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Photometric Stereo, Shape
from Shading SfS
Chapter 2 new F&P

Guido Gerig
CS 6320, Spring 2013

Credits: M. Pollefey UNC CS256, Ohad Ben-Shahar CS BGU, Wolff JUN
(http://www.cs.jhu.edu/~wolff/course600.461/week9.3/index.htm)




Depth from Shading?

First step: Surface
Normals from Shading

Second step:
Re-integration of
surface from Normals
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Examples

111,
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http://www.youtube.com/watch?v=sfCQ7f7PMbc&feature=related

u

Simulated voyage over the surface of Neptune's large moon Triton

http://www.youtube.com/watch?v=nwzVrC2GQXE

http://www.youtube.com/watch?v=KiTA6ftyQuY



http://www.youtube.com/watch?v=sfCQ7f7PMbc&feature=related
http://www.youtube.com/watch?v=sfCQ7f7PMbc&feature=related
http://www.youtube.com/watch?v=KiTA6ftyQuY
http://www.youtube.com/watch?v=KiTA6ftyQuY
http://www.youtube.com/watch?v=nwzVrC2GQXE
http://www.youtube.com/watch?v=nwzVrC2GQXE
http://www.youtube.com/watch?v=nwzVrC2GQXE
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Shape from Shading
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Inverting the image formation process
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Image formation = “Shading from shape” (and light sources)

Credit: Ohad Ben-Shahar CS BGU
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Shape from Shading
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Authors: Emmanuel Prados and Olivier Faugeras

CVPR'2003, International Conference on Computer Vision and Pattern Eecognition, San Diego, CA, USA, June 2005,

a) Synthetic image generated from the classical Mozart's face [Zhang-Tsai-etal:99]; b) reconstructed surface from a) by new algorithm;
c) real image of a face; d)-e) reconstructed swface from ¢) by new algorithm.
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Photometric Stereo
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e Assume:
— a local shading model

— a set of point sources that are infinitely
distant

— a set of pictures of an object, obtained In
exactly the same camera/object
configuration but using different sources

— A Lambertian object (or the specular
component has been identified and
removed)
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Setting for Photometric Stereo
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Multiple images with different lighting (vs
binocular/geometric stereo)

Camera

| [
5 : A/
Pt Surface Plane/
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Goal: 3D from One View and
multiple Source positions
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Usable Data

Input Images Mask
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Needle Diagram
Surface Normals
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Scene Results
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Projection model for surface recovery -
usually called a Monge patch
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Image
Plane

direction
of projection

height
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Lambertian Reflectance Map
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LAMBERTIAN MODEL

E =r<nn>=rCoOSq
Y.

(p,q,'l) O

COSC/: 1+ ppL +qu
J1+p2+g2y1+p +q,”




REFLECTANCE MAP IS A VIEWER-CENTERED
REPRESENTATION OF REFLECTANCE

(le fy ) '1) =

z=f(x,y)
Surface

Orientation
A J
('fX’ 'fy ) l)
Vj\

X

IMAGE PLANE




REFLECTANCE MAP IS A VIEWER-CENTERED
REPRESENTATION OF REFLECTANCE

(-fx Ty, 1) B ('p’ -d, 1)

P, g comprise a gradient or gradient space representation for
local surface orientation.

Reflectance map expresses the reflectance of a material directly

In terms of viewer-centered representation of local surface
orientation.
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Reflectance Map (ps=0, gs=0)
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The Reflectance Map — Lambertian surface from overhead source position

1

R(p,q)=

\Xp2+q2+l
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I(x,y)= p(N-[0,0,1])= p

Z

Reflectance Map

Shading on Lambertian surface — Overhead point source

(x.y. H(x.7))

|
\fp2+q2+l

=R(p.q)

i

L

Credit: Ohad Ben-Shahar CS BGU
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Reflectance Map
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Shape from Shading

Shading on Lambertian surface — General point source

-p-L.—q- L, +L, pPpr+q-q;+1

I=p(N-L)=p

>

(v, . H(x, 7)) ¥

Credit: Ohad Ben-Shahar CS BGU
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Reflectance Map
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The Reflectance Map — Lambertian surface from general source position

pptqeq;+1
R(p.q) = zpf? (AR
\/p +q +1\/pf_ +q; +1

[

Gradient point of maximum brightness
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Figure 10-13. The reflectance map is a plot of brightness as a function of
surface orientation. Here it is shown as a contour map in gradient space. In the
case of a Lambertian surface under point-source illumination, the contours turn
out to be nested conic sections. The maximum of R(p,q) occurs at the point
(p,q) = (ps,qs), found inside the nested conic sections, while R(p,q) = 0 all
along the line on the left side of the contour map.
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Reflectance Map

Isophote |

Given Intensity | in image,
there are multiple (p,q)
combinations (= surface
orientations).

O Use multiple images with
different light source
directions.

Figure 10-13. The reflectance map is a plot of brightness as a function of
surface orientation. Here it is shown as a contour map in gradient space. In the
case of a Lambertian surface under point-souree illumination, the contours turn
out to be nested conic sections. The maximum of R(p,g) cccurs at the point
(p,q) = (ps,ga), found inside the nested conic sections, while R(p,q) = 0 all
along the line on the left side of the conlour map,



l]
,ﬁ

Multiple Images = Multiple
Maps
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Can isolate p, g as contour intersection

Figure 10-21. In the case of a Lambertian surface illuminated successively by
two different point sources, there are at most two surface orientations that pro-
duce a particular pair of brightness values. These are found at the intersection
of the corresponding contours in two superimposed reflectance maps.




Example: Two Views

[(x,y)=R/(p.q)
IE(X,Pl)’) — Rg(pn Q)

Photometric Stereo

[ER:]

Still not unique for certain intensity pairs.




Constant Albedo

I,=pS, N

Photometric Stereo

PN =S71

Solve linear equation system
to calculate N.
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== Varying Albedo
= =
=gl Solution Forsyth & e Qut of shadow:
Ponce:
I(z,y) = kB(x)
For each point source, we — kB(z,y)
know the source vector (by :@p ;t,QN T y) @

assumption). We assume we
know the scaling constant of
the linear camera (k). Fold
the normal (N) and the
reflectance (p(Xx,y)) into one
vector g, and the scaling = In shadow:
constant and source vector I (X, y) =0
into another V;.

= g(m y) - Vi

where g(z,y) = p(xz,y) N (x,y) and V| = kS, where k is the constant connecting
the camera response to the input radiance.




Multiple Images:
Linear Least Sguares Approach

e Combine albedo and normal
e Separate lighting parameters
e More than 3 images == overdetermined system

i(z,y) = {L(z,y), L(z,y), ..., In(z,y)}

i(z,y) = Vg(z,y) _ _
g is obtained by solving this linear system. g(X,y):V_ll(X,y)

e How to calculate albedo p and N?
g(x,y) = p(x, yIN(xy)

- N=2%, p(x,y) = |g




Example LLS Input

Problem: Some regions in some images are in
the shadow (no image intensity).




—g=W Dealing with Shadows (Missing

— —
== Info)
__,_“_:' r each point source, ! Out of shadow:
know the source
l.(X,y) = kB(X,
tor (by assumption). () ()
2 assume we know the = knr(x, y)(N(x, y) - Sj)
ling constant of the =g(x,y)- V.
ear camera. Fold the | :
mal and the
lectance into one ! In shadow:
tor g, and the scaling _
l;(x,y) =0

stant and source
tor into another Vj No partial shadow



= = Matrix Trick for Complete
=" = Shadows
‘_: e Matrix from Image Vector:
Liz,y) . 0 0
I(z,y) = -:]' Iy(xz,y) ... 0
0 0 v Tnlz,y)

e Multiply LHS and RHS with diag matrix

=IVg(z,y)
212(x,y)0 %I L(X,y) 0 . 0 anVT('j
C —9
|2(X y)T = ¢ 0 L(X,y) - Tse vV, _g(x V)

¢ . . . o =¢

glf(x,y)a & 0 . 0 I.(x, y)ﬂgv & T

| |

Unknown

Known Known Known

O Relevant elements of the left vector and the matrix
are zero at points that are in shadow.
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Obtaining Normal and Albedo
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Given sufficient sources, we can solve the
previous equation (most likely need a least
squares solution) for g(x, vy).

u

Recall that N(X, y) Is the unit normal.

This means that r(x,y) iIs the magnitude of
a(Xx, y).
This yields a check

— If the magnitude of g(Xx, y) is greater than 1,
there’s a problem.

And N(X, y) = g(Xx, y) 7/ r(x,y).
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Example LLS Input
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Example LLS Result
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e Reflectance / albedo:
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Surface

ientatio?




Goal
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Shape as surface with depth and normal

__.
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Recovering a surface from
normals - 1
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ecall the surface iIs ¥ If we write the known
ritten as vector g as

(x,y, f(x,y)) 20,(X,y)o

X, V)Y=C¢a, (X, V)"
his means the normal 9(x.¥) ggZ( y)+
as the form: €05(X,y)s

-1 1 Then we obtain values
)= . . for the partial derivatives
y 8\/1‘2 + f2+14€ 1y+ of the surface:
(6, ¥) = (0%, )/ (%, ¥))
(% ¥) = (8.(x,¥)/9:(x.Y))




Recovering a surface from

= =
== normals - 2
———=mgl | Recall that mixed second | \We can now recover the
partials are equal --- this surface height at any
gives us an integrability point by integration

check. We must have: along some path, e.g.

1(9,(x, y)/95(x, ¥)) _ X
Ty f(X,y) = f,(s,y)ds+
(g, (%, ¥)/9:(x. ) :

y
fix ) f, ()t +c
0
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Height Map from Integration



Possible Solutions

* Engineering approach: Path integration
(Forsyth & Ponce)

 In general: Calculus of Variation
Approaches

e Horn: Characteristic Strip Method

« Kimmel, Siddiqgi, Kimia, Bruckstein: Level
set method

e Many others ....



Shape by Integation (Forsyth&Ponce)

« The partial derivative gives the change in surface height
with a small step in either the x or the y direction

* \We can get the surface by summing these changes in
height along some path.

" (Of O
Fa,y) = ){ (aiag) e

For example, we can reconstruct the surface at (u,v) by starting at (0,0), sum-
ming the y-derivative along the line x = 0 to the point (0,v), and then summing
the xz-derivative along the line y = v to the point (u,v)

B + af | U af '
f(u-;b)—'/o oy + [ @ vde

J0



Obtain many images in a fixed view under different illuminants

Determine the matrix V from source and camera information

Create arrays for albedo, normal (3 components),
p (measured value of gl) and

q (measured value of gu)

For each point in the image array
Stack image values into a vector i
Construct the diagonal matrix T
Solve IVg =11

to obtain g for this point

albedo at this point is |g/|

normal at this peoint is g
p at this point is iﬂ

e

, . . Ni
q at this point is N

end

Check: 1is [%ﬁ 5%}2 small everywhere?

top left corner of height map is zero
for each pixel in the left column of height map

height value=previous height value + corresponding q value
end

for each row
for each element of the row except for leftmost

height value = previous height value + corresponding p value

end
end

Simple Algorithm
Forsyth & Ponce

Problem: Noise and
numerical (in)accuracy are
added up and result in
distorted surface.

Solution: Choose several
different integration paths,
and build average height
map.
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Mathematical Property:
Integrability
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e Smooth, C2 continuous surface:
Z(X,Y)xy=Z(X,Y)yx

& check if (gz — 22 is small




SHAPE FROM SHADING
(Calculus of Variations Approach)
o First Attempt: Minimize error in agreement

with Image Irradiance Equation over the
region of interest:

00 (1(x,¥) - R(p, ))* dxdy

object




SHAPE FROM SHADING
(Calculus of Variations Approach)

o Better Attempt: Regularize the Minimization of
error in agreement with Image Irradiance Equation
over the region of interest:

00 P+ P2+ 9% +a%y + I(1(x,y) - R(p, @))* dxdy

object



Horn: Characteristic Strip Method
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H

Small step in x,y — change in depth: Chapterll,
pp. 250-255
dz=pbxr+qdy

New values of p,q at this new point (X,y):

bp=roéx+soy and oOg=s0x-+10y
(r, s, t: second partial derivatives of z(x,y) w.r.t. x and y)

P\ _m (%) H=(" %) Hessian: curv. of surface

r:ﬂ_p S:ﬂp:ﬂq :ﬂ_q

X Ty Ix Ty
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Horn: Characteristic Strip Method

Horn,
Irradiance Equation, Reflectance Map: | Chapterll,

pp. 250-255
E(z,y) = R(p,q)

Derivatives (chain rule):

E;=rR,+sR, and Ey=sRk,+tR,,

() =5 (%)

Relationship between gradient
In the Image and gradient in the
reflectance map




==~ Horn: Characteristic Strip Method
— Horn,
S 2 Equations for 3 unknowns (rs,t): We | Chapterll,
can’t continue in artibrary direction. pp. 250-255

— Trick: Specially chosen direction

bz\ (R, 5 Step in image E(x,y) parallel
W\ Ry ¢ to gradient in R
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Horn: Characteristic Strip Method

Horn,
2 Equations for 3 unknowns (r,s,t): We | Chapterll,
can’t continue in artibrary direction. pp. 250-255

— Trick: Specially chosen direction

Step in image E(x,y) parallel
to gradient in R

Solvmg for new™alues for p,q:

( :c
Change In (p,g) can

( ) ( )g be computed via
 gradient of image
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Horn: Characteristic Strip Method

Figure 11-6. Curiously, the step taken in pg-space is parallel to the gradient of
£i(z,y), while the step taken in zy-space is parallel to the gradient of R(p, q).



Horn: Characteristic Strip Method

T = Rp, Y = Ry, z=phk,+qhRy,
ﬁzEma (.:'"I‘_"'Eya
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dots denote differentiation with respect to &

Solution of differential equations: Curve on surface

X+68X, y+dy, Z+48zZ. p+ép. q+8q
X.¥.2.0.4
Figure 11-5. The solution of the shape-from-shading problem is determined by

solving five differential equations for z, v, z, p, and ¢. The result is a characteristic
strip, a curve in space along which surface orientation is known.
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Horn: Characteristic Strip Method

Shape recovery via characteristic strips

Shape from Shading via Characteristic Curves
Given
* I{x,v) of an (orthographic) projection of unknown Hyx,v)
* The reflectance map R(p.q)
* Initial data x, 1, H(X,¥,), DXV, q(Xp0,)
Develop a curve solution on Hfx,y) by taking small steps of size 0s
via the system & =R &
=R
&H =(pR, +qR, )%
p=1%
qg=1&
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Horn: Characteristic Strip Method
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Horn,
Chapterll,
pp. 250-255

Figure 11-7. The shape-from-shading method is applied here to the recovery
of the shape of a noze. The first picture shows the (crudely quantized) gray-lovel
image available Lo the program. The second picture shows the base charactoristics
superimposed, while the third shows a contour map computed from the elevations
found along the characteristic curves,
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Another Solution to SFS:
Kimmel, Siddigi, Kimia, Bruckstein
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Proposed Solution: Evolve a curve such that
it tracks the height contours of z(x, y).
[Kimmel et al., [JCV95]

H

Height climbed while progressing a distance
|AC| in the direction n in_the (x.y) plane is
given by |AC| = |Az|cot(a).

LAC

Let 2 denote time in the course of evolution,

i.e., z=t. Since . = pAcos(a), we have /\]AZ\
AC E/pA ol
A8 = cot(a) = oan
Al V1= (B/p))? n

pdf document
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Kimmel, Siddiqgi, Kimia, Bruckstein

Proposed Solution: Evolve a curve such that
it tracks the height contours of z(x, y).
[Kimmel et al., [JCV95]

T he curve evolution equation is:

{ ac E/pA .

1,
a/l —E2/(pA)?
0

C(s.0) (s).
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= Kimmel, Siddiqgi, Kimia, Bruckstein
Ry
I —- Examples - Pyramids e
. —
s
shaded image equal height contours

numerical solution true surface
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== Kimmel, Siddiql, Klmla Bruckstein
& o
E, ’—':- Examples - Three Mountains -
== —
R —
R
shaded image equal height contours

numerical solution true surface
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Application Area: Geography
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Application: Braille Code

Abbaldung 3

Ciben imks: Messanordnung mit einer Kamera und vier blauen LED-Leuchtfeldern.
Liten finks: Ausschnit einer Maltschachtzl mit Glindenschrift-IMragung.

Rechts: 3D-Bild nach SF3-Analyse. Damunter ist ein Hohenprofil durch drei Braile-Punkte dargestelit

pdf document
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Mars Rover Heads to a New
Crater NYT Sept 22, 2008
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Limitations
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e Controlled lighting environment
— Specular highlights?
— Partial shadows?
— Complex interrreflections?

e Fixed camera
— Moving camera?
— Multiple cameras?

== Another approach: binocular /
geometric stereo
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