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matrix. It is of practical interest to put some restrictions on the intrinsic parameters
of a camera since, as noted earlier, some of these parameters will be fixed and may
be known. In particular, we will say that a 3 × 4 matrix is a zero-skew perspective
projection matrix when it can be rewritten (up to scale) as (6.2.7) with θ = π/2,
and that it is a perspective projection matrix with zero skew and unit aspect-ratio
when it can be rewritten (up to scale) as (6.2.7) with θ = π/2 and α = β. Of course,
a camera with known non-zero skew and non-unit aspect-ratio can be transformed
into a camera with zero skew and unit aspect-ratio by an appropriate change of
image coordinates. Are arbitrary 3 × 4 matrices perspective projection matrices?
The following theorem answers this question.

Theorem 2: Let M = (A b ) be a 3 × 4 matrix and let aTi (i = 1, 2, 3) denote
the rows of the matrix A formed by the three leftmost columns of M.

• A necessary and sufficient condition for M to be a perspective projection ma-
trix is that Det(A) �= 0.

• A necessary and sufficient condition for M to be a zero-skew perspective pro-
jection matrix is that Det(A) �= 0 and

(a1 × a3) · (a2 × a3) = 0.

• A necessary and sufficient condition for M to be a perspective projection ma-
trix with zero skew and unit aspect-ratio is that Det(A) �= 0 and{

(a1 × a3) · (a2 × a3) = 0,
(a1 × a3) · (a1 × a3) = (a2 × a3) · (a2 × a3).

The conditions of the theorem are clearly necessary: according to (6.2.6), we
haveA = KR, thus the determinants ofA and K are the same and A is non-singular.
Further, a simple calculation shows that the rows of KR in (6.2.7) satisfy the
conditions of the theorem under the various assumptions imposed by its statement.
Proofs that they are also sufficient can be found in [Faugeras, 1993; Heyden, 1995]

and in the exercises. Note that when the conditions of the theorem are satisfied,
there are exactly four sets of intrinsic and extrinsic parameters satisfying (6.2.7),
see [Faugeras, 1993; Heyden, 1995] and Section 6.3.1.

6.3 Calibration Methods

This section introduces various techniques for estimating the intrinsic and extrinsic
parameters of a camera, a process known as geometric camera calibration. Specif-
ically, suppose that a camera observes n geometric features such as points or lines
with known positions in some fixed world coordinate system. This section addresses
the problem of (1) computing the perspective projection matrix M associated with
the camera in this coordinate system, then (2) computing the intrinsic and extrinsic
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parameters of the camera from this matrix. Once a camera has been calibrated, it
is possible to associate with any image point a well-defined ray passing through this
point and the camera’s optical center, and to conduct quantitative three-dimensional
measurements from digitized pictures [Tsai, 1987a].

6.3.1 A Linear Approach to Camera Calibration

Let us first assume that our camera has non-zero skew. According to Theorem 2, the
matrix M is not singular but otherwise arbitrary. If the 4-vectors P i (i = 1, . . . , n)
and mT

j (j = 1, 2, 3) denote respectively the homogeneous coordinate vectors of the
points Pi and the rows of the matrix M, we can express the position of the image
of each point as


ui =

m1 · P i

m3 · P i
,

vi =
m2 ·P i

m3 ·P i
,

⇐⇒

{
(m1 − uim3) · P i = 0,
(m2 − vim3) · P i = 0.

Collecting these constraints for all points yields a system of 2n homogeneous
linear equations in the twelve coefficients of the matrix M, namely,

Pm = 0, where P
def
=



P T

1 0T −u1P
T
1

0T P T
1 −v1P

T
1

. . . . . . . . .
P T
n 0T −unP

T
n

0T P T
n −vnP

T
n


 and m

def
=


m1

m2

m3


 = 0.

(6.3.1)
When n ≥ 6, the system of equations (6.3.1) is in general overconstrained, i.e.,

there is no non-zero vector m ∈ IR12 that satisfies exactly these equations. On the
other hand, the zero vector is always a solution. The linear least-squares literature,
as briefly discussed in the insert next page, provides methods for computing the
value of the unit vector m that minimizes |Pm|2. In particular, estimating the vec-
tor m (hence the matrix M) reduces to computing the eigenvectors and eigenvalues
of the 12× 12 matrix PTP.
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Technique: Linear Least Squares Methods

Let us consider a system of n linear equations in p unknowns:

a11x1 + a12x2 + . . .+ a1pxp = b1
a21x1 + a22x2 + . . .+ a2pxp = b2
. . .

an1x1 + an2x2 + . . .+ anpxp = bn

⇔



a11 a12 . . . a1p

a21 a22 . . . a2p

. . . . . . . . . . . .
an1 an2 . . . anp






x1

x2

. . .
xp


 =



b1
b2
. . .
bn


 .

(6.3.2)
Let A denote the n × p matrix with coefficients aij , and let x = (x1, . . . , xp)

T and
b = (b1, . . . , bn)

T . We know from linear algebra that (in general):

1. when n < p, there exists an (p − n)-dimensional vector space of vectors x that are
solutions of (6.3.2);

2. when n = p, there is a unique solution;

3. when n > p, there is no solution.

This statement is true when the rank of A is maximal, i.e., equal to min(n, p) (this is
what we mean by “in general”). When the rank is lower, there exists a higher-dimensional
set of solutions.

Here we will consider the overconstrained case n > p. Since there is no exact solution
in this case, we will content ourselves with finding the vector x that minimizes the error
measure

E
def
=

n∑
i=1

(ai1x1 + . . .+ aipxp − bi)
2 = |Ax− b|2.

E is proportional to the mean-squared error associated with the equations, hence the
name of least-squares methods given to techniques for minimizing E.

Now, we can write E = |eT e|, where e
def
= Ax− b. To find the vector x minimizing

E, we write that the derivatives of this error measure with respect to the coordinates xi
(i = 1, . . . , p) of x must be zero, i.e.,

∂E

∂xi
= 2

∂e

∂xi
· e = 0 for i = 1, . . . , p.

But if the vectors ci (i = 1, . . . , p) denote the columns of A, we have

∂e

∂xi
=

∂

∂xi

[(
c1 . . . cp

)( x1

. . .

xp

)
− b

]
=

∂

∂xi
(x1c1 + . . .+ xpcp − b) = ci.

In particular, the constraint ∂E/∂xi = 0 implies that cTi (Ax − b) = 0, and stacking
the constraints associated with the p coordinates of x yields

0 =

(
cT1
. . .

cTp

)
(Ax− b) = AT (Ax− b)⇐⇒ ATAx = ATb.

The equations in this linear system are called the normal equations. When A has
maximal rank p, the matrix ATA is easily shown to be invertible, and the solution of the
least-squares problem can be written as

x = A†b where A†
def
= [(ATA)−1AT ].
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The p× p matrix A† is called the pseudoinverse of A. It coincides with A−1 when the
matrix A is square and non-singular. Linear least-squares problems can be solved without
explicitly computing the pseudoinverse, using for example QR decomposition or singular
value decomposition techniques, which are known to be better behaved numerically.

Let us now consider a slightly different problem, where we have a system of n homo-
geneous linear equations in p unknowns:

a11x1 + a12x2 + . . . + a1pxp = 0
a21x1 + a22x2 + . . . + a2pxp = 0
. . .
an1x1 + an2x2 + . . .+ anpxp = 0

⇔



a11 a12 . . . a1p

a21 a22 . . . a2p

. . . . . . . . . . . .

an1 an2 . . . anp






x1

x2

. . .

xp


 = 0. (6.3.3)

As before, we denote by A the n × p matrix with coefficients aij , and define x =
(x1, . . . , xp)

T . When n = p and the matrix A is non-singular, the system (6.3.3) admits
as a unique solution x = 0. Conversely, when n ≥ p, non-trivial (i.e., non-zero) solutions
may only exist when A is singular.

In this context, minimizing the error measure

E
def
= |Ax|2 =

n∑
i=1

[ai · x]
2

only makes sense when some constraint is imposed on the solution x since x = 0 yields
the zero global minimum of E.

Since, by homogeneity, E(λx) = λ2E(x), it is reasonable to minimize E under the
constraint |x|2 = 1, which avoids the trivial solution and forces the uniqueness of the
result.

Let us have another look at the error E = xT (ATA)x. The p × p matrix ATA is
symmetric positive semidefinite, and it can be diagonalized in an orthonormal basis of
eigenvectors ei (i = 1, . . . , p) associated with the eigenvalues 0 ≤ λ1 ≤ . . . ≤ λp. Now we
can write any unit vector x as x = µ1e1 + . . .+ µpep for some µi (i = 1, . . . , p) such that
µ2

1 + . . . + µ
2
p = 1. We have

E(x)−E(e1) = x
T (ATA)x−eT1 (A

TA)e1 = λ1µ
2
1+. . .+λpµ

2
p−λ1 ≥ λ1(µ

2
1+. . .+µ

2
p−1) = 0.

It follows that the unit vector x minimizing the least-squares error E is the eigenvector
e1 associated with the minimum eigenvalue of ATA and the corresponding minimum value
of E is λ1.

Various methods are available for computing the eigenvectors and eigenvalues of a
symmetric matrix, including Jacobi transformations and reduction to tridiagonal form
followed by QR decomposition.

It should finally be noted that least-squares minimization admits a statistical inter-
pretation in terms of maximum likelihood when the coordinates of the data points are
modelled as random variables obeying a normal distribution. We will come back to this
interpretation in a latter chapter.
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In the noise-free case, there will be a unique solution for the matrix M as long
at the rank of the matrix P is equal to its maximum value of 11 (the matrix P
is singular since by construction Pm = 0). A degenerate point configuration will
correspond to the case where the matrix has rank 10 or less, or equivalently the
nullspace of the matrix has dimension two or greater. Let us consider a vector l
in the nullspace and introduce the vectors formed by successive quadruples of its
coordinates, i.e., λ = (l1, l2, l3, l4)

T , µ = (l5, l6, l7, l8)
T and ν = (l9, l10, l11, l12)

T .
Since l belongs to the nullspace we have

0 = Pl =




P T
1 0T −u1P

T
1

0T P T
1 −v1P

T
1

. . . . . . . . .
P T
n 0T −unP

T
n

0T P T
n −vnP

T
n





λ
µ
ν


 =




P T
1 λ− u1P

T
1 ν

P T
1 µ− v1P

T
1 ν

. . .
P T
nλ− unP

T
nν

P T
nµ− vnP

T
nν


 ,

or, equivalently, taking into account the values of ui and vi yields


P T
i λ−

mT
1 P i

mT
3 P i

P T
i ν = 0,

P T
i µ−

mT
2 P i

mT
3 P i

P T
i ν = 0,

for i = 1, . . . , n.

We finally obtain after clearing the denominators and rearranging the terms:{
P T
i (m3λ

T −m1ν
T )P i = 0,

P T
i (m3µ

T −m2ν
T )P i = 0,

for i = 1, . . . , n. (6.3.4)

As expected, the vector l associated with λ = m1, µ = m2 and ν = m3 is a
solution of these equations. Are there other solutions?

Let us first consider the case where the points Pi (i = 1, . . . , n) all lie in some
plane Π, or equivalently, Π ·P i = 0 for some 4-vector Π. Clearly, choosing (λ,µ, ν)
equal to (Π, 0, 0), (0,Π, 0), or (0, 0,Π), or any linear combination of these vectors
will yield a solution of (6.3.4). In other words, the nullspace of P contains the
four-dimensional vector space spanned by these vectors and m. In practice, this
means that coplanar points should not be used in calibration tasks.

In general, for a given non-zero value of the vector l, the points Pi that satisfy
(6.3.4) must lie on the curve where the two quadric surfaces defined by the corre-
sponding equations intersect. A closer look at (6.3.4) reveals that the straight line
where the planes defined by m3 ·P = 0 and ν ·P = 0 intersect lies on both quadrics.
It can be shown that the intersection curve of these two surfaces consists of this
line and of a twisted cubic curve Γ passing through the origin [Faugeras, 1993]. A
twisted cubic is entirely determined by six points lying on it, and it follows that
seven points chosen at random will not fall on Γ. Since, in addition, this curve
passes through the origin, choosing n ≥ 6 random points will in general guarantee
that the matrix P has rank 11 and that the projection matrix can be recovered in
a unique fashion.
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Once the projection matrixM has been estimated, (6.2.7) can be used to recover
the intrinsic and extrinsic parameters as follows. If we write as before M = (A b ),
we have

ρ


aT1
aT2
aT3


 =




αrT1 − α cot θrT2 + u0r
T
3

β

sin θ
rT2 + v0r

T
3

rT3


 .

In particular, using the fact that the rows of a rotation matrix have unit length
and are perpendicular to each other yields immediately


ρ = ε/|a3|,
r3 = ρa3,
u0 = ρ2(a1 · a3),
v0 = ρ2(a2 · a3),

(6.3.5)

where ε = ∓1.
In addition, we have




ρ2(a1 × a3) = −αr2 − α cot θr1,

ρ2(a2 × a3) =
β

sin θ
r1,

and




ρ2|a1 × a3| =
|α|
sin θ

,

ρ2|a2 × a3| =
|β|

sin θ
,

(6.3.6)

since θ is always in the neighborhood of π/2 with a positive sine, and it follows that


cos θ = −εuεv
(a1 × a3) · (a2 × a3)

|a1 × a3||a2 × a3|
,

α = εuρ
2|a1 × a3| sin θ,

β = εvρ
2|a2 × a3| sin θ,

(6.3.7)

where εu = α/|α| and εv = β/|β|.
We can now compute r1 and r2 from the second equation in (6.3.6) as

 r1 =
ρ2 sin θ

β
(a2 × a3) =

1

|a2 × a3|
(a2 × a3),

r2 = r3 × r1.

(6.3.8)

Note that there are four possible choices for the matrix R depending on the
values of ε and εv.

Finally, the translation parameters are recovered by writing

ρ




αtx − α cot θty + u0tz
β

sin θ
ty + v0tz

tz


 =


 b1

b2

b3


 .




