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Feature Selection &
Dynamic Tracking
F&P Textbook

New: Ch 11, Old: Ch 17
Guido Gerig

CS 6320, Spring 2013

Credits: Material Greg Welch & Gary Bishop,

UNC Chapel Hill, some slides modified from J.M.

Frahm/ M. Pollefeys, and R. Klette Course
Materials
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e Feature selection: SIFT Features
e Tracking: Kalman Filter:
o F&P Chapter 17
e Greg Welch and Gary Bishop, UNC:

http://www.cs.unc.edu/~welch/kalman/

o Web-site (electronic and printed
references, book lists, Java demo,
software etc.)

e Course material SIGGRAPH:

http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html



http://www.cs.unc.edu/~welch/kalman/
http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html
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Tracking — Rigid Objects
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Tracking — Rigid Objects
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Feature Tracking

i

F

il

R —
L—

e Tracking of "good” features & efficient
search for subsequent positions.

e What are good features?
e Required properties:
- Well-defined

e (i.e. neigboring points should all be different)

— Stable across views

e (i.e. same 3D point should be extracted as feature for neighboring viewpoints)
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Lowe’s SIFT features
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(Lowe, ICCV99)

H

SIFT: Scale Invariant Feature Transform

Recover features with change of position,
orientation and scale
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Scale-space DoG maxima ‘

Verify minimum contrast and “cornerness”
Orientation from domlnant gradient

(2,

Descrlpto[ based on gradient distributions
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Tracking is the problem of generating an
inference about the motion of an object
given a sequence of images.

The key technical difficulty is
maintaining an accurate representation
of the posterior on object position given

measurements, and doing so efficiently.
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The Kalman Filter I

“The Kalman filter is a set of mathematical equations that
provides an efficient computational (recursive) means to
estimate the state of a process, in a way that minimizes the
mean of the squared error. The filter is very powerful in several
aspects: it supports estimations of past, present, and even future
states, and it can do so even when the precise nature of the
modeled system is unknown.” (G. Welch and G. Bishop, 2004)

Named after Rudolf Emil Kalman (1930, Budapest/Hungary).
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Kalman Filter

3

L)

“
P
=N
]
=]
oy
./

i

e The Kalman filter is a very powerful tool when it
comes to controlling noisy systems.

e Apollo 8 (December 1968), the first human
spaceflight from the Earth to an orbit around the
moon, would certainly not have been possible
without the Kalman filter (see
WWW.ion.org/museum/item view.cfm?cid=6&scid=5
&iid=293 ).

o Applications:

— Tracking

— Economics

— Navigation

— Depth and velocity measurements



http://www.ion.org/museum/item_view.cfm?cid=6&scid=5&iid=293
http://www.ion.org/museum/item_view.cfm?cid=6&scid=5&iid=293
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What is it used for?
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Tracking missiles

Tracking heads/hands/drumsticks
Extracting lip motion from video
Fitting Bezier patches to point data
Lots of computer vision applications
Economics

Navigation




1]
0

Key Concept

11111

e Noisy process data

e Estimate average
trajectories

e Smoothing: Sliding
window for averaging
(here size 64)

e But: If horizontal axis is time? We know
the past but not the future!

e Time-dependent process: Modeling of
process itself including noise estimates.
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Model for tracking
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e Object has internal state X,
- Capital indicates random variable X,
- Small represents particular value X

e Obtained measurements in frame i are Y,
- Value of the measurement Y,
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e State is linearly transformed plus
Gaussian noise

X, ~ N (Di X 1, Zdi )

e Relevant measures are linearly obtained
from state plus Gaussian noise

Yy, ~ N(I\/I.x. Zmi)

e Sufficient to maintain mean and
standard deviation
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. Prediction: What is the next state of
the object given past measurements

P(Xi‘Yo =VYo1ee0r Vig = yi—l)

. Data association: Which measures
are relevant for the state?

. Correction: Compute representation of
the state from prediction and
measurements.

p(xi‘Yo =VY5,-- s Vi =V, Y = yi)
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Concept Kalman Filtering
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Independence Assumptions
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e Only immediate past matters
P(X;[ Xy, X4 )= P(X[ X, ,)

e Measurements depend only on current
state

P(Y, Y, Y X )= P X P(Y .. Y X )
—Important simplifications

Fortunately it doesn’t limit to much!
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Spirit of Kalman Filtering:
A really simple example

We are on a boat at night and lost our position
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We know: ﬂ’

e Star position
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Fixed Position
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p is position of boat, v is velocity of boat
Pi = Pia

state is X =[p,]

Xi =D X, D, :[I]

We only measure position so
Mi :[I]’ Yi :Mixi :Xi
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Observer 1 makes a
measurement
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Conditional Density Function

yO’Zm0

X():y() N(y012m0)

2 =2 A |
0 Mo 2 0 2 4 6 8 10 12 14
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Then: Observer 2 makes a
measurement
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Conditional Density Function

ylazm1
X1:...? N(yl’zml)
Y — 9 2 0 2 4 6 8 10 12 14
1=

How does second measurement affect
estimate of first measurement?




Combine measurements &

—y
= = |
== variances: Kalman
e X, =% + K, (Y, — %)
2
O,
Kz = 2 2
01 GYz
11 1
=T 2t
o, o0, O,

Combine Variances
(statistics)




= = Combine measurements &
= = variances: Kalman
= X=X, Conditional Density Function
02 — 0'22 N (XZ’GZ)

2 0 2 4 6 8 10 12 14

Original estimates updated (corrected) in the
presence of a new measurement.
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KF operates by

1. Predicting the new state and its
uncertainty

2. Correcting with the new measurement
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A really simple example

We are on a boat at night and lost our position
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» move with constant velocity

We know:

* Star position
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But suppose we’'re moving
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2 0 2 4 6 8 10 12 14

e Not all the difference is error.
Some may be motion

e KF can include a motion model

o Estimate velocity and position
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Describes how the state changes over
time

The state for the first example was
scalar

The process model was "nothing
changes”

A better model might be constant
velocity motion X =[p v}

P = Py +(ADV
Vi =V,
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Measurement Model
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“"What you see from where you are”
not
“Where you are from what you see”
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Constant Velocity
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p is position of boat, v is velocity of boat
P = Pyt (A,

state is X =[p v]
1 At

X, =DX,, D=y 4

We only measure position so

M =[L O], Y,=[LOI[p vI'=p




1]
I

i

F

il

R —
L—

Multidimensional Statistics

To be seen as a generalization of the scalar-valued
mean and variance to higher dimensions.

L.

Hi = E(Xz')
Bij = cov(X;, X;) = B[(Xi — ) (X — pty)]

2 =E [(X - B[X]) (X - E[X])"]
var(X) = cov(X) = E [(X — E[X])(X — E[X])"]
cov(X,Y) =E [(X - EX])(Y - E[Y])T]

2 variables:
var(1,1) cov(1,2)
cov(2,1) wvar(2,2)

Sample points from a multivariste &
Gauzsian distribution with a standard
deviation of 3 in roughly the lower left-upper
right direction and of 1 in the othogonal
direction. Because the x and ycomponents
co-vary, the variances of xand ydo not
fully describe the distribution. & 2x2
covariance matrix iz needed; the directions
of the arrows correspond to the
eigenvectors of this covariance matrix and
their lengths to the square roots of the
eigervalues.

Source: Wikipedia



I
ﬁ

il

State and Error Covariance
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e First two moments of Gaussian process

Process State (Mean)

B

Error Covariance

2.4
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The Process Model
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Process dynamics

X, =D,X,,+

State transition Uncertainty
over interval

W, ~ N(O,Zdi )

Difficult to determine
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Measurement relationship to state

Y, =M X, +¢,

Measurement
matrix

&~ N(O,Zmi )
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Predict (Time Update)

a priori state, error covariance, measurement

Notation: X ~: Prediction, X *: Correction
- +
>(i o Di X -1
— T
|
Y =M X
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Measurement Update (Correct)
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Kalman gain
Minimizes posteriori error
covariance
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The Kalman Gain

4

L)

"]
‘
‘(
=N
f———]
=]
oy
./

R —
La—

Weights between prediction and measurements to posteriori
error covariance

K =M (MM +x, )
For no measurement uncertainty: Zm_ =0
K, =S MIMT (S ) "M =M,

Xi+ :Xi__l_Mi_l(yi _Mixi_): Mi_lyi

State 1s deduced only from measurement
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The Kalman Gain
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Simple univariate (scalar) example

O
K =

o +0,
a posteriori state and error covariance
X :xi‘+K(yi —xi‘)
o =1+K)o
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Summary

PREDICT ¢ ‘ CORRECT
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X =% +K (v, ~Mx )
7 :(I +KiMi)zi_

¥ =Dx,D +%,

K =M (MEZ M +3 )

L




= = Example: Estimating a
= Constant
NE—aall | The state transition matrix D =1

— + +
X = DXi—l +W =X, +W
The measurement matrix M =1
y. =MX +¢& =X +¢
Prediction

S =%, 45,
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Xi+ :Xi__l_Ki(yi _Xi_)

2i+ = (1+ K| )Zu_
K = ]
2 + 2
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Setup/Initialization
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Generate 50 samples centered around
-0.37727 with standard deviation of 0.1 (var
0.01).
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= = State and Measurements
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Filter was told the correct measurement variance.
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State and Measurements
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Filter was told that the measurement variance was 100
times greater (i.. 1) so it was “slower” to believe
the measurements.
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State and Measurements
Zm_= 0.0142=0.0001
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Filter was told that the measurement variance was 100
times smaller (1.e. 0.0001) so it was very “quick” to believe
the noisy measurements.
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Y Track: Moving then Still
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Motion-Dependent Performance
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2D Position-Velocity (PV)

Process Model (PV)

state transition state
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Example: Hand Gesture
Recognition and Tracking
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Kalman Filter Web Site
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http://www.cs.unc.edu/~welch/kalman/

e Electronic and printed references
— Book lists and recommendations
— Research papers
— Links to other sites
- Some software

e News
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Java-Based KF Learning Tool

e On-line 1D simulation
e Linear and non-linear
» Variable dynamics
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(Linear) Angle (Non-Linear)

http://www.cs.unc.edu/~welch/kalman/

......
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KF Course Web Page

A

3

[

/Iwww.cs.unc.edu/~tracker/ref/s2001/kalman/index.html

( http://www.cs.unc.edu/~tracker/ )

» Java-Based KF Learning Tool
» KF web page



http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html
http://www.cs.unc.edu/~tracker/
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e Azarbayejani, Ali, and Alex Pentland (1995).
“"Recursive Estimation of Motion, Structure, and
Focal Length,” IEEE Trans. Pattern Analysis and
Machine Intelligence 17(6): 562-575.

e Dellaert, Frank, Sebastian Thrun, and Charles
Thorpe (1998). “Jacobian Images of Super-
Resolved Texture Maps for Model-Based Motion
Estimation and Tracking,” IEEE Workshop on
Applications of Computer Vision (WACV'98),
October, Princeton, NJ, IEEE Computer Society.

e http://mac-welch.cs.unc.edu/~welch/COMP256/
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Extensions: Particle Filtering,
Condensation
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http://www.robots.ox.ac.uk/~misard/condensation.html

A. Blake, B. Bascle, M. Isard, and J. MacCormick,
Statistical models of visual shape and motion, in
Phil. Trans. R. Soc. A., vol. 356, pp. 1283-1302,
1998

B. Isard, M., Blake, and A., Condensation —
conditional density propagation for visual tracking,
in Int. J. Computer Vision, vol. 28, no. 1, pp. 5-28,
1998

C. Blake, A., Isard, M.A., Reynard, and D., Learning to
track the visual motion of contours, in J. Artificial
Intelligence, vol. 78, pp. 101-134, 1995



http://research.microsoft.com/apps/pubs/default.aspx?id=65809
http://research.microsoft.com/apps/pubs/default.aspx?id=66183
http://research.microsoft.com/apps/pubs/default.aspx?id=66183
http://research.microsoft.com/apps/pubs/default.aspx?id=66183
http://research.microsoft.com/apps/pubs/default.aspx?id=66183
http://research.microsoft.com/apps/pubs/default.aspx?id=65805
http://research.microsoft.com/apps/pubs/default.aspx?id=65805
http://www.robots.ox.ac.uk/~misard/condensation.html
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Extensions: Particle Filtering,
Condensation
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Figure 3. Factored sampling: a set of points s, the centres of the blobs in the figure. 1s sampled randomly from a prior density p(x). Each
sample is assigned a weight 7; (depicted by blob area) in proportion to the value of the observation density p(z |x = s™'). The weighted
point-set then serves as a representation of the posterior density p(x | z), switable for sampling. The one-dimensional case illustrated here extends
naturally to the practical case that the density 15 defined over several position and shape vanables.
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Extensions: Particle Filtering,
Condensation
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Figure 5. One time-step in the CONDENSATION algorithm: Each of the three steps—drift-diffuse-measure—of the probabilistic propagation
process of Fig. 2 is represented by steps in the CONDENSATION algorithm.
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Extensions: Particle Filtering,
Condensation

LA -

Jdms

o
———
e

SO0 s

sediiae

K ma

1200 s

T me

o ms

S0 ms

-
Time —

Figure 10. Tracking with multi-modal state-density: an approximate depiction of the state-density is shown. computed by smoothing the
distribution of point masses s}h ; 5;2) . ... inthe CONDENSATION algorithm. The density is. of course. multi-dimensional: its projection onto the
horizontal translation axis 1s shown here. The imitial distribution 1s roughly Gaussian but this rapidly evolves to acquire peaks corresponding to
each of the three people in the scene. The right-most peak drifts leftwards. following the moving person. coalescing with and separating from
the other two peaks as 1t moves. Having specified a tracker for one person we effectively have, for free, a multi-person tracker, owing to the

innate ability of the CONDENSATION algorithm to maintain multiple hypotheses.



