
Chapter 6

ANALYTICAL IMAGE
FEATURES

Chapter 1 laid the geometric foundations of image formation. This chapter uses an-
alytical geometry to quantify more precisely the relationship between a camera, the
objects it observes, and the pictures of these objects. We start by briefly recalling
elementary notions of analytical Euclidean geometry, including dot and cross prod-
ucts, norms and distances, rigid transformations and homogeneous coordinates: this
machinery will allow us in the rest of the book to reason about geometric objects
like points, lines and planes, and geometric transformations like rotations, trans-
lations and projections in terms of linear algebra constructs such as vectors and
matrices. We then introduce the various physical parameters that relate the world
and camera coordinate frames, and present as an application various methods for
estimating these parameters, a process known as geometric camera calibration. We
also present along the way some linear and non-linear least-squares techniques for
parameter estimation that will prove useful on several occasions in the rest of the
book.

6.1 Elements of Analytical Euclidean Geometry

We assume that the reader has some familiarity with elementary analytical Eu-
clidean geometry and linear algebra. This section will serve to fix the notation
used in the book and introduce informally some useful notions such as coordinate
systems, homogeneous coordinates, rotation matrices, etc.

Notation. We will use the following notation in the rest of this chapter and
throughout the book: points, lines and planes will be denoted by Roman or Greek
letters in italic font, e.g., P , ∆ or Π. Vectors will be denoted by Roman or Greek
bold-italic letters, e.g., v, P , or ξ, although the vector joining two points P and
Q will often be denoted by

−−→
PQ. Matrices will be denoted by Roman letters in

calligraphic font, e.g., M. The familiar three-dimensional Euclidean space will be
denoted by IE3 and the vector space formed by n-tuples of real numbers with the
usual laws of addition and multiplication by a scalar will be denoted by IRn. El-
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ements of IRn will be considered as column vectors or n × 1 matrices, and the
transpose of the m × n matrix A with coefficients aij will be the n × m matrix
denoted by AT with coefficients aji.

We will denote the dot product (or inner product) between two vectors u and
v as u · v. When these two vectors are elements of IRn given by u = (u1, . . . , un)

T

and v = (v1, . . . , vn), we have of course

u · v = u1v1 + . . . + unvn,

and we will often use the fact that in this case the dot product can be rewritten
as a matrix product, i.e., u · v = uTv = vTu. We will denote by |v|2 = v · v the
square of the Euclidean norm of the vector v, and denote by d the distance function
induced by the Euclidean norm in IE3, i.e., d(P,Q) = |

−−→
PQ|.

The symbol “×” will be used to denote the cross product (or outer product)
operator that associates with two vectors u = (u1, u2, u3)

T and v = (v1, v2, v3)
T

the vector

u× v
def
=


 u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1


 .

When u has unit norm, the dot product u · v is equal to the (signed) length of
the projection of v onto u, and two vectors are orthogonal when their dot product
is zero. On the other hand, the cross product of two vectors u and v in IR3 is
orthogonal to these two vectors, and a necessary and sufficient condition for u and
v to have the same direction is that u× v = 0. We will also use the identities{

(u · v)2 = |u|2|v|2 cos2 θ,

|v × v|2 = |u|2|v|2 sin2 θ,

where θ denotes the angle between the vectors u and v.

6.1.1 Coordinate Systems and Homogeneous Coordinates

We already used three-dimensional coordinate systems in Chapter 1. Let us intro-
duce them a bit more formally: we assume a fixed system of units, say meters, or
inches, so unit length is well defined; picking a point O in IE3 and three unit vectors
i, j and k orthogonal to each other defines an orthonormal coordinate frame (F ) as
the quadruple (O, i, j,k). The point O is the origin of the coordinate system (F ),
and i, j and k are its basis vectors. We will restrict our attention to right-handed
coordinate systems, such that the vectors i, j and k can be thought of as being
attached to fingers of your right hand, with the thumb pointing up, index pointing
straight, and middle finger pointing left as shown in Figure 6.1.1

1This is the traditional way of defining right-handed coordinate systems. One of the authors,
who is left-handed, has always found it a bit confusing, and prefers to identify these coordinate
systems using the fact that when one looks down the k axis at the (i, j) plane, the vector i is
mapped onto the vector j by a counterclockwise 90◦ rotation (Figure 6.1). Left-handed coordinate
systems correspond to clockwise rotations. Left- and right-handed readers alike may find this
characterization useful as well.
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Figure 6.1. A right-handed coordinate system and the Cartesian coordinates x, y, z of
a point P .

The Cartesian coordinates x, y and z of a point P in this coordinate frame are
defined as the (signed) lengths of the orthogonal projections of the vector

−−→
OP onto

the vectors i, j and k (Figure 6.1), with


x =
−−→
OP · i

y =
−−→
OP · j

z =
−−→
OP · k

⇐⇒
−−→
OP = xi + yj + zk.

The column vector

P =


x

y
z


 ∈ IR3

is called the coordinate vector of the point P in (F ). We can also define the co-
ordinate vector associated with any free vector v by the lengths of its projections
onto the basis vectors of (F ), and these coordinates are of course independent of
the choice of the origin O.

Let us now consider a plane Π, an arbitrary point A in Π and a unit vector n
perpendicular to the plane. The points lying in Π are characterized by

−→
AP · n = 0.

In a coordinate system (F ) where the coordinates of the point P are x, y, z and

the coordinates of n are a, b and c, this can be rewritten as
−−→
OP ·n−

−→
OA ·n = 0 or

ax + by + cz − d = 0, (6.1.1)

where d
def
=
−→
OA · n is independent of the choice of the point A in Π and is simply

the (signed) distance between the origin O and the plane Π (Figure 6.2)
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Figure 6.2. The geometric definition of the equation of a plane. The distance d between
the origin and the plane is reached at the point H where the normal vector passing through
the origin pierces the plane.

At times, it is useful to use homogeneous coordinates to represent points, vectors,
and planes. We will justify formally their definition later in this book, when we
introduce notions of affine and projective geometry, but for the time being, let us
just note that (6.1.1) can be rewritten as

(a, b, c,−d)




x
y
z
1


 = 0

or, more concisely, as

Π · P = 0, where Π
def
=




a
b
c
−d


 and P

def
=




x
y
z
1


 . (6.1.2)

The vector P is called the vector of homogenous coordinates of the point P in
the coordinate system (F ), and it is simply obtained by adding a fourth coordinate
equal to 1 to the ordinary coordinate vector of P . Likewise, the vector Π is the
vector of homogeneous coordinates of the plane Π in the coordinate frame (F ) and
(6.1.2) is called the equation of Π in that coordinate system. Note that Π is only
defined up to scale since multiplying this vector by any nonzero constant does not
change the solutions of (6.1.2).

We will use the convention that homogeneous coordinates are only defined up
to scale, whether they represent points or planes (this will be established more
formally for points later). To go back to the ordinary non-homogenous coordinates
of points, one just divides all coordinates by the fourth one. Among other things,
homogeneous coordinates will allow us shortly to express changes of coordinate
in terms of vectors of matrices, but first, we have to understand how coordinates
change between two frames.
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6.1.2 Coordinate System Changes and Rigid Transformations

When several different coordinate systems are considered at the same time, it is
convenient to follow Craig [1989] and denote by FP (resp. Fv) the coordinate
vector of the point P (resp. vector v) in the frame (F ), i.e.,2

FP = F−−→OP =


x

y
z


 ⇐⇒

−−→
OP = xi+ yj + zk.

Let us now consider two coordinate systems (A) = (OA, iA, jA,kA) and (B) =
(OB, iB, jB,kB). The rest of this section will allow us to express BP as a function
of AP . Let us suppose first that the basis vectors of both coordinate systems are
parallel to each other, i.e., iA = iB , jA = jB and kA = kB , but the origins OA and
OB are distinct (Figure 6.3). We say that the two coordinate systems are separated

by a pure translation, and we have
−−−→
OBP =

−−−−→
OBOA +

−−−→
OAP , thus

BP = AP + BOA.

(B)

B

B

BO

i

j

P

k

OA

i A

j
A

(A)

kA

B

Figure 6.3. Coordinate change between two frames: pure translation.

When the origins of the two frames coincide, i.e., OA = OB = O, we say that
the frames are separated by a pure rotation (Figure 6.4). Let us define the rotation
matrix BAR as the 3× 3 array of numbers

B
AR

def
=


 iA · iB jA · iB kA · iB

iA · jB jA · jB kA · jB
iA · kB jA · kB kA · kB


 .

2The superscripts and subscripts preceding points, vectors and matrices in Craig’s notation
may appear awkward at first, but the rest of this section should clearly demonstrate their utility.
Please stick with us for a little while..
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Figure 6.4. Coordinate change between two frames: pure rotation.

Note that the first column of BAR is formed by the coordinates of iA in the basis
(iB , jB ,kB). Likewise, the third row of this matrix is formed by the coordinates of
kB in the basis (iA, jA,kA), etc. More generally, the matrix B

AR can be written in
a more compact fashion using a combination of three column vectors or three row
vectors:

B
AR = (BiA

BjA
BkA ) =


 AiB

T

AjB
T

AkB
T


 ,

and it follows that ABR = B
AR

T
.

As noted earlier, all these subscripts and superscripts may be somewhat confus-
ing at first. To keep everything straight, it is useful to remember that in a change of
coordinates, subscripts refer to the object being described, while superscripts refer
to the coordinate system in which the object is described. For example AP refers
to the coordinate vector of the point P in the frame (A), BjA is the coordinate
vector of the vector jA in the frame (B), and B

AR is the rotation matrix describing
the frame (A) in the coordinate system (B).

Let us give an example of pure rotation: suppose that kA = kB = k, and denote
by θ the angle such that the vector iB is obtained by applying to the vector iA a
counterclockwise rotation of angle θ about k (Figure 6.5). The angle between the
vectors jA and jB is also θ in this case, and we have

B
AR =


 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 . (6.1.3)

Similar formulas can be written when the two coordinate systems are deduced
from each other via rotations about the iA or jA axes (see exercises). In general,
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Figure 6.5. Two coordinate frames separated by a rotation of angle θ about their
common k basis vector. As shown in the right of the figure, iA = ciB − sjB and iA =
siB + cjB, where c = cos θ and s = sin θ.

it can be shown that any rotation matrix can be written as the product of three
elementary rotations about the i, j and k vectors of some coordinate system.

Let us go back to characterizing the change of coordinates associated with an
arbitrary rotation matrix. Writing

−−→
OP = ( iA jA kA )


 Ax
Ay
Az


 = ( iB jB kB )


 Bx
By
Bz




in the frame (B) yields immediately

BP = B
AR

AP

since the rotation matrix B
BR is obviously the identity. Note how the subscript

matches the following superscript. This property remains true for more general
coordinate changes and it can be used after some practice to reconstruct the corre-
sponding formulas without calculations.

It is easy to show (see exercises) that rotation matrices are characterized by the
following properties: (1) the inverse of a rotation matrix is equal to its transpose,
and (2) its determinant is equal to 1. By definition, the columns of a rotation matrix
form a right-handed orthonormal coordinate system. It follows from property (1)
that their rows also form such a coordinate system.

It should be noted that the set of rotation matrices, equipped with the matrix
product, forms a group, i.e., the product of two rotation matrices is also a rotation
matrix (this is intuitively obvious and easily verified analytically); the matrix prod-
uct is associative; there is a unit element, the 3 × 3 identity matrix Id; and every
rotation matrix R admits an inverse R−1 = RT such that RR−1 = R−1R = Id.
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When the origins and the basis vectors of the two coordinate systems are dif-
ferent, we say that that the frames are separated by a general rigid transformation
(Figure 6.6), and we have

BP = B
AR

AP + BOA. (6.1.4)
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Figure 6.6. Coordinate changes between two frames: general rigid transformation.

Homogeneous coordinates can be used to rewrite (6.1.4) as a matrix product:
let us first note that matrices can be multiplied in blocks, i.e., if

A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
, (6.1.5)

where the number of columns of the sub-matrices A11 and A21 (resp. A12 and A22)
is equal to the number of rows of B11 and B12 (resp. B21 and B22), then

AB =

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)
.

For example, we have(
r11 r12 r13

r21 r22 r23

r31 r32 r33

)(
c11 c12

c21 c22

c31 c32

)
=

(
r11c11 + r12c21 + r13c31 r11c12 + r12c22 + r13c32

r21c11 + r22c21 + r23c31 r21c12 + r22c22 + r23c32

r31c11 + r32c21 + r33c31 r31c12 + r32c22 + r33c32

)

=

r11 r12 r13

r21 r22 r23

r31 r32 r33

c11 c12

c21 c22

c31 c32

=




(
r11 r12 r13

r21 r22 r23

)(
c11

c21

c31

) (
r11 r12 r13

r21 r22 r23

)(
c12

c22

c32

)

( r31 r32 r33 )

(
c11

c21

c31

)
( r31 r32 r33 )

(
c12

c22

c32

)

 .

In particular, (6.1.5) allows us to rewrite the change of coordinates (6.1.4) as(
BP
1

)
= B
AT

(
AP
1

)
, where B

AT
def
=

(
B
AR

BOA
0T 1

)
(6.1.6)
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and 0 = (0, 0, 0)T . In other words, using homogeneous coordinates allows us to
write a general change of coordinates as the product of a 4 × 4 matrix and a 4-
vector. It is easy to show that the set of rigid transformations defined by (6.1.6),
equipped with the matrix product operation is also a group (see exercises).

A rigid transformation maps a coordinate system onto another one. In a given
coordinate frame (F ), a rigid displacement can also be considered as a mapping
between points, i.e., a point P is mapped onto the point P ′ such that

FP ′ = R FP + t⇐⇒

(
FP ′

1

)
=

(
R t
0T 1

)(
FP
1

)
, (6.1.7)

where R is a rotation matrix and t is an element of IR3 (Figure 6.7). The set of
rigid transformations considered as mappings of IE3 onto itself and equipped with
the law of composition is once again easily shown to form a group. It is also easy
to show that rigid transformations preserve the distance between points and the
angle between vectors. On the other hand, the 4× 4 matrix associated with a rigid
transformation depends on the choice of (F ) (see exercises).

(F)
P’

P"

t

j

i

P

O

k

Figure 6.7. A rigid transformation maps the point P onto the point P ′′ through a
rotation R before mapping P ′′ onto P ′ via a translation t. In the example shown in this
figure, R is a rotation of angle θ about the k axis of the coordinate system (F ).

For example, let us consider the rotation of angle θ about the k axis of the frame
(F ). As shown in the exercises, this mapping can be represented by

FP ′ = RFP, where R =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 .

In particular, if (F ′) is the coordinate system obtained by applying this rotation

to (F ), we have, according to (6.1.3), F
′
P = F ′

F R
FP , and R = F ′

F R
−1

. More
generally, the matrix representing the change of coordinates between two frames is
the inverse of the matrix mapping the first frame onto the second one (see exercises).
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What happens when R is replaced by an arbitrary 3 × 3 matrix A? Equation
(6.1.7) still represents a mapping between points (or a change of coordinates be-
tween frames), but this time lengths and angles may not be preserved anymore
(equivalently, the new coordinate system does not necessarily have orthogonal axes
with unit length). We say that the 4× 4 matrix

T =

(
A t
0T 1

)

represents an affine transformation. When T is allowed to be completely arbitrary,
we say that we have a projective transformation. Affine and projective transforma-
tions also form groups, and they will be given a more thorough treatment later in
the book.

6.2 Geometric Camera Parameters

We saw in Chapter 1 that the coordinates (x, y, z) of a scene point P observed by
a pinhole camera are related to its image coordinates (x′, y′) by the perspective
equation (1.1.1). In reality, this equation is only valid when all distances are mea-
sured in the camera’s reference frame, and image coordinates have their origin at
the principal point where the axis of symmetry of the camera pierces its retina. In
practice, the world and camera coordinate systems are related by a set of physical
parameters, such as the focal length of the lens, the size of the pixels, the position
of the principal point, and the position and orientation of the camera.

This section identifies these parameters. We will distinguish the intrinsic pa-
rameters, that relate the camera’s coordinate system to the idealized coordinate
system used in Chapter 1, from the extrinsic parameters, that relate the camera’s
coordinate system to a fixed world coordinate system and specify its position and
orientation in space.

Before proceeding, let us note that we will ignore in the rest of this chapter
the fact that for cameras equipped with a lens, a point will only be in focus when
its depth and the distance betweem the optical center of the camera and its image
plane obey the thin lens equation (1.2.4). Likewise, the non-linear aberrations
associated with real lenses are not taken into account by (1.1.1). We will neglect
these aberrations in most of the chapter but will consider radial distortion in Section
6.3.2.

6.2.1 Intrinsic Parameters

We can associate with a camera two different image planes: the first one is a normal-
ized plane located at a unit distance from the pinhole. We attach to this plane its
own coordinate system with an origin located at the point Ĉ where the optical axis
pierces it (Figure 6.8). The perspective projection equation (1.1.1) can be written
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in this normalized coordinate system as


û =
x

z

v̂ =
y

z

⇐⇒ p̂ =
1

z
( Id 0 )

(
P
1

)
, (6.2.1)

where p̂
def
= (û, v̂, 1)T is the vector of homogeneous coordinates of the projection p̂

of the point P into the normalized image plane.

0C

C
u

v

x

v

u

Normalized
image plane

Physical
retina

O

C

z

y

Pp
p

Figure 6.8. Physical and normalized image coordinate systems.

The physical retina of the camera is in general different (Figure 6.8): it is located
at a distance f �= 1 from the pinhole,3 and the image coordinates (u, v) of the image
point p are usually expressed in pixel units (instead of, say, meters). In addition,
pixels are normally rectangular instead of square, so the camera has two additional
scale parameters k and l, and 


u = kf

x

z
,

v = lf
y

z
.

(6.2.2)

Let us talk units for a second: f is a distance, expressed in meters for example,
and a pixel will have dimensions 1

k
× 1
l
, where k and l are expressed in pixel×m−1.

The parameters k, l and f are not independent, and they can be replaced by the
magnifications α = kf and β = lf expressed in pixel units.

Now, in general, the actual origin of the camera coordinate system is at a cor-
ner C of the retina (e.g., in the case depicted in Figure 6.8, the lower-left corner,

3From now on we will assume that the camera is focused at infinity so the distance between
the pinhole and the image plane is equal to the focal length.
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or sometimes the upper-left corner, when the image coordinates are the row and
column indices of a pixel) and not at its center, and the center of the CCD matrix
usually does not coincide with the principal point C0. This adds two parameters
u0 and v0 that define the position (in pixel units) of C0 in the retinal coordinate
system. Thus, (6.2.2) is replaced by


u = α

x

z
+ u0,

v = β
y

z
+ v0.

(6.2.3)

Finally, the camera coordinate system may also be skewed, due to some manu-
facturing error, so the angle θ between the two image axes is not equal to (but of
course not very different from either) 90 degrees. In this case, it is easy to show
(see exercises) that (6.2.3) transforms into


u = α

x

z
− α cot θ

y

z
+ u0,

v =
β

sin θ

y

z
+ v0.

(6.2.4)

Combining (6.2.1) and (6.2.4) now allows us to write the change in coordinates
between the physical image frame and the normalized one as a planar affine trans-
formation:

p = Kp̂, where p =


u

v
1


 and K

def
=




α −α cot θ u0

0
β

sin θ
v0

0 0 1


 .

Putting it all together, we obtain

p =
1

z
MP , where M

def
= (K 0 ) (6.2.5)

and P denotes this time the homogeneous coordinate vector of P in the camera
coordinate system: homogeneous coordinates have allowed us to represent the per-
spective projection mapping by the 3× 4 matrix M.

Note that the physical size of the pixels and the skew are always fixed for a
given camera and frame grabber, and they can in principle be measured during
manufacturing (this information may of course not be available, in the case of stock
film footage for example, or when the frame grabber’s digitization rate is unknown
and different from 1). For zoom lenses, the focal length and possibly the optical
center may vary with time. As mentioned earlier, simply changing the focus of
the camera will also affect the magnification since it will change the lens-to-retina
distance, but we will ignore this effect in the sequel.
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6.2.2 Extrinsic Parameters

We consider in this section the case where the camera frame (C) is distinct from
the world frame (W ). Noting that

CP = (CWR
COW )

(
WP
1

)

and substituting in (6.2.5) yields

p =
1

z
MP , where M = K (R t ) , (6.2.6)

R = C
WR is a rotation matrix, t = COW is a translation vector, and P denotes the

vector of homogeneous coordinates of P in the frame (W ).
We will often write the general perspective projection equation as zp = MP ,

or even, slightly abusing the notation, as p = MP , with the convention that a
vector of homogeneous coordinates is only defined up to scale, and the actual image
coordinates of the image point p being defined as u/w and v/w if p = (u, v, w)T . In
this setting, the matrix M is also defined up to scale, with 11 free coefficients. Note
that there are 5 intrinsic parameters (α, β, u0, v0 and θ) and 6 extrinsic parameters
(the three angles defining R and the three coordinates of t), which matches the
number of independent coefficients of M.

The matrix M can of course be rewritten explicitly as a function of the intrinsic
and extrinsic parameters of the camera, namely

M =




αrT1 − α cot θrT2 + u0r
T
3 αtx − α cot θty + u0tz

β

sin θ
rT2 + v0r

T
3

β

sin θ
ty + v0tz

rT3 tz


 , (6.2.7)

where rT1 , rT2 and rT3 denote the three rows of the matrixR and tx, ty and tz are the
coordinates of the vector t in the frame attached to the camera. If R is written as
the product of three elementary rotations, the vectors ri (i = 1, 2, 3) can of course
be written explicitly in terms of the corresponding three angles.

It is worth noting that the matrix M determines the coordinate vector C of the
camera’s optical center in the world coordinate system. Indeed, as shown in the
exercises, C verifies

M

(
C
1

)
= 0.

(Intuitively this is rather obvious since the optical center is the only point whose
image is not uniquely defined.) In particular, if M = (A b ) then C = −A−1b.

6.2.3 A Characterization of Perspective Projection Matrices

We say that a 3×4 matrix that can be written (up to scale) as (6.2.6) or equivalently
(6.2.7) for some set of intrinsic and extrinsic parameters is a perspective projection
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matrix. It is of practical interest to put some restrictions on the intrinsic parameters
of a camera since, as noted earlier, some of these parameters will be fixed and may
be known. In particular, we will say that a 3 × 4 matrix is a zero-skew perspective
projection matrix when it can be rewritten (up to scale) as (6.2.7) with θ = π/2,
and that it is a perspective projection matrix with zero skew and unit aspect-ratio
when it can be rewritten (up to scale) as (6.2.7) with θ = π/2 and α = β. Of course,
a camera with known non-zero skew and non-unit aspect-ratio can be transformed
into a camera with zero skew and unit aspect-ratio by an appropriate change of
image coordinates. Are arbitrary 3 × 4 matrices perspective projection matrices?
The following theorem answers this question.

Theorem 2: Let M = (A b ) be a 3 × 4 matrix and let aTi (i = 1, 2, 3) denote
the rows of the matrix A formed by the three leftmost columns of M.

• A necessary and sufficient condition for M to be a perspective projection ma-
trix is that Det(A) �= 0.

• A necessary and sufficient condition for M to be a zero-skew perspective pro-
jection matrix is that Det(A) �= 0 and

(a1 × a3) · (a2 × a3) = 0.

• A necessary and sufficient condition for M to be a perspective projection ma-
trix with zero skew and unit aspect-ratio is that Det(A) �= 0 and{

(a1 × a3) · (a2 × a3) = 0,
(a1 × a3) · (a1 × a3) = (a2 × a3) · (a2 × a3).

The conditions of the theorem are clearly necessary: according to (6.2.6), we
haveA = KR, thus the determinants ofA and K are the same and A is non-singular.
Further, a simple calculation shows that the rows of KR in (6.2.7) satisfy the
conditions of the theorem under the various assumptions imposed by its statement.
Proofs that they are also sufficient can be found in [Faugeras, 1993; Heyden, 1995]

and in the exercises. Note that when the conditions of the theorem are satisfied,
there are exactly four sets of intrinsic and extrinsic parameters satisfying (6.2.7),
see [Faugeras, 1993; Heyden, 1995] and Section 6.3.1.

6.3 Calibration Methods

This section introduces various techniques for estimating the intrinsic and extrinsic
parameters of a camera, a process known as geometric camera calibration. Specif-
ically, suppose that a camera observes n geometric features such as points or lines
with known positions in some fixed world coordinate system. This section addresses
the problem of (1) computing the perspective projection matrix M associated with
the camera in this coordinate system, then (2) computing the intrinsic and extrinsic
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parameters of the camera from this matrix. Once a camera has been calibrated, it
is possible to associate with any image point a well-defined ray passing through this
point and the camera’s optical center, and to conduct quantitative three-dimensional
measurements from digitized pictures [Tsai, 1987a].

6.3.1 A Linear Approach to Camera Calibration

Let us first assume that our camera has non-zero skew. According to Theorem 2, the
matrix M is not singular but otherwise arbitrary. If the 4-vectors P i (i = 1, . . . , n)
and mT

j (j = 1, 2, 3) denote respectively the homogeneous coordinate vectors of the
points Pi and the rows of the matrix M, we can express the position of the image
of each point as


ui =

m1 · P i

m3 · P i
,

vi =
m2 ·P i

m3 ·P i
,

⇐⇒

{
(m1 − uim3) · P i = 0,
(m2 − vim3) · P i = 0.

Collecting these constraints for all points yields a system of 2n homogeneous
linear equations in the twelve coefficients of the matrix M, namely,

Pm = 0, where P
def
=



P T

1 0T −u1P
T
1

0T P T
1 −v1P

T
1

. . . . . . . . .
P T
n 0T −unP

T
n

0T P T
n −vnP

T
n


 and m

def
=


m1

m2

m3


 = 0.

(6.3.1)
When n ≥ 6, the system of equations (6.3.1) is in general overconstrained, i.e.,

there is no non-zero vector m ∈ IR12 that satisfies exactly these equations. On the
other hand, the zero vector is always a solution. The linear least-squares literature,
as briefly discussed in the insert next page, provides methods for computing the
value of the unit vector m that minimizes |Pm|2. In particular, estimating the vec-
tor m (hence the matrix M) reduces to computing the eigenvectors and eigenvalues
of the 12× 12 matrix PTP.
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Technique: Linear Least Squares Methods

Let us consider a system of n linear equations in p unknowns:

a11x1 + a12x2 + . . .+ a1pxp = b1
a21x1 + a22x2 + . . .+ a2pxp = b2
. . .

an1x1 + an2x2 + . . .+ anpxp = bn

⇔



a11 a12 . . . a1p

a21 a22 . . . a2p

. . . . . . . . . . . .
an1 an2 . . . anp






x1

x2

. . .
xp


 =



b1
b2
. . .
bn


 .

(6.3.2)
Let A denote the n × p matrix with coefficients aij , and let x = (x1, . . . , xp)

T and
b = (b1, . . . , bn)

T . We know from linear algebra that (in general):

1. when n < p, there exists an (p − n)-dimensional vector space of vectors x that are
solutions of (6.3.2);

2. when n = p, there is a unique solution;

3. when n > p, there is no solution.

This statement is true when the rank of A is maximal, i.e., equal to min(n, p) (this is
what we mean by “in general”). When the rank is lower, there exists a higher-dimensional
set of solutions.

Here we will consider the overconstrained case n > p. Since there is no exact solution
in this case, we will content ourselves with finding the vector x that minimizes the error
measure

E
def
=

n∑
i=1

(ai1x1 + . . .+ aipxp − bi)
2 = |Ax− b|2.

E is proportional to the mean-squared error associated with the equations, hence the
name of least-squares methods given to techniques for minimizing E.

Now, we can write E = |eT e|, where e
def
= Ax− b. To find the vector x minimizing

E, we write that the derivatives of this error measure with respect to the coordinates xi
(i = 1, . . . , p) of x must be zero, i.e.,

∂E

∂xi
= 2

∂e

∂xi
· e = 0 for i = 1, . . . , p.

But if the vectors ci (i = 1, . . . , p) denote the columns of A, we have

∂e

∂xi
=

∂

∂xi

[(
c1 . . . cp

)( x1

. . .

xp

)
− b

]
=

∂

∂xi
(x1c1 + . . .+ xpcp − b) = ci.

In particular, the constraint ∂E/∂xi = 0 implies that cTi (Ax − b) = 0, and stacking
the constraints associated with the p coordinates of x yields

0 =

(
cT1
. . .

cTp

)
(Ax− b) = AT (Ax− b)⇐⇒ ATAx = ATb.

The equations in this linear system are called the normal equations. When A has
maximal rank p, the matrix ATA is easily shown to be invertible, and the solution of the
least-squares problem can be written as

x = A†b where A†
def
= [(ATA)−1AT ].
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The p× p matrix A† is called the pseudoinverse of A. It coincides with A−1 when the
matrix A is square and non-singular. Linear least-squares problems can be solved without
explicitly computing the pseudoinverse, using for example QR decomposition or singular
value decomposition techniques, which are known to be better behaved numerically.

Let us now consider a slightly different problem, where we have a system of n homo-
geneous linear equations in p unknowns:

a11x1 + a12x2 + . . . + a1pxp = 0
a21x1 + a22x2 + . . . + a2pxp = 0
. . .
an1x1 + an2x2 + . . .+ anpxp = 0

⇔



a11 a12 . . . a1p

a21 a22 . . . a2p

. . . . . . . . . . . .

an1 an2 . . . anp






x1

x2

. . .

xp


 = 0. (6.3.3)

As before, we denote by A the n × p matrix with coefficients aij , and define x =
(x1, . . . , xp)

T . When n = p and the matrix A is non-singular, the system (6.3.3) admits
as a unique solution x = 0. Conversely, when n ≥ p, non-trivial (i.e., non-zero) solutions
may only exist when A is singular.

In this context, minimizing the error measure

E
def
= |Ax|2 =

n∑
i=1

[ai · x]
2

only makes sense when some constraint is imposed on the solution x since x = 0 yields
the zero global minimum of E.

Since, by homogeneity, E(λx) = λ2E(x), it is reasonable to minimize E under the
constraint |x|2 = 1, which avoids the trivial solution and forces the uniqueness of the
result.

Let us have another look at the error E = xT (ATA)x. The p × p matrix ATA is
symmetric positive semidefinite, and it can be diagonalized in an orthonormal basis of
eigenvectors ei (i = 1, . . . , p) associated with the eigenvalues 0 ≤ λ1 ≤ . . . ≤ λp. Now we
can write any unit vector x as x = µ1e1 + . . .+ µpep for some µi (i = 1, . . . , p) such that
µ2

1 + . . . + µ
2
p = 1. We have

E(x)−E(e1) = x
T (ATA)x−eT1 (A

TA)e1 = λ1µ
2
1+. . .+λpµ

2
p−λ1 ≥ λ1(µ

2
1+. . .+µ

2
p−1) = 0.

It follows that the unit vector x minimizing the least-squares error E is the eigenvector
e1 associated with the minimum eigenvalue of ATA and the corresponding minimum value
of E is λ1.

Various methods are available for computing the eigenvectors and eigenvalues of a
symmetric matrix, including Jacobi transformations and reduction to tridiagonal form
followed by QR decomposition.

It should finally be noted that least-squares minimization admits a statistical inter-
pretation in terms of maximum likelihood when the coordinates of the data points are
modelled as random variables obeying a normal distribution. We will come back to this
interpretation in a latter chapter.
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In the noise-free case, there will be a unique solution for the matrix M as long
at the rank of the matrix P is equal to its maximum value of 11 (the matrix P
is singular since by construction Pm = 0). A degenerate point configuration will
correspond to the case where the matrix has rank 10 or less, or equivalently the
nullspace of the matrix has dimension two or greater. Let us consider a vector l
in the nullspace and introduce the vectors formed by successive quadruples of its
coordinates, i.e., λ = (l1, l2, l3, l4)

T , µ = (l5, l6, l7, l8)
T and ν = (l9, l10, l11, l12)

T .
Since l belongs to the nullspace we have

0 = Pl =




P T
1 0T −u1P

T
1

0T P T
1 −v1P

T
1

. . . . . . . . .
P T
n 0T −unP

T
n

0T P T
n −vnP

T
n





λ
µ
ν


 =




P T
1 λ− u1P

T
1 ν

P T
1 µ− v1P

T
1 ν

. . .
P T
nλ− unP

T
nν

P T
nµ− vnP

T
nν


 ,

or, equivalently, taking into account the values of ui and vi yields


P T
i λ−

mT
1 P i

mT
3 P i

P T
i ν = 0,

P T
i µ−

mT
2 P i

mT
3 P i

P T
i ν = 0,

for i = 1, . . . , n.

We finally obtain after clearing the denominators and rearranging the terms:{
P T
i (m3λ

T −m1ν
T )P i = 0,

P T
i (m3µ

T −m2ν
T )P i = 0,

for i = 1, . . . , n. (6.3.4)

As expected, the vector l associated with λ = m1, µ = m2 and ν = m3 is a
solution of these equations. Are there other solutions?

Let us first consider the case where the points Pi (i = 1, . . . , n) all lie in some
plane Π, or equivalently, Π ·P i = 0 for some 4-vector Π. Clearly, choosing (λ,µ, ν)
equal to (Π, 0, 0), (0,Π, 0), or (0, 0,Π), or any linear combination of these vectors
will yield a solution of (6.3.4). In other words, the nullspace of P contains the
four-dimensional vector space spanned by these vectors and m. In practice, this
means that coplanar points should not be used in calibration tasks.

In general, for a given non-zero value of the vector l, the points Pi that satisfy
(6.3.4) must lie on the curve where the two quadric surfaces defined by the corre-
sponding equations intersect. A closer look at (6.3.4) reveals that the straight line
where the planes defined by m3 ·P = 0 and ν ·P = 0 intersect lies on both quadrics.
It can be shown that the intersection curve of these two surfaces consists of this
line and of a twisted cubic curve Γ passing through the origin [Faugeras, 1993]. A
twisted cubic is entirely determined by six points lying on it, and it follows that
seven points chosen at random will not fall on Γ. Since, in addition, this curve
passes through the origin, choosing n ≥ 6 random points will in general guarantee
that the matrix P has rank 11 and that the projection matrix can be recovered in
a unique fashion.
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Once the projection matrixM has been estimated, (6.2.7) can be used to recover
the intrinsic and extrinsic parameters as follows. If we write as before M = (A b ),
we have

ρ


aT1
aT2
aT3


 =




αrT1 − α cot θrT2 + u0r
T
3

β

sin θ
rT2 + v0r

T
3

rT3


 .

In particular, using the fact that the rows of a rotation matrix have unit length
and are perpendicular to each other yields immediately


ρ = ε/|a3|,
r3 = ρa3,
u0 = ρ2(a1 · a3),
v0 = ρ2(a2 · a3),

(6.3.5)

where ε = ∓1.
In addition, we have




ρ2(a1 × a3) = −αr2 − α cot θr1,

ρ2(a2 × a3) =
β

sin θ
r1,

and




ρ2|a1 × a3| =
|α|
sin θ

,

ρ2|a2 × a3| =
|β|

sin θ
,

(6.3.6)

since θ is always in the neighborhood of π/2 with a positive sine, and it follows that


cos θ = −εuεv
(a1 × a3) · (a2 × a3)

|a1 × a3||a2 × a3|
,

α = εuρ
2|a1 × a3| sin θ,

β = εvρ
2|a2 × a3| sin θ,

(6.3.7)

where εu = α/|α| and εv = β/|β|.
We can now compute r1 and r2 from the second equation in (6.3.6) as

 r1 =
ρ2 sin θ

β
(a2 × a3) =

1

|a2 × a3|
(a2 × a3),

r2 = r3 × r1.

(6.3.8)

Note that there are four possible choices for the matrix R depending on the
values of ε and εv.

Finally, the translation parameters are recovered by writing

ρ




αtx − α cot θty + u0tz
β

sin θ
ty + v0tz

tz


 =


 b1

b2

b3


 .
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6.3.2 Taking Radial Distortion into Account

We have assumed so far that our camera was equipped with a perfect lens. As
shown in Chapter 1, real lenses suffer from a number of aberrations. In this section
we follow Tsai [1987a] and show how to account for radial distortion, a type of
aberration that depends on the distance between the imaged point and the optical
axis and can be modelled as

p =


 1/λ 0 0

0 1/λ 0
0 0 1


MP ,

where λ is a polynomial function of r̂2 def
= û2 + v̂2, i.e., λ = 1 + κ1r̂

2 + κ2r̂
4 + . . ..

Geometrically, radial distortion changes the distance between the image center
and the image point p but it does not affect the direction of the vector joining these
two points. This is called the radial alignment constraint by Tsai, and it can be
expressed algebraically by writing

λ

(
u
v

)
=




m1 · P

m3 · P
m2 · P

m3 · P


 =⇒ v(m1 · P ) − u(m2 · P ) = 0.

This is a linear constraint on the vectors m1 and m2. Given n fiducial points
we obtain n equations in the eight coefficients of the vectors m1 and m2, namely

Qn = 0, where Q
def
=


 v1P

T
1 −u1P

T
1

. . . . . .
vnP

T
n −unP

T
n


 and n =

(
m1

m2

)
. (6.3.9)

Note the similarity with the previous case. When n ≥ 8, the system of equations
(6.3.9) is in general overconstrained, and a solution with unit norm can be found
using linear least squares.

We can as before determine the degenerate point configurations for which the
vectors m1 and m2 will not be uniquely determined. The matrix Q has at most
rank 7 since the vector n is in its nullspace. More generally, let us consider a vector
l in the nullspace and the vectors λ = (l1, l2, l3, l4)

T and µ = (l5, l6, l7, l8)
T ; we have

0 = Ql =


 v1P

T
1 −u1P

T
1

. . . . . .
vnP

T
n −unP

T
n


(

λ
µ

)
=


 v1P

T
1 λ− u1P

T
1 µ

. . .
vnP

T
nλ− unP

T
nµ


 .

Taking into account the values of ui and vi yields, after rearranging the terms
and clearing the denominators,

P T
i (m2λ

T −m1µ
T )P i = 0 for i = 1, . . . , n. (6.3.10)
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The vector l associated with λ = m1 and µ = m2 is of course a solution of these
equations. When the points Pi (i = 1, . . . , n) all lie in some plane Π, or equivalently,
Π · P i = 0 for some 4-vector Π, we can choose (λ,µ) equal to (Π, 0), (0,Π), or
any linear combination of these two vectors, and construct a solution of (6.3.10).
The nullspace of P contains the three-dimensional vector space spanned by these
vectors and l. Thus, as before, coplanar points should not be used in calibration.

More generally, for a given value of λ and µ, the points Pi will form a degenerate
configuration when they lie on the quadric surface defined by (6.3.10). Note that
this surface contains the four straight lines defined by λ · P = µ · P = 0, λ · P =
m1 · P = 0, µ · P = m2 · P = 0 and m1 · P = m2 · P = 0, and it must therefore
be either two planes, a cone, a hyperboloid of one sheet or a hyperbolic paraboloid.
In any case, for a large enough number of points in general position, there will be
a unique solution to our least-squares problem.

Once m1 and m2 have been estimated, we can as before define the corresponding
values of a1, a2, b1 and b2 and we obtain the constraints

ρ

(
aT1
aT2

)
=


αrT1 − α cot θrT2 + u0r

T
3

β

sin θ
rT2 + v0r

T
3




In this setting, there are more unknowns (nine, i.e., the three coefficients of the
rotation matrix, the two magnifications α and β, the coordinates u0 and v0 of the
image center, the skew angle θ and the scale factor ρ) than equations (six scalar
constraints corresponding to the two vector equations above).

As noted in [Tsai, 1987a], however, when the principal point is known we can
take u0 = v0 = 0 and ρ = 1, and we obtain




|a1| =
|α|

sin θ
,

|a2| =
|β|

sin θ
.

In particular we have




cos θ = −εuεv
a1 · a2

|a1||a2|
,

α = εu|a1| sin θ,
β = εv|a2| sin θ,

where as before εu = α/|α| and εv = β/|β|. It is now easy to compute r1, r2 and
r3 = r1 × r2, then, as before, the translation components.

Once the intrinsic and extrinsic parameters have been estimated, the radial
distortion coefficients can themselves be recovered using linear least squares and
the radial alignment constraint.



Section 6.3. Calibration Methods 165

6.3.3 Using Straight Lines for Calibration

Points are not the only geometric image features that constrain the camera param-
eters. We characterize in this section the projection of straight lines into an image,
and show how they can be used, in principle at least, to perform camera calibration.
We must first recall some elementary notions of line geometry. Let us introduce the
operator “∧” that associates with two vectors a and b in IR4 their exterior product
defined as the 6-vector

a ∧ b
def
=




a1b2 − a2b1

a1b3 − a3b1

a1b4 − a4b1

a2b3 − a3b2

a2b4 − a4b2

a3b4 − a4b3


 .

Note the similarity with the cross-product operator that also associates with
two vectors (3-vectors of course, instead of 4-vectors) a and b the vector formed by
all the 2× 2 minors of the matrix (a, b).

Let us assume a fixed coordinate system. Geometrically, the exterior product
associates with the homogeneous coordinate vectors of two points A and B in IE3 the
vector ∆ = (∆1,∆2,∆3,∆4,∆5,∆6)

T of Plücker coordinates of the line ∆ joining
them. To gain a better intuitive understanding of the situation, let us denote by
O the origin of the coordinate system and by H its projection onto ∆ (Figure 6.9),

and let us identify the vectors
−→
OA and

−−→
OB with their non-homogeneous coordinate

vectors. It is easy to verify analytically (see exercises) that
−−→
AB = −(∆3,∆5,∆6)

T

and
−→
OA×

−−→
OB =

−−→
OH ×

−−→
AB = (∆4,−∆2,∆1)

T .

O

A H

P

B u

∆v

Figure 6.9. Geometric definition of line Plücker coordinates. In this figure u =
(∆3,∆5,∆6)

T and v = (∆4,−∆2,∆1)
T .

In turn, this implies that: (1) changing the position of A (or B) along ∆ only
changes the overall scale of ∆, so Plücker coordinates are homogeneous coordinates
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only defined up to scale but otherwise independent from the choice of the points
A and B along ∆; and (2) the Plücker coordinates of a line obey the quadratic
constraint

∆1∆6 −∆2∆5 + ∆3∆4 = 0. (6.3.11)

It is also possible to define an inner product on the set of all lines by the formula

(∆|∆′)
def
= ∆1∆

′
6 + ∆6∆

′
1 −∆2∆

′
5 −∆5∆

′
2 + ∆3∆

′
4 + ∆4∆

′
3.

Clearly, a 6-vector ∆ represents a line if and only if (∆|∆) = 0, and it can also
be shown that a necessary and sufficient condition for two lines to be coplanar is
that (∆|∆′) = 0.

Let us now follow Faugeras and Papadopoulo [1997] and show that the mapping
between a line with Plücker coordinate vector ∆ and its image δ with homogeneous
coordinates δ can be represented by

ρδ = M̃∆, where M̃
def
=


 (m2 ∧m3)

T

(m3 ∧m1)
T

(m1 ∧m2)
T


 , (6.3.12)

mT
1 , mT

2 and mT
3 denote as before the rows of M and ρ is an appropriate scale

factor.
To prove this relation, let us consider a line ∆ joining two points A and B, and

denote by a and b the projections of these two points, with homogeneous coordinates
a = Ma and b = Mb. The points a and b lie on δ, thus δ · a = δ · b = 0. Hence,
δ (as an element of IR3) is orthogonal to both MA and MB and must be parallel
to their cross product. Thus we have

ρδ = (MA)× (MB) =


 (m2 ·A)(m3 ·B)− (m3 ·A)(m2 ·B)

(m3 ·A)(m1 ·B)− (m1 ·A)(m3 ·B)
(m1 ·A)(m2 ·B)− (m2 ·A)(m1 ·B)


 (6.3.13)

for some scale factor ρ.
Now, as shown in the exercises, the following identity holds for any 4-vectors a,

b, c and d:

(a ∧ b) · (c ∧ d) = (a · c)(b · d)− (a · d)(b · c).

Applying this identity to (6.3.13) yields

ρδ =


 (m2 ∧m3) · (A ∧B)

(m3 ∧m1) · (A ∧B)
(m1 ∧m2) · (A ∧B)


 ,

and the result follows immediately.
The 3 × 6 matrix M̃ is only defined up to scale with 17 coefficients. These

parameters can be estimated as before via linear least squares (ignoring of course
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the non-linear constraints imposed by the fact that the rows of M̃ are Plücker co-
ordinates) when n ≥ 9 (eliminating ρ in (6.3.12) yields two independent constraints
per line).

Once M̃ is known, we can recover M as well through linear least squares. Indeed,
it is easily shown (see exercises) that

M̃ = (c1 × c2, c1 × c3, c1 × c4, c2 × c3, c2 × c4, c3 × c4),

where the vectors ci (i = 1, . . . , 4) are the columns of M. We can thus estimate
the vectors ci (i = 1, 2, 3, 4) using constraints such as

 c̃T12

c̃T13

c̃T14


 c1 = 0, c̃12 · c3 = c̃23 · c1,

where c̃ij denotes the values of ci × cj (1 ≤ i < j ≤ 4) stored in the columns of

M̃. Collecting the 20 different equations of this type obtained by permuting the
appropriate subscripts yields a systems of linear equations in the coordinates of the
vectors ci that can be solved once again using linear least squares (at most 11 of
these 20 equations are of course linearly independent in the noise-free case).

We leave it to the reader to characterize the degenerate line configurations for
which this method fails.

6.3.4 Analytical Photogrammetry

We present in this section a non-linear approach to camera calibration that takes
into account all the constraints associated with a camera. This approach is bor-
rowed from photogrammetry, an engineering field whose aim is to recover quan-
titative geometric information from one or several pictures, with applications in
cartography, military intelligence, city planning, etc. [Thompson et al., 1966;
Slama et al., 1980]. For many years, photogrammetry relied on a combination of
geometric, optical, and mechanical methods to recover three-dimensional informa-
tion from pictures, but the advent of computers has made a purely computational
approach to this problem feasible. This is the domain of analytical photogrammetry,
where the intrinsic parameters of a camera define its interior orientation, while the
extrinsinc parameters define its exterior orientation.

Let us write again the perspective projection equation as


u =
m1 · P

m3 · P
,

v =
m2 · P
m3 · P

.

Let ξ denote the vector formed by all intrinsic and extrinsic parameters of a
camera. We can explicitly parameterize the projection matrix M and its columns
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mT
i (i = 1, 2, 3) by the vector ξ as in (6.2.7). In this setting, the problem of

calibrating the camera reduces to minimizing the least-squares error

E(ξ) =

n∑
i=1

[(ui −
m1(ξ) · P i

m3(ξ) · P i

)2 + (vi −
m2(ξ) ·P i

m3(ξ) ·P i

)2] (6.3.14)

with respect to the coefficients ξ.
Contrary to the cases studied so far, the dependency of each error term on the

unknown parameters ξ is not linear. Instead, this dependency involves a combina-
tion of polynomial and trigonometric functions, and minimizing the overall error
measure involves the use of non-linear least squares algorithms, as briefly discussed
in the insert next page. These methods rely on the derivatives of the error func-
tion with respect to the unknown parameters to linearize the steps of the iterative
minimization process. Non-linear least-squares techniques provide the means of
computing a local minimum of E, and, when started with an appropriate initial
guess, they will yield the global minimum as well.
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Technique: Non-Linear Least Squares Methods

Let us consider a system of n non-linear equations in p unknowns:

f1(x1, x2, . . . , xp) = b1,
f2(x1, x2, . . . , xp) = b2,
. . .
fn(x1, x2, . . . , xp) = bn,

(6.3.15)

where fi denotes, for i = 1, . . . , n, a differentiable function from IRp to IR. When

fi(x1, x2, . . . , xp) = ai1x1 + ai2x2 + . . .+ aipxp,

we have of course exactly the same situation as in (6.3.2). In the general setting of non-
linear least squares, the functions fi can be arbitrarily non-linear. This time, we have (in
general):

1. when n < p, there exists an (p − n)-dimensional subspace of IRp formed by the
vectors x that are solutions of (6.3.15);

2. when n = p, there exists a finite set of solutions;

3. when n > p, there is no solution.

We have emphasized in this statement the main differences with the linear case: the
dimension of the solution set will still be p− n (in general) in the underconstrained case,
but this set will not form a vector space anymore. Its structure will depend on the nature
of the functions fi. Likewise, there will be (in general) a finite number of solutions instead
of a unique one in the case n = p. This time we will not go into the details of what it means
for a family of functions fi (i = 1, . . . , n) to satisfy the “general” conditions under which
the above statement is true. Linear and polynomial functions, for example, do satisfy
these conditions.

From now on we will consider the overconstrained case n > p and minimize the error

E(x)
def
=

n∑
i=1

(fi(x)− bi)
2.

The error function E : IRp → IR+ may have many local minima, but it has (in general)
a single global minimum. Except for the case of polynomial functions [Morgan, 1987], there
is unfortunately no numerical method guaranteed to find this global minimum. Effective
iterative methods (e.g., gradient descent) do exist for finding a local minimum of a non-
linear function, and it can be hoped that these methods will find the global minimum
when they start from a reasonable initial guess. We will give in the remaining of this note
such a method specialized for non-linear least squares.

The idea is to linearize the process: indeed, any smooth function looks like its tangent
in a (small) neighborhood of any of its points. Formally, this can be rewritten using a
first-order Taylor expansion as

fi(x+ δx) = fi(x) + δx1

∂fi

∂x1

(x) + . . .++δxp
∂fi

∂xp
(x) + O(|δx|2) ≈ fi(x) +∇fi(x) · δx,

(6.3.16)
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where ∇fi(x)
def
= (

∂fi

∂x1
, . . . ,

∂fi

∂xp
)T is called the gradient of fi at the point x, and we have

neglected the second-order term O(|δx|2).
In the context of an iterative process, consider the problem of minimizing E(x+ δx)

with respect to δx for a given value of x. Substituting (6.3.16) into (6.3.15) yields

E(x+ δx) =

n∑
i=1

(fi(x) +∇fi(x) · δx − bi)
2 = |J δx− c|2,

where

J
def
=

(
∇f1(x)

t

. . .

∇fn(x)
t

)
=



∂f1

x1
(x) . . .

∂f1

xp
(x)

. . . . . . . . .
∂fn

x1
(x) . . .

∂fn

xp
(x)


 and c

def
=

(
b1
. . .

bn

)
−

(
f1(x)
. . .

fn(x)

)
.

At this point we are back in the linear least-squares setting, and the adjustment δx
can be computed as δx = J †c. In practice the process is started with some initial
guess x0, and a few iterations of the form xi+1 = xi + δx are sufficient to find a local
(and hopefully global) minimum of E. Variants of this method include the Levenberg-
Marquardt algorithm, popular in computer vision circles.
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In our setting, we must compute the derivatives of the image coordinates with
respect to the camera parameters. If p = MP and p = (p, q, r)T , we have


∂u

∂ξ
=

∂

∂ξ
(
p

r
) =

1

r

∂p

∂ξ
−

p

r2

∂r

∂ξ
=

1

r
(
∂

∂ξ
(m1 · P )− u

∂

∂ξ
(m3 ·P )),

∂v

∂ξ
=

∂

∂ξ
(
q

r
) =

1

r

∂q

∂ξ
−

q

r2

∂r

∂ξ
=

1

r
(
∂

∂ξ
(m2 · P )− v

∂

∂ξ
(m3 ·P )),

which is easily rewritten as


∂u

∂ξ

∂v

∂ξ


 =

1

r

(
1 0 −u
0 1 −v

)
∂M

∂ξ
P .

Note that u, v, r and P depend on the image considered, but that ∂M/∂ξ
only depends on the intrinsic and extrinsic parameters of the camera. Note also
that this method requires an explicit parameterization of the matrix R. Such a
parameterization in terms of three elementary rotations about coordinate axes was
mentioned earlier. Many other parameterizations are possible as well (Euler angles,
matrix exponentials, quaternions, etc.), see [Craig, 1989; Faugeras, 1993; Haralick
and Shapiro, 1992] for discussions.

6.4 Notes

The book by Craig [1989] offers a very good introduction to coordinate system rep-
resentations and kinematics. A thorough presentation of camera models and the as-
sociated calibration methods can be found in the excellent book by Faugeras [1993].
The calibration technique for taking radial distortion into account is adapted from
Tsai [1987b]. The line-based calibration technique is inspired by the characteriza-
tion of line projections in terms of the exterior product introduced by Faugeras and
Papadopoulo [1997]. The book of Haralick and Shapiro [1992] presents an excellent
concise introduction to analytical photogrammetry. The Manual of Photogramme-
try is of course the gold standard, and newcomers to this field (like the authors
of this book) will probably find the ingenious mechanisms and rigorous methods
described in the various editions of this book fascinating [Thompson et al., 1966;
Slama et al., 1980]. We will come back to photogrammetry in the context of multiple
images in Chapter 12.

6.5 Assignments

Exercises

1. Write formulas for the matrices A
BR when (B) is deduced from (A) via a

rotation of angle θ about the axes iA, jA and kA respectively.
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2. Show that rotation matrices are characterized by the following properties:
(1) the inverse of a rotation matrix is equal to its transpose, and (2) its
determinant is equal to 1.

3. Show that the set of matrices associated with rigid transformations and equipped
with the matrix product forms a group.

4. Let AT denote the matrix associated with a rigid transformation T in the
coordinate system (A), with

AT =

(
AR AT
0 1

)
.

Construct the matrix BT associated with T in the coordinate system (B) as
a function of AT and the rigid transformation separating (A) and (B).

5. Show that if the coordinate system (B) is obtained by applying to the coordi-
nate system (A) the transformation associated with the 4× 4 matrix T , then
BP = T −1AP .

6. Show that the rotation of angle θ about the k axis of the frame (F ) can be
represented by

FP ′ = R


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 FP .

7. Show that the change of coordinates associated with a rigid transformation
preserves distances and angles.

8. Show that when the camera coordinate system is skewed and the angle θ
between the two image axes is not equal to 90 degrees, then (6.2.3) transforms
into (6.2.4).

9. Let C denote the coordinate vector of the optical center of a camera in some
reference frame, and let M denote the corresponding perspective projection
matrix. Show that

M

(
C
1

)
= 0.

10. Show that the conditions of Theorem 2 are necessary.

11. Show that the conditions of Theorem 2 are sufficient. Note that the statement
of this theorem is a bit different from the corresponding theorems in [Faugeras,
1993; Heyden, 1995], where the condition Det(A) �= 0 is replaced by a3 �= 0.
But of course Det(A) �= 0 implies a3 �= 0.
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12. Consider some coordinate system and the Plücker coordinate vector ∆ of the
line ∆ passing through the points A and B. Show that if O denotes the
origin of the coordinate system and H denotes its projection onto ∆, then
−−→
AB = −(∆3,∆5,∆6) and

−→
OA ×

−−→
OB =

−−→
OH ×

−−→
AB = (∆4,−∆2,∆1)

T .

13. Show analytically that the following identity holds for any 4-vectors a, b, c
and d:

(a ∧ b) · (c ∧ d) = (a · c)(b · d)− (a · d)(b · c).

14. Show that

M̃ = (c1×c2, c1×c3, c1×c4, c2×c3, c2×c4, c3×c4) where M = (c1, c2, c3, c4).

Programming Assignments

Note: the assignments below require routines for solving square and overdetermined
linear systems. An extensive set of such routines is available in MATLAB as well as
in public-domain libraries such as LINPACK and LAPACK that can be downloaded
from the Netlib repository (http://www.netlib.org/). Data for these assignments
will be available in the CD companion to this book.

1. Use linear least-squares to fit a plane to n data points (xi, yi, zi)
T (i = 1, . . . , n)

in IR3.

2. Use linear least-squares to fit a conic section defined by

ax2 + bxy + cy2 + dx + ey + f = 0

to n data points (xi, yi)
T (i = 1, . . . , n) in IR2.




