I
ﬁ

(L))

Il

F

R e—
-‘_‘

SIFT FEATURES

Guido Gerig
Additioal Materials Chapter 3/4

Credit: slides modified from J.M. Frahm/ M. Pollefeys UNC Chapel Hill)

1]
I

Feature Tracking

i

3

Wil

e R —
T

e Tracking of “"good” features & efficient
search for subsequent positions.

e What are good features?
e Required properties:
- Well-defined

e (i.e. neigboringpoints should all be different)

— Stable across views

¢ (i.e. same 3D point should be extracted as feature for neighboring viewpoints)

]
)

Feature point extraction

i

3

Wil

]
T

_« homogeneous

1]
I

i

3

il

e R —
A

Simple matching

for each corner in image 1 find the corner in image
2 that is most similar (using SSD or NCC) and vice-
versa

Only compare geometrically compatible points
Keep mutual best matches

1]
)

Feature matching: example

F

(i)

w/Ulll]

M

0.96 | -0.40 | -0.16 | -0.39 | 0.19

-0.05| 0.75|-0.47| 0.51| 0.72

-0.18 (-0.39 | 0.73| 0.15]| -0.75

-0.27| 049 | 0.16| 0.79| 0.21

0.08| 0.50(-0.45| 0.28| 0.99

What transformations does this work for?

What level of transformation do we need?

i
,ﬁ

il

Lowe’s SIFT features

F

(Lowe, ICCV99)

.
"1
Elmemy
—
Py
=
===y
—y
~—

H

SIFT: Scale Invariant Feature Transform

Recover features with change of position,
orientation and scale

1]
I

Position

i

N

Wil

e R —
T

e Look for strong responses of DOG
filter (Difference-Of-Gaussian)

e Only consider local maxima

e =
DOG(.:U,y)ZEe (ko)? _ e &2 L= /3

1]
)

Scale
e Look for strong responses of DOG filter
(Difference-Of-Gaussian) over scale space

e Only consider local maxima in both
position and scale

e Fit quadratic around maxima for subpixel
accuracy

]|

F

il

R —

Difference of
Gaussian Gaussian (DOG)

I
ﬁ

il

Orientation

: V ‘ ‘{ff ;3.,\1 4 ."-'- - ™= -— -‘- I
e Create histogram of
local gradient
directions computed
at selected scale I[\
e Assign canonical \,‘. /
\
", .

(A

N

- —
T

orientation at peak of
smoothed histogram i VO

e Each key specifies
stable 2D coordinates

(X, y, scale, |]

orientation)

-

1]
I

i

3

Wil

e R —
T

SIFT descriptor

Thresholded image gradients are sampled over
16x16 array of locations in scale space

Create array of orientation histograms
8 orientations x 4x4 histogram array = 128

dimensions

J

[
4
1
™
",

SEES

Image gradients Keypoint descriptor

Figure 7: A kevpoint descriptor 15 created by first computing the gradient magnitude and onentation
at each image sample point in a region around the keypoint location, as shown on the left. These are
weighted bv a Gaussian window, indicated by the overlaid circle. These samples are then accumulated
into ortentation histograms summarizing the contents over 4x4 subregions. as shown on the right. with
the length of each arrow corresponding to the sum of the gradient magnitudes near that direction within
the region. This figure shows a 2x2 descriptor arrav computed from an 8x8 set of samples, whereas
the expeniments 1n this paper use 4x4 descriptors computed from a 16x16 sample array.

1]
I

i

3

il

e R —
A

Scale-space DoG maxima

Verify minimum contrast and “cornerness”
Orientation from dommant gradient

(2,

Descrlpto[based on gradient distributions

._Tg:-

ﬁ+,_1‘;'

\.aa?"l‘
— . V- 1

4—\!?; - ow
/ e

e | M A e

N e
*-n""-n."-

Image gradients

Ly \/

Sy
Lyl LA

S
- !

—>

*

¥

X

k-

Keypoint descriptor

1]
I

i

N

Wil

e R —
T

Minimum contrast and
“cornerness".

(d)
Figure 5: This figure shows the stages of keypoint selection. (a) The 233x189 pixel original image.
(b) The initial 832 keypoints locations at maxima and minima of the difference-of-Gaussian function.
Keypoints are displayed as vectors indicating scale. orientation. and location. (c) After applying
a threshold on mimimum contrast. 729 kevpoints remain. (d) The final 536 keypoints that remain
following an additional threshold on ratio of principal curvatures.

1]
IIIIA

[

o

aiii
i

i’

La—_

Input images (zip 1.1Mb)

Qutput panorama 2

]

Qutput panorama 2 - Image | Panorama

S

1]
I

i

3

Wil

e R —
T

Free code available

SIFT & SIFT ++

SIFT implementation by Andrea Vedaldi
http://vision.ucla.edu/~vedaldi/code/sift/sift.ntml
http://www.xmarks.com/site/vision.ucla.edu/~vedaldi/code/sift/
sift.html

Ning Xu: http://xuning-cn.blogspot.com/2007/11/sift-
implementation_30.html
(also SIFT, SURF, Keypoints etc.)

David Lowe: Keypoints: http:/mwww.cs.ubc.ca/~lowe/keypoints/

