i)
I

il

(]
.

T R e—
T

view 3 view 2 view l view 4

K3 KN EN

Shape from Silhouettes III

Guido Gerig
CS 6320, Spring 2013

(credit: slides modified from Marc Pollefeys

UNC Chapel Hill, some of the figures and slides are adapted
from M. Pollefeys, 1.S. Franco, J. Matusik’s presentations,
and referenced papers)



1]
)

il

il

3

Ve R —
L—

e Silhouettes
— basic concepts

— use uncertain sil
— calibrate from si

Outline

— extract silhouettes
- fundamentals about using silhouettes
— reconstruct shapes from silhouettes

nouettes
houettes

e Perspectives anc

cool ideas
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Silhouette Consistency
Constraints: Forbes et al.

e http://www.dip.ee.uct.ac.za/~kforbes/Publications/P
ublications.html

o Keith Forbes, Anthon Voigt and Ndimi Bodika. Using
Silhouette Consistency Constraints to Build 3D
Models. In Proceedings of the Fourteenth Annual
Symposium of the Pattern Recognition Association of
South Africa (PRASA 2003), November 2003.

o Keith Forbes, Anthon Voigt and Ndimi Bodika. Visual
Hulls from Single Uncalibrated Snapshots Using Two
Planar Mirrors. In Proceedings of the Fifteenth Annual
Symposium of the Pattern Recognition Association of
South Africa (PRASA 2004), November 2004.
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http://www.dip.ee.uct.ac.za/~kforbes/Publications/Forbes2003Prasa.pdf
http://www.dip.ee.uct.ac.za/~kforbes/Publications/Forbes2003Prasa.pdf
http://www.dip.ee.uct.ac.za/~kforbes/Publications/Forbes2003Prasa.pdf
http://www.dip.ee.uct.ac.za/~kforbes/Publications/Prasa2004ForbesKA.pdf
http://www.dip.ee.uct.ac.za/~kforbes/Publications/Prasa2004ForbesKA.pdf
http://www.dip.ee.uct.ac.za/~kforbes/Publications/Prasa2004ForbesKA.pdf
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Merging sets of silhouettes
(Forbes et al.)

iy

»

i

F

(il

|

-V camera 1

L—

O]

©

Figure 2: Two views of the epipolar geometry of a scene: (a) shows a front view. an
Figure 1: Two silhouette views of a duck showing (a) the camearas, each raprasentad (b) shows a side view lOOkiﬂg onto the scene in a direction pamllel to the baseline.
by a camera centre and image plane, (b) the visual cones corresponding to each of the
two silhouettes, and (c) the visual bull corresponding to the rwo silhoustres.




Review Epipolar Geometry
Matrix Form
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p-[tx(Rp)] =0

p . Rp'=0 o




Review Epipolar Geometry
The Essential Matrix

. Matrix that relates image of point in one camera to a
second camera, given translation and rotation.




I
ﬁ

il

Review Epipolar Geometry

The Essential Matrix
gp' 1s the epipolar line corresponding to p’ in the
left camera.
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au+bv+c =0

p=(u,v,1)"
[ = (ajbjc)T
[-p=0

&p-p=0
p Ep' =0

T
Similarly & p is the epipolar line corresponding to p in the
right camera
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Merging sets of silhouettes
(Forbes et al.)
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Figure 3: The epipolar tangency constraint: the epipolar tangent line touches the
silhouette at the projection of the frontier point, as shown in (a) and (b); the projection
of this line onto the image plane of the opposite camera 1s constrained to coincide with
the opposite epipolar tangency line.

e P,, P,: Frontier points

* Pi,o, Pa1g Projections of Py (P131, P211 -> Py)

e Epipolar geometry: line e;,p;>o Same as line
defined by E,{1P>1g
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Reprojection Errors: Measure of
Inconsistencies
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Reprojection error: Shortest

o py distance from epipolar
/ Expa tangency to epipolar line of

ke r f corresponding point

Exnpn 121 1
° ! e Distances can be computed
via E; — cost function
@ associated to pose
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e Pose estimation: Adjust
pose parameters to
minimize cost fct:

(&)
m n 1
t d>
Figure 4: Epipolar tangent lines with the projection of the epipolar tangent lis cost = z z Z ifk
of the cppesite view and incorrect pose information: since the pose information i=1j=1k=10

incorrect, the epipolar tangent lines do not project onto one another. The silhouet
are inconsistent with one another for the given viewpoints. The reprojection esrot
a measure of the degree of inconsistency.
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Figure 5: Visual lmll models of a wing mat (2)—d) show four medels each budlt from
five silhonettes, (&) shows the model butlt from the 20 stlbouetes vsed in (2)1—(d) aftar
the poses of all silbouetes bave been determined in 3 commnon reference frame.
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Figure 7: The rwenty visual cones of the cat

@

Figure 6: Visual bull models of a toy cat: (2)<{d) show four models eack built from
five silhousettes, (&) shows the model built from the 20 silhouettes used in (a)—(d) after
the poses of all silhouettes have been detenuined in a common reference frame.
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Smart Low Cost Solution
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e Visual Hulls from
Single
Uncalibrated
Snapshots Using
Two Planar
Mirrors

o Keith Forbes,
Anthon Voigt,
Ndimi Bodika,
PRASA2004 (link)



http://www.dip.ee.uct.ac.za/~kforbes/Publications/Prasa2004ForbesKA.pdf
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Concept
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Figure 1. Reflechon of a duck m 2 numer: (3) shows the image seen by the real
camera, (b} shows the silhouetts views seen by the real camera and by the virtual
camera that is the reflaction of the real camera.

Virtual camera
does not really
exist

Determine
images it would
observe from
the real
camera’s image

Therefore: Two
silhouettes
captured by real
camera are two
views of the real
object
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Visual Hulls from 2 Mirrors

Then I manually segmented the five silhouettes in Matlab using polyvgons.
The coordinates of the five polygons are the inputs to the Matlab code used
to calculate the visual hull.

Christine Xu, Class Project CV UNC Chapel Hill, 2005
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Visual Hulls from 2 Mirrors

Epipolar geometry of the object's five silhouettes is

determined directly from the image without knowing
the poses of the camera or the mirrors.

Once the pose associated with each silhouette has
been computed, a five-view visual hull of the object

can be computed from the five silhouettes.

After getting an initial estimation of all the camera
poses, we can use the non-linear least square
Levenberg-Marquardt method to iteratively minimize
the reprojection error across every pair of
silhouettes.




4

Similar as before: Epipolar
Tangency Lines
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Figure 4: Images of a scene: (2) shows the raw image, (b)) shows the segmentad
image with silhoustte outlines and epipolar tangency lines, and (¢} shows the derived
orthographic image thar would be seen by an orthographic camera.
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Visual Hulls from 2 Mirrors
(Forbes et al.)

Figure 4.5 shows how the epipoles eV1, eV2, eVi21, and
eV212 are computed from the outlines of the five
silhouettes observed by the real camera.
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Figure 4.5: Computing epipoles 771, er2. e17121, and e7212 from the silhouette outlines in an image.

Note that the epipoles eV1, eV2, eV121, and eV212 are
collinear, since they all lie in both the image plane of the

real camera and in the plane PC in which all camera centres lie.
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Visual Hulls from 2 Mirrors
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The four colinear epipoles determined directly using silhouette outlines are
showed as follows.

Ve R —
L—

PR =
\ / / M
I e, B
i -

kL,?




I
ﬁ

(i)

Visual Hulls from 2 Mirrors:
Merge multiple 5 view hulls
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Christine Xu: Calculations in Matlab, all calculations <1Min
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What if my views aren't calibrated at all?
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e Possible to calibrate from silhouettes

e Idea: optimize for a set of calibration parameters
most consistent with silhouettes

e Boyer 05: define a dense distance between two
cones
— minimize the combined distances between viewing cones
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extremal .
frontier point

viewpoint

silhouette

visual hull
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Camera network calibration

using silhouettes
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e 4 NTSC videos recorded by 4 computers for 4 minutes

e Manually synchronized and calibrated using MoCap
system




Additional slides:
Not used in Class

1]
)

il

il

F

Ve R —
o




g

Multiple View Geometry of
Silhouettes
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Frontier Points
Epipolar Tangent

XFx =0

X;T FX: _ O view | -_

& ; view 2

Points on Silhouettes in 2 views do not correspond in
general except for projected Frontier Points

Always at least 2 extremal frontier points per silhouette
In general, correspondence only over two views
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Camera Network Calibration from Silhouettes
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(Sinha et al, CVPR'04)
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e 7 or more corresponding frontier points needed to
compute epipolar geometry for general motion

e Hard to find on single silhouette and possibly
occluded

However, Visual Hull systems record many silhouettes!
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A Compact Representation for Silhouettes
Tangent Envelopes
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Convex Hull of Silhouette.

H

e Tangency Points
for a discrete set of angles.

e Approx. 500 bytes/frame. Hence a whole video
sequences easily fits in memory.

e Tangency Computations are efficient.
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Model Verification
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Why use a Visual Hull?

Can be computed efficiently
No photo-consistency required

As bootstrap of many fancy refinement ...

Why not a Visual Hull?

No exact representation in concavity
Sensitive to silhouette observation
Closed surface representation
Silhouette loses some information ...
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Literature

Theory

— Laurentini ‘94, Petitjean ‘98, Laurentini 99
Solid cone intersection:

- Baumgart ‘74 (polyhedra), Szeliski '93 (octrees)
Image-based visual hulls

— Matusik et al. ‘00, Matusik et al. ‘01

Advanced modeling

— Sullivan & Ponce 98, Cross & Zisserman ‘00,
Matusik et al. ‘02

Applications
- Leibe et al. ‘00, Lok ‘01, Shlyakhter et al. ‘01, ...



Extension:
Multi-view Stereo with exact
silhouette constraints
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Sinha Sudipta, PhD thesis UNC 2008,
Silhouettes for Calibration and
Reconstruction from Multiple Views




S8 Volumetric Formulation
e Visual hull
Inner
= Offset

Surface S

Find S which minimizes fs O(s)ds

0(s) is a measure of the photo-
inconsistency of a surface element at: s
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Silhouette Consistent Shapes
Viewing Ray

Surface

50
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Silhouette Consistent Shapes
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Viewing Ray

Surface

51
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Photoconsistency
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e Photo-consistency is a function that how measures
the likelihood of a 3D point of being on a opaque
surface in the scene. This likelihood is computed
based on the images in which this 3D point is
potentially visible.

e An ideal Lambertian surface point will appear to have
the same color in all the images.

e Photo-consistency can be measured in image space
or object space.

- Image space computations compare image patches
centered at the pixels where the 3D point projects.

— Object space computations are more general — a patch
centered at the 3D point is projected into the images
and the appearance of the projected patches are
compared.
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Photoconsistency

Figure 6.19: Computing multiple hypotheses for 2-view matches. These 2-view matches
are triangulated and the generated 3D points are used to accumulate votes within a 3D vol-
ume. The photo-consistency measure is derived from these votes. A slice through the photo-
consistency volume (interior of visual hull) 1s shown. Here black indicates regions of high
photo-consistency.

Sinha Sudipta, PhD thesis UNC 2008,
Silhouettes for Calibration and
Reconstruction from Multiple Views
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Mesh with Photo-consistency

shown with

Photo-consistency

54



Detect Interior
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ibility of the
onsistent Patches

Also proposed by
Hernandez et. al. 2007, Labatut et. **
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Results
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After graph-cut
optimization

After local
refinement

¥
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y Evaluation
Accuracy | Completeness Time
0.69 mm 97.2 % 110 mins.
0.79 mm 94.9 % 104 mins.




