artificial intelligence and robotics (at places such as MIT, Stanford, and CMU)
that solving the “visual inpul” problem would be an easy step along the path to solving more
difficult problems such as higher-level reasoning and planning. According 1o one well-known
story, in 1966, Marvin Minsky at MIT asked his undergraduate student Gerald Jay Sussman
to “spend the summer linking a camera to a computer and getling the computer 1o describe
what it saw” (Boden 2006, p. 781).> We now know that the problem is slightly more difficult
than that.®

What distinguished computer vision from the already existing field of digital image pro-
cessing (Rosenfeld and Pfaltz 1966; Rosenfeld and Kak 1976) was a desire 10 recover the
three-dimensional structure of the world from images and to use this as a stepping stone (o-
wards full scene understanding. Winston (1975) and Hanson and Riseman (1978) provide
two nice collections of classic papers from this early period.

Early atlempts at scene understanding involved extracting edges and then inferring the
3D structure of an object or a “blocks world” from the topological structure of the 2D lines
(Roberts 1965). Several line labeling algorithms (Figure 1.7a) were developed at that time
(Huffman 1971; Clowes 1971; Waltz 1975; Rosenfeld, Hummel, and Zucker 1976; Kanade
1980). Nalwa (1993) gives a nice review of this area. The topic of edge detection was also

3 Boden (2006) cites (Crevier 1993) as the original source. The acmal Visiop Memo was anthored by Seymour
Papert (1966) and involved a whole cohort of students.

6 To see how far robotic vision has come in the last four decades, bave a look at the towel-folding robot at
hutp://rileecs.berkeley.edu/prficral O (Maitin-Shepard, Cusumano-Towner, Lei er al. 2010).
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Figure 1.7 Some early (1970s) examples of computer vision algorithms: (a) line label-
ing (Nalwa 1993) (©) 1993 Addison-Wesley, (b) pictorial structures (Fischler and Elschlager
1973) ©) 1973 IEEE, (¢) articulated body model (Marr 1982) (¢) 1982 David Marr, (d) intrin-
sic images (Barrow and Tenenbaum 1981) (€ 1973 IEEE, (e) stereo correspondence (Marr
1982) ©) 1982 David Marr, (f) optical flow (Nagel and Enkelmann 1986) ) 1986 IEEE.

an active area of research; a mice survey of contemporaneous work can be found in (Davis
1975).

Three-dimensional modeling of non-polyhedral objects was also being studied (Baum-
gart 1974; Baker 1977). One popular approach used generalized cylinders, i.e., solids of
revolution and swept closed curves (Agin and Binford 1976; Nevatia and Binford 1977), of-
ten arranged into parts relationships’ (Hinton 1977; Marr 1982) (Figure 1.7¢). Fischler and
Elschlager (1973) called such elastic arrangements of parts pictorial structures (Figure 1.7b).
This is currently one of the favored approaches being used in object recognition (see Sec-
tion 14.4 and Felzenszwalb and Huttenlocher 2005).

A qualitative approach (o understanding intensities and shading variations and explaining
them by the effects of image formation phenomena, such as surface orientation and shadows,
was championed by Barrow and Tenenbaum (1981) in their paper on intrinsic inages (Fig-
ure 1.7d), along with the related 2% -D skerch ideas of Marr (1982). This approach is again
seeing a bit of a revival in the work of Tappen, Freeman, and Adelson (2005).

More quantitative approaches to computer vision were also developed at the time, in-
cluding the first of many feature-based slereo correspondence algorithms (Figure 1.7¢) (Dev

7 [n robotics and computer animation, these linked-part graphs are often called kinemaric chains.
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1974; Marr and Poggio 1976; Moravec 1977, Marr and Poggio 1979; Mayhew and Frisby
1981; Baker 1982; Barnard and Fischler 1982; Ohta and Kanade 1985; Grimson 1985; Pol-
lard, Mayhew, and Frisby 1985; Prazdny 1983) and intensity-based optical flow algorithms
(Figure 1.7f) (Horm and Schunck 1981; Huang 1981; Lucas and Kanade 1981; Nagel 1986).
The early work in simultaneously recovering 3D structure and camera motion (see Chapter 7)
also began around this time (Ullman 1979; Longuet-Higgins 1981).

A lot of the philosophy of how vision was believed to work at the time is summarized
in David Marr’s (1982) book.® In particular, Marr introduced his notion of the three levels
of description of a (visual) information processing system. These three levels, very loosely
paraphrased according to my own inlerpretation, are:

e Computational theory: What is the goal of the computation (task) and what are the
constraints that are known or can be brought 1o bear on Lhe problem?

¢ Representations and algorithms: How are the inpul, output, and intermediate infor-
mation represented and which algorithms are used to calculate the desired result?

e Hardware implementation: How are the representations and algorithms mapped onto
actual hardware, e.g., a biological vision system or a specialized piece of silicon? Con-
versely, how can hardware constrainis be used to guide the choice of representation
and algorithm? With the increasing use of graphics chips (GPUs) and many-core ar-
chitectures for computer vision (see Section C.2), this question is again becoming quite
relevant.

As T mentioned earlier in this introduction, it is my conviction that a careful analysis of the
problem specification and known constraints from image formation and priors (the scientific
and slatistical approaches) must be married with efficient and robust algorithms (ithe engineer-
ing approach) to design successful vision algorithms. Thus, it seems that Marr’s philosophy
is as good a guide to framing and solving problems in our field today as it was 25 years ago.

1980s. In the 1980s, a lot of attention was focused on more sophisticated mathematical
technigues for performing quantitative image and scene analysis.

Image pyramids (see Section 3.5) started being widely used 10 perform tasks such as im-
age blending (Figure 1.8a) and coarse-to-fine correspondence search (Rosenfeld 1980; Burt
and Adelson 1983a,b; Rosenfeld 1984; Quam 1984; Anandan 1989). Continuous versions
of pyramids using the concept of scale-space processing were also developed (Witkin 1983
Witkin, Terzopoulos, and Kass 1986; Lindeberg 1990). In the late 1980s, wavelets (see Sec-
tion 3.5.4) started displacing or augmenting regular image pyramids in some applications

8 More recent developments in visual perception theory are covered in (Palmer 1999; Livingstone 2008).
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Figare 1.8 Examples of computer vision algorithms from the 1980s: (a) pyramid blending
(Burt and Adelson 1983b) (©) 1983 ACM, (b) shape from shading (Freeman and Adelson
1991) © 1991 IEEE, (c) edge detection (Freeman and Adelson 1991) © 1991 IEEE, (d)
physically based models (Terzopoulos and Witkin 1988) (© (988 IEEE, (e) regularization-
based surface reconstruction (Terzopoulos 1988) (© 1988 IEEE, (f) range data acquisition
and merging (Banno, Masuda, Oishi ez al. 2008) (©) 2008 Springer.

(Adelson, Simoncelli, and Hingorani 1987; Mallat 1989; Simoncelli and Adelson 1990a,b;
Simoncelli, Freeman, Adelson er al. 1992).

The use of stereo as a quantitative shape cue was extended by 2 wide variety of shape-
Jrom-X techniques, including shape from shading (Figure 1.8b) (see Section 12.1.1 and Horn
1975; Pentland 1984; Blake, Zimmerman, and Knowles 1985; Horn and Brooks 1986, 1989),
photometric stereo (see Section 12.1.1 and Woodham 1981), shape from texture (see Sec-
tion 12.1.2 and Witkin 1981; Pentland 1984; Malik and Rosenholtz 1997), and shape from
focus (see Section 12.1.3 and Nayar, Watanabe, and Noguchi 1995). Horn (1986) has a nice
discussion of most of these techniques.

Research into better edge and contour detection (Figure 1.8c) (see Section 4.2) was also
active during this period (Canny 1986: Nalwa and Binford 1986), including the introduc-
tion of dynamically evolving contour trackers (Section 3.1.1) such as snakes (Kass, Witkin,
and Terzopoulos 1988), as well as three-dimensional physically based models (Figure 1.8d)
(Terzopoulos, Witkin, and Kass 1987; Kass, Witkin, and Terzopoulos 1988; Terzopoulos and
Fleischer 1988; Terzopoulos, Witkin, and Kass 1988).

Researchers noticed thal a lot of the slereo, flow, shape-from-X, and edge detection al-
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gorithms could be unified, or at least described, using the same mathematical framework if
they were posed as variational optimization problems (see Section 3.7) and made more ro-
bust (well-posed) using regularization (Figure 1.8e) (see Section 3.7.1 and Terzopoulos 1983;
Poggio, Torre, and Koch 1985; Terzopoulos 1986b; Blake and Zisserman 1987; Bertero, Pog-
gio, and Torre 1988; Terzopoulos 1988). Around the same time, Geman and Geman (1984)
pointed out that such problems could equally well be formulated using discrele Markov Ran-
dom Field (MRF) models (see Section 3.7.2), which enabled the use of better (global) search
and optimization algorithms, such as simulated annealing.

Online variants of MRF algorithms that modeled and updated uncertainties using the
Kalman filter were introduced a little later (Dickmanns and Graefe 1988; Matthies, Kanade,
and Szeliski 1989; Szeliski 1989). Attempts were also made to map both regularized and
MREF algorithms onto parallel hardware (Poggio and Koch 1985; Poggio, Little, Gamble
et al. 1988: Fischler, Firschein, Barnard et al. 1989). The book by Fischler and Firschein
(1987) contains a nice collection of articles focusing on all of these topics (stereo, flow,
regularization, MRFs, and even higher-level vision).

Three-dimensional range dala processing (acquisition, merging, modeling, and recogni-
tion; see Figure 1.8f) continued being actively explored during this decade (Agin and Binford
1976; Besl and Jain 1985; Faugeras and Hebert 1987; Curless and Levoy 1996). The compi-
lation by Kanade (1987) contains a lot of the interesting papers in this area.

1990s. While a lot of the previously mentioned topics continued 1o be explored, a few of
them became significantly more active.

A burst of activity in using projective invariants for recognition (Mundy and Zisserman
[992) evolved into a concerted effort 10 solve the structure from motion problem (see Chap-
ter 7). A lot of the initial activity was directed at projective reconstructions, which did not
require knowledge of camera calibration (Faugeras 1992; Hartley, Gupta. and Chang 1992;
Hartley 1994a; Faugeras and Luong 2001; Hartley and Zisserman 2004). Simultaneously, fac-
torizarion techniques (Section 7.3) were developed to solve efficiently problems for which or-
thographic camera approximalions were applicable (Figure {.9a) (Tomasi and Kanade 1992;
Poelman and Kanade 1997; Anandan and Irani 2002) and then laler extended to the perspec-
tive case (Christy and Horaud 1996; Triggs 1996). Eventually, the field started using full
global optimization (see Section 7.4 and Taylor, Kriegman. and Anandan 1991; Szeliski and
Kang 1994; Azarbayejani and Pentland 1995), which was later recognized as being the same
as the bundle adjustment techniques traditionally used in photogrammetry (Triggs, McLauch-
lan, Hartley ez al. 1999). Fully automated (sparse) 3D modeling systems were built using such
techniques (Beardsley, Torr, and Zisserman 1996; Schaffalitzky and Zisserman 2002; Brown
and Lowe 2003; Snavely, Seitz, and Szeliski 2006).

Work begun in the 1980s on using detailed measurements of color and intensity combined
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Figure 1.9 Examples of computer vision algorithms from the 1990s: (a) factorization-based
structure from motion (Tomasi and Kanade 1992) (©) 1992 Springer, (b) dense stereo match-
ing (Boykov, Veksler, and Zabih 2001), (c) multi-view reconstruction (Seitz and Dyer 1999)
© 1999 Springer, (d) face tracking (Matthews, Xiao, and Baker 2007), (¢) image segmenta-
tion (Belongie, Fowlkes, Chung e al. 2002) (©) 2002 Springer, (f) face recognition (Turk and
Pentland 1991a).

with accurate physical models of radiance transport and color image formation created its own
subfield known as physics-based vision. A good survey of the field can be found in the three-
volume collection on this topic (Wolff, Shafer, and Healey 1992a; Healey and Shafer 1992;
Shafer, Healey, and Wolff 1992).

Optical flow methods (see Chapter 8) continued to be improved (Nagel and Enkelmann
1986; Bolles, Baker, and Marimont 1987; Horn and Weldon Jr. 1988; Anandan 1989; Bergen,
Anandan, Hanna ef al. 1992: Black and Anandan 1996; Bruhn, Weickert, and Schnorr 2005:
Papenberg, Bruhn, Brox et al. 2006), with (Nagel 1986; Barron, Fleet, and Beauchemin 1994;
Baker, Black, Lewis er al. 2007) being good surveys. Similarly, a lot of progress was made
on dense stereo correspondence algorithms (see Chapter 11, Okutomi and Kanade (1993,
1994); Boykov, Veksler, and Zabih (1998); Birchfield and Tomasi (1999); Boykov, Veksler,
and Zabih (2001), and the survey and comparison in Scharstein and Szeliski (2002)), with
the biggest breakthrough being perhaps global oplimization using graph cut techniques (Fig-
ure [.9b) (Boykov, Veksler, and Zabih 2001).
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MulG-view stereo algorithms (Figure 1.9¢) that produce complete 3D surfaces (see Sec-
tion 11.6) were also an active topic of research (Seitz and Dyer 1999; Kutulakos and Seitz
2000) that continues to be active 1oday (Seitz, Curless, Diebel er al. 2006). Techniques for
producing 3D volumetric descriptions from binary silhouettes (see Section 11.6.2) continued
to be developed (Potmesil 1987; Srivasan, Liang, and Hackwood 1990; Szeliski 1993; Lau-
rentini 1994), along with techniques based on tracking and reconstructing smooth occluding
contours (see Section 11.2.1 and Cipolla and Blake 1992; Vaillant and Faugeras 1992; Zheng
1994; Boyer and Berger 1997; Szeliski and Weiss 1998: Cipolla and Giblin 2000).

Tracking algorithms also improved a lot, including contour tracking using active contours
(see Section 5.1), such as snakes (Kass, Witkin, and Terzopoulos 1988), particle filters (Blake
and Isard 1998), and level sets (Malladi, Sethian, and Vemuri 1995), as well as intensity-based
(direct) techniques (Lucas and Kanade 1981; Shi and Tomasi 1994; Rehg and Kanade 1994),
often applied to tracking faces (Figure 1.9d) (Lanitis. Taylor, and Cootes 1997; Matthews and
Baker 2004; Matthews, Xiao, and Baker 2007) and whole bodies (Sidenbladh, Black, and
Fleet 2000; Hilton, Fua, and Ronfard 2006; Moeslund, Hilton, and Kriiger 2006).

Image segmentation (see Chapter 5) (Figure 1.9¢), a topic which has been active since
the earliest days of computer vision (Brice and Fennema 1970; Horowitz and Pavlidis 1976;
Riseman and Arbib 1977; Rosenfeld and Davis 1979; Haralick and Shapiro 1985; Pavlidis
and Liow 1990), was also an active lopic of research, producing techniques based on min-
imum energy (Mumford and Shah 1989) and minimum description length (Leclerc 1989),
nermalized cuts (Shi and Malik 2000), and mean shift (Comaniciu and Meer 2002).

Statistical learning techniques slarted appearing, first in the application of principal com-
ponent eigenface analysis to face recognition (Figure 1.9f) (see Section 14.2.1 and Turk and
Pentland 1991a) and linear dynamical systems for curve tracking (see Section 5.1.1 and Blake
and Isard 1998).

Perhaps the most notable development in computer vision during this decade was the
increased interaction with computer graphics (Seitz and Szeliski 1999), especially in the
cross-disciplinary area of image-based modeling and rendering (see Chapter 13). The idea of
manipulating real-world imagery directly 1o create new animations first came 1o prominence
with image morphing lechniques (Figurel.5¢) (see Section 3.6.3 and Beier and Neely 1992)
and was later applied to view interpolation (Chen and Williams 1993; Seitz and Dyer 1996),
panoramic image stitching (Figurel.5a) (see Chapter 9 and Mann and Picard 1994; Chen
1995; Szeliski 1996; Szeliski and Shum 1997; Szeliski 2006a), and full light-field rendering
(Figure 1.10a) (see Section 13.3 and Gortler, Grzeszczuk, Szeliski ef al. 1996; Levoy and
Hanrahan 1996; Shade, Gortler, He er al. 1998). At the same time, image-based modeling
techniques (Figure 1.10b) for aulomatically creating realistic 3D models from collections of
images were also being introduced (Beardsley, Torr, and Zisserman 1996; Debevec, Taylor,
and Malik 1996; Taylor, Debevec, and Malik 1996).
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(d)

Figure 1.10 Recent examples of computer vision algorithms: (a) image-based rendering
(Gortler, Grzeszczuk, Szeliski ef al. 1996), (b) image-based modeling (Debevec, Taylor, and
Malik 1996) © 1996 ACM, (c) interactive lone mapping (Lischinski, Farbman, Uyttendaele
et af. 2006a) (d) texture synthesis (Efros and Freeman 2001), (e) feature-based recognition
(Fergus, Perona, and Zisserman 2007), (f) region-based recognition (Mori, Ren, Efros ef al.
2004) © 2004 IEEE.

2000s. This past decade has continued to see a deepening interplay between the vision and
graphics fields. In particular, many of the topics introduced under the rubric of image-based
rendering, such as image stilching (see Chapter 9), light-field capture and rendering (see
Section 13.3), and high dynamic range (HDR) image capiure through exposure brackeling
(Figure1.5b) (see Section 10.2 and Mann and Picard 1995; Debevec and Malik 1997), were
re-christened as compurational phorography (see Chapler 10) to acknowledge the increased
use of such techniques in everyday digital photography. For example, the rapid adoption of
exposure bracketing (o create high dynamic range images necessitated the development of
tone mapping algorithms (Figure 1.10c) (see Section 10.2.1) to converl such images back
(o displayable results (Fattal, Lischinski, and Werman 2002; Durand and Dorsey 2002; Rein-
hard, Stark, Shirley ez al. 2002; Lischinski, Farbman, Uyttendaele e af. 2006a). In addition to
merging multiple exposures, techniques were developed (o merge flash images with non-flash
counlerparts (Eisemann and Durand 2004; Petschnigg, Agrawala, Hoppe et al. 2004) and to
interactively or automatically select different regions from overlapping images (Agarwala,
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Dontcheva, Agrawala et al. 2004).

Texture synthesis (Figure 1.10d) (see Section 10.5), quilting (Efros and Leung 1999; Efros
and Freeman 2001; Kwatra, Schidl, Essa er al. 2003) and inpainting (Bertalmio, Sapiro,
Caselles er al. 2000; Bertalmio, Vese, Sapiro et al. 2003; Criminisi, Pérez, and Toyama 2004)
are additional Lopics thal can be classified as computational pholography techniques, since
they re-combine input image samples 1o produce new photographs.

A second notable trend during this past decade has been the emergence of feature-based
techniques (combined with learning) for objecl recognition (see Section 14.3 and Ponce,
Hebert, Schmid et al. 2006). Some of the notable papers in this area include the consteflation
model of Fergus, Perona, and Zisserman (2007) (Figure 1.10e) and the pictorial structures
of Felzenszwalb and Huttenlocher (2005). Feature-based techniques also dominate other
recognition lasks, such as scene recognition (Zhang, Marszalek, Lazebnik er al. 2007) and
panorama and location recognition (Brown and Lowe 2007; Schindler, Brown, and Szeliski
2007). And while interest point (patch-based) features tend to dominate current research,
some groups are pursuing recognition based on contours (Belongie, Malik, and Puzicha 2002)
and region segmentation (Figure 1.10f) (Mori, Ren, Efros et al. 2004).

Another significant trend from this past decade has been the development of more efficient
algorithms for complex global optimization problems (see Sections 3.7 and B.5 and Szeliski,
Zabih, Scharstein er af. 2008; Blake, Kohli, and Rother 2010). While this trend began with
work on graph cuts (Boykov, Veksler, and Zabih 2001; Kohli and Torr 2007), a lol of progress
has also been made in message passing algorithms, such as loopy belief propagation (LBP)
(Yedidia, Freeman, and Weiss 2001; Kumar and Torr 2006).

The final trend, which now dominates a lot of the visual recognition research in our com-
munity, is the application of sophisticated machine learning techniques to compuler vision
problems (see Section 14.5.1 and Freeman, Perona, and Schélkopf 2008). This trend coin-
cides with the increased availability of immense quantities of partially labelled data on the
Internet, which makes il more feasible 1o learn object categories without the use of careful
human supervision.

1.3 Book overview

In the final part of this introduction, 1 give a brief tour of the material in this book, as well
as a few notes on notation and some additional general references. Since computer vision is
such a broad field, it is possible to study certain aspects of it, .g., geometric image formation
and 3D structure recovery, withoul engaging other parts, €.g., the modeling of reflectance and
shading. Some of the chapters in this book are only loosely coupled with others, and it is not
strictly necessary (o read all of the material in sequence.
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Figure 1.11 Relationship belween images, geometry, and photometry, as well as a taxonomy
of the topics covered in this book. Topics are roughly positioned along the left—right axis
depending on whether they are more closely relaled 1o image-based (lefl), geomelry-based
(middle) or appearance-based (right) representations, and on the vertical axis by increasing
level of abstraction. The whole figure should be taken with a large grain of salt, as there are
many additional subtle connections between Lopics not illustrated here.
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Figure 1.11 shows a rough layout of the conients of this book. Since computer vision
involves going from images (o a struclural description of the scene (and computer graphics
the converse), I have positioned the chapters horizontally in terms of which major component
they address, in addition to vertically according to their dependence.

Going from left 1o right, we see the major column headings as Images (which are 2D
in nature), Geometry (which encompasses 3D descriptions), and Photometry (which encom-
passes objecl appearance). (An aliernative labeling for these latter two could also be shape
and appearance—see, e.g., Chapter 13 and Kang, Szeliski, and Anandan (2000).) Going
from 1op to botlom, we see increasing levels of modeling and absiraction, as well as tech-
niques thal build on previously developed algorithms. Of course, this laxonomy should be
taken with a large grain of salt, as the processing and dependencies in this diagram are not
strictly sequential and subtle additional dependencies and relationships also exist (e.g., some
recognition technigues make use of 3D information). The placement of topics along the hor-
izontal axis should also be taken lightly, as most vision algorithms involve mapping between
al least two different representations.”

Interspersed throughout the book are sample applications, which relate the algorithms
and mathematical material being presented in various chapters to useful, real-world applica-
tions. Many of these applications are also presented in the exercises sections, so that students
can write their own.

Al the end of each section, T provide a set of exercises that the students can use 10 imple-
ment, lesl, and refine the algorithms and techniques presented in each section. Some of the
exercises are suilable as writlen homework assignments, others as shorler one-week projects,
and still others as open-ended research problems that make for challenging final projects.
Motivated students who implement a reasonable subset of these exercises will, by the end of
the book, have a computer vision sofiware library that can be used for a variety of interesting
tasks and projects.

As areference book, I iry wherever possible to discuss which techniques and algorithms
work well in praclice, as well as providing up-to-date pointers to the latest research results in
the areas that I cover. The exercises can be used to build up your own personal library of self-
tested and validated vision algorithms, which is more worthwhile in the long lerm (assuming
you have the time) than simply pulling algorithms out of a library whose performance you do
not really understand.

The book begins in Chapler 2 with a review of the image formation processes thal create
the i1mages that we see and capture. Undersianding this process is fundamental if you want
to take a scientific (model-based) approach to computer vision. Students who are eager to
just starl implementing algorithms (or courses that have limited time) can skip ahead 1o the

9 For an interesting comparison with what is known about the buman visual system, e.g., the largely parallel whar
and where pathways, see some textbooks on human perception (Palmer 1999; Livingstone 2008).
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12. 3D Shape 13. Image-based Rendenng 14. Recognition

Figure 1.12 A piclorial summary of the chapter contents. Sources: Brown, Szeliski, and
Winder (2005); Comaniciu and Meer (2002); Snavely, Seitz, and Szeliski (2006); Nagel
and Enkelmann (1986); Szeliski and Shum (1997); Debevec and Malik (1997). Gortler,
Grzeszczuk, Szeliski er al. (1996); Viola and Jones (2004)—see the figures in the respec-
tive chapters for copyright information.
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next chapter and dip into this matenial later. In Chapter 2, we break down image formation
into three major components. Geometric image formation (Section 2.1) deals with points,
lines, and planes, and how these are mapped onto images using projective geomerry and other
models (including radial lens distortion). Photometric image formation (Section 2.2) covers
radiometry, which describes how light interacts with surfaces in the world, and optics, which
projects light onto the sensor plane. Finally, Section 2.3 covers how sensors work, including
topics such as sampling and aliasing, color sensing, and in-camera compression.

Chapter 3 covers image processing, which is needed in almost all computer vision appli-
cations. This includes topics such as linear and non-linear filtering (Section 3.3), the Fourier
transform (Section 3.4), image pyramids and wavelets (Section 3.5), geometric transforma-
tions such as image warping (Section 3.6), and global optimization techniques such as regu-
larization and Markov Random Fields (MRFs) (Section 3.7). While most of this material is
covered in courses and textbooks on image processing, the use of optimization techniques is
more typically associated with computer vision (although MRFs are now being widely used
in image processing as well). The section on MRFs is also the first introduction to the use
of Bayesian inference techniques, which are covered at a more abstract level in Appendix B.
Chapter 3 also presents applications such as seamnless image blending and image restoration.

In Chapter 4, we cover feature detection and matching. A lot of current 3D reconstruction
and recognition techniques are built on extracting and matching fearure points (Section 4.1),
so this is a fundamental technique required by many subsequent chapters (Chapters 6, 7, 9
and 14). We also cover edge and straight line detection in Sections 4.2 and 4.3.

Chapter 5 covers region segmentation techniques, including active contour detection and
tracking (Section 5.1). Segmentation techniques include top-down (split) and bottom-up
(merge) techniques, mean shift techniques that find modes of clusters, and various graph-
based segmentation approaches. All of these techniques are essential building blocks that are
widely used in a variety of applications, including performance-driven animation, interactive
image editing, and recognition.

In Chapter 6, we cover geometric alignment and camera calibration. We introduce the
basic techniques of feature-based alignment in Section 6.1 and show how this problem can
be solved using either linear or non-linear least squares, depending on the motion involved.
We also introduce additional concepts, such as uncertainty weighting and robust regression,
which are essential to making real-world systems work. Feature-based alignment is then used
as a building block for 3D pose estimation (extrinsic calibration) in Section 6.2 and camera
(intrinsic) calibration in Section 6.3. Chapter 5 also describes applications of these techniques
to photo alignment for flip-book animations, 3D pose estimation from 2 hand-held camera,
and single-view reconstruction of building models.

Chapter 7 covers the topic of structure from morion, which involves the simultaneous
recovery of 3D camera motion and 3D scene structure from a collection of tracked 2D fea-
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tures. This chapter begins with the easier problem of 3D point triangulation (Section 7.1),
which is the 3D reconstruction of points from matched features when the camera positons
are known. It then describes lwo-frame structure from moton (Section 7.2), for which al-
gebraic techniques exist, as well as robust sampling techniques such as RANSAC thal can
discount erroneous feature maiches. The second half of Chapter 7 describes techniques for
multi-frame structure from motion, including factorization (Section 7.3), bundle adjustment
(Section 7.4), and constrained motion and structure models (Section 7.5). It also presents
applications in view morphing, sparse 3D model construction, and maich move.

In Chapter 8, we go back (o a lopic that deals directly with image intensities (as op-
posed 10 feature tracks), namely dense intensity-based motion estimation (optical flow). We
start with the simplest possible motion models, translational motion (Section 8.1), and cover
topics such as hierarchical (coarse-to-fine) motion estimation, Fourier-based techniques, and
iterative refinement. We then present parametric motion models, which can be used 1o com-
pensale for camera rotation and zooming, as well as affine or planar perspective motion (Sec-
tion 8.2). This is then generalized to spline-based motion models (Section 8.3) and finally
to general per-pixel optical flow (Section 8.4), including layered and learned motion models
(Section 8.5). Applications of these techniques include automated morphing, frame interpo-
lation (slow motion), and motion-based user interfaces.

Chapter 9 is devoted 1o image sritching, i.e., the construction of large panoramas and com-
posites. While stitching is just one example of compurarion photography (see Chapter 10),
there is enough depth here 1o warrant a separate chapter. We start by discussing various pos-
sible motion madels (Section 9.1), including planar motion and pure camera rotation. We
then discuss global alignment (Section 9.2), which is a special (simplified) case of general
bundle adjustment, and then present panorama recognition, i.¢., techniques for automatically
discovering which images actually form overlapping panoramas. Finally, we cover the lopics
of image composiring and blending (Section 9.3), which involve both selecting which pixels
from which images 1o use and blending them together so as to disguise exposure differences.

Image stitching is a wonderful application that ties together most of the material covered
in earlier parts of this book. Ii also makes for a good mid-term course project that can build
on previously developed techniques such as image warping and feature detection and match-
ing. Chapter 9 also presents more specialized variants of stilching such as whiteboard and
document scanning, video summarization, panography, full 360° spherical panoramas, and
interactive photomontage for blending repealed action shots together.

Chapter 10 presents additional examples of computational photography, which is the pro-
cess of creating new images from one or more input photographs, often based on the careful
modeling and calibration of the image formation process (Section 13.1). Computational pho-
tography techniques include merging multiple exposures to create high dynamic range images
(Section 10.2), increasing image resolution through blur removal and super-resolution (Sec-
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tion 10.3), and image editing and compositing operations (Section 10.4). We also cover the
topics of texture analysis, synthesis and inpamting (hole filling) in Section 10.5, as well as
non-photorealistic rendering (Section 10.5.2).

In Chapter 11, we tun to the issue of stereo correspondence, which can be thought of
as a special case of motion estimation where the camera positions are already known (Sec-
tion 11.1). This additional knowledge enables stereo algorithms to search over a much smaller
space of correspondences and, in many cases, 16 produce dense depth estimates thal can
be converted into visible surface models (Section 11.3). We also cover multi-view stereo
algorithms that build a true 3D surface representation instead of just a single depth map
(Section 11.6). Applications of siereo matching include head and gaze tracking, as well as
depth-based background replacement (Z-keying).

Chapter 12 covers additional 3D shape and appearance modeling techniques. These in-
clude classic shape-from-X techniques such as shape from shading, shape from texture, and
shape from focus (Section 12.1), as well as shape from smooth occluding contours (Sec-
tion 11.2.1) and silhoueties (Section 12.5). An alternative to all of these passive computer
vision techniques 1s to use active rangefinding (Section 12.2), i.e., to project patterned light
onto scenes and recover the 3D geometry through triangulation. Processing all of these 3D
representations ofien involves interpolating or simplifying the geometry (Section 12.3), or
using allernative representations such as surface point sets (Section 12.4).

The collection of techniques for going from one or more images to partial or full 3D
models is ofien called image-based modeling or 3D photography. Section 12.6 examines
three more specialized application areas (archilecture, faces, and human bodies), which can
use model-based reconstruction to fit paramelerized models to the sensed data. Section 12.7
examines the topic of appearance modeling, i.¢., techniques for estimating the texture maps,
albedos, oreven sometimes complete bi-directional reflectance distribution functions (BRDFs)
that describe the appearance of 3D surfaces.

In Chapter 13, we discuss the large number of image-based rendering techniques that
have been developed in the last two decades, including simpler techniques such as view in-
terpolation (Section 13.1), layered depth images (Section 13.2), and sprites and layers (Sec-
tion 13.2.1), as well as the more general framework of light fields and Lumigraphs (Sec-
tion 13.3) and higher-order fields such as environment mattes (Section 13.4). Applications of
these techniques include navigating 3D collections of photographs using photo tourism and
viewing 3D models as object movies.

In Chapter 13, we also discuss video-based rendering, which is the temporal extension of
image-based rendering. The topics we cover include video-based animation (Section 13.5.1),
periodic video turned into video textures (Section 13.5.2), and 3D video constructed from
multiple video streams (Section 13.5.4). Applications of these techniques include video de-
noising, morphing, and tours based on 360° video.
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Week Material Project

(1.) Chapler 2 Image formation

Chapler 3 Image processing

Chapter 4 Feature detection and matching Pl
Chapter 6 Feature-based alignment

Chapter 9 Image stitching P2
Chapter 8 Dense motion estimation

Chapter 7 Structure from motion PP
. Chapter 14 Recognition

S VP R

(9.) Chapter 10 Computational photography
10. Chapter 11 Stereo correspondence
(11.) Chapter 12 3D reconstruction
12.  Chapter 13 Image-based rendering
13.  Final project presentations FP

Table 1.1 Sample syllabi for 10-week and 13-week courses. The weeks in parentheses are
not used in the shorter version. P1 and P2 are two early-lterm mini-projects, PP is when the
(student-selected) final project proposals are due, and FP is the final project presentations.

Chapter 14 describes different approaches to recognition. It begins with techniques for
detecting and recognizing faces (Sections 14.1 and 14.2), then looks at techniques for finding
and recognizing particular objecls (instance recognirion) in Section 14.3. Next, we cover the
most difficult variant of recognition, namely the recognition of broad caregories, such as cars,
motorcycles, horses and other animals (Section 14.4), and the role that scene context plays in
recognition (Section 14.5).

To support the book’s use as a lextbook, the appendices and associated Web site contain
more detailed mathematical topics and additional material. Appendix A covers linear algebra
and numerical techniques, including matrix algebra, least squares, and iterative techniques.
Appendix B covers Bayesian estimation theory, including maximum likelihood estimation,
robust statistics, Markov random fields, and uncertainty modeling. Appendix C describes the
supplementary material available to complement this book, including images and data sets,
pointers Lo software, course slides, and an on-line bibliography.

1.4 Sample syllabus

Teaching all of the material covered in this book in a single quarter or semester course is a
Herculean task and likely one not worth atiempting. It is better to simply pick and choose
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topics related 1o the lecturer’s preferred emphasis and tailored to the set of mini-projects
envisioned for the students.

Steve Seitz and T have successfully used a 10-week syllabus similar o the one shown in
Table 1.1 (omitting the parenthesized weeks) as both an undergraduate and a graduale-level
course in computer vision. The undergraduate course' tends 1o go lighter on the mathematics
and takes more time reviewing basics, while the graduate-level course!! dives more deeply
into techniques and assumes the students already have a decent grounding in either vision
or relaled mathematical techniques. (See also the Mmrroducrion 1o Computer Vision course at
Stanford,!? which uses a similar curriculum.) Related courses have also been taught on the
topics of 3D photography'? and computational photography. '

When Steve and I teach the course, we prefer to give the students several small program-
ming projects early in the course rather than focusing on written homework or quizzes. With
a suitable choice of topics, it is possible for these projects to build on each other. For exam-
ple, introducing feature matching early on can be used in a second assignment to do image
alignment and stitching. Allernatively, direct (optical flow) techniques can be used 1o do the
alignment and more focus can be put on either graph cul seam selection or multi-resolution
blending techniques.

We also ask the students to propose a final project (we provide a set of suggested Lopics
for those who need ideas) by the middle of the course and reserve the last week of the class
for student presentations. With any luck, some of these final projects can actually turn into
conference submissions!

No matter how you decide to structure the course or how you choose 1o use this book, I
encourage you lo Iry al leasl a few small programming tasks 16 get a good feel for how vision
techniques work, and when they do not. Better yet, pick topics that are fun and can be used on
your own pholographs, and iry 1o push your creative boundaries 1o come up with surprising
results.

1.5 A note on notation

For beller or worse, the notation found in computer vision and multi-view geomeltry textbooks
tends to vary all over the map (Faugeras 1993; Hartley and Zisserman 2004; Girod, Greiner,
and Niemann 2000; Faugeras and Luong 2001; Forsyth and Ponce 2003). In this book, I
use the convention 1 first learned in my high school physics class (and later multi-variate

10 hutp:/fwww.cs.washington.edu/education/courses/455/

" hup:/iwww.cs.washington.edu/education/courses/576/
2huip://vision.stanford.edu/teaching/cs223b/

13 http:/fwww.cs.washington.edu/education/courses/558/06sp/
' hup://graphics.cs.cmu.edu/courses/ 5-463/
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calculus and computer graphics courses), which is that veclors v are lower case bold, matmices
M are upper case bold, and scalars (7', s) are mixed case italic. Unless otherwise noted,
veclors operate as column vectors, i.e., they post-multiply matrices, Mw, although they are
sometimes written as comma-separated parenthesized lists € = (z,y) instead of bracketed
column vectors z = [z y]T. Some commonly used matrices are R for rotations, K for
calibration matrices, and I for the identity matrix. Homogeneous coordinates (Section 2.1)
are denoted with a tilde over the vector, e.g., £ = (%, §, ) = w(z,y,1) = @& in P2. The
cross product operator in matrix form is denoted by | ],.

1.6 Additional reading

This book atiempts to be self-contained, so that students can implement the basic assignments
and algorithms described here without the need for outside references. However, it does pre-
suppose a general familiarity with basic concepts in linear algebra and numerical techniques,
which are reviewed in Appendix A, and image processing, which is reviewed in Chapter 3.

Students who want 16 delve more deeply into these topics can look in (Golub and Van
Loan 1996) for matrix algebra and (Strang 1988) for linear algebra. In image processing,
there are a number of popular textbooks, including (Crane 1997; Gomes and Velho 1997,
Jdhne 1997; Pratt 2007; Russ 2007; Burger and Burge 2008; Gonzales and Woods 2008). For
computer graphics, popular texis include (Foley, van Dam, Feiner er al. 1995; Watt 1995),
with (Glassner 1995) providing a more in-depth look at image formation and rendering. For
slatistics and machine learning, Chris Bishop’s (2006) book is a wonderful and comprehen-
sive introduction with a wealth of exercises. Students may also want to look in other textbooks
on computer vision for material that we do not cover here, as well as for additional project
ideas (Ballard and Brown 1982; Faugeras 1993; Nalwa 1993; Trucco and Verri 1998; Forsyth
and Ponce 2003).

There is, however, no substitute for reading the latest research literature, both for the lat-
esl ideas and techniques and for the most up-to-date references to related literature.'> In this
book, I have attempted to cite the most recent work in each field so that students can read them
directly and use them as inspiration for their own work. Browsing the last few years’ con-
ference proceedings from the major vision and graphics conferences, such as CVPR, ECCV,
ICCV, and SIGGRAPH, will provide a wealth of new ideas. The tutorials offered at these
conferences, for which slides or noles are often available on-line, are also an invaluable re-
source.

15 For a comprebeosive bibliograpby and taxopomy of computer vision research, Keith Price’s Anpotated Com-
puter Vision Bibliography http://www.visionbib.com/bibliography/contents.html is an invalvuable resource.



