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Photometric Stereo, Shape
from Shading SfS
Chapter 2 new F&P

Guido Gerig
CS 6320, Spring 2013

Credits: M. Pollefey UNC CS256, Ohad Ben-Shahar CS BGU, Wolff JUN
(http://www.cs.jhu.edu/~wolff/course600.461/week9.3/index.htm)
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Depth from Shading?

First step: Surface
Normals from Shading

Second step:
Re-integration of
surface from Normals
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Examples
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http :/mww.youtube.com/watch?v=sfCQ7f7PMbc&feature=related
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Simulated voyage over the surface of Neptune's large moon Triton

http ://www.y outube.com/watch?v=nwz VIC2GQXE

Original Image OpenGL Window



http://www.youtube.com/watch?v=sfCQ7f7PMbc&feature=related
http://www.youtube.com/watch?v=sfCQ7f7PMbc&feature=related
http://www.youtube.com/watch?v=sfCQ7f7PMbc&feature=related
http://www.youtube.com/watch?v=KiTA6ftyQuY
http://www.youtube.com/watch?v=KiTA6ftyQuY
http://www.youtube.com/watch?v=KiTA6ftyQuY
http://www.youtube.com/watch?v=nwzVrC2GQXE
http://www.youtube.com/watch?v=nwzVrC2GQXE
http://www.youtube.com/watch?v=nwzVrC2GQXE

1]
)

Shape from Shading
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Inverting the image formation process
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Image formation = “Shading from shape” (and light sources)

Credit: Ohad Ben-Shahar CS BGU
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Shape from Shading
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Authors: Emmanuel Prados and Olivier Faugeras

CVPR'2003, International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005.

a) i\
-40 pa—
45 /
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c) d)

a) Synthetic image generated from the classical Mozart's face [Zhang-Tsai-etal:99]; b) reconstructed surface from a) by new algorithm;
c) real image of a face; d)-e) reconstructed surface from c) by new algorithm.
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Photometric Stereo
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e Assume:
— a local shading model

— a set of point sources that are infinitely
distant

— a set of pictures of an object, obtained in
exactly the same camera/object
configuration but using different sources

— A Lambertian object (or the specular
component has been identified and
removed)
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Setting for Photometric Stereo
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Multiple images with different lighting (vs
binocular/geometric stereo)

Camera
Eﬂ;
ﬁ

e g Y,
Surface Plane/




)

1],

Goal: 3D from One View and
multiple Source positions
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Usable Data

Input 1Images Mask
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Scene Results
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Projection model for surface recovery -
usually called a Monge patch
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Image
Plane

direction
of projection

height
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Lambertian Reflectance Map
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LAMBERTIAN MODEL

E =p<nn>=pCOSHO
Y.

(p,q,‘l) O

COS@ — 1+ ppL + qu
\/1+ p°+q° \/1+ p°+q,°




REFLECTANCE MAP IS A VIEWER-CENTERED
REPRESENTATION OF REFLECTANCE

(fxify 1 _1) =

z=f(x,y)
Surface

Orientation
A _/
v (-fx, -fy 1 1)
ﬂ\

X

IMAGE PLANE




REFLECTANCE MAP IS A VIEWER-CENTERED
REPRESENTATION OF REFLECTANCE

(-fx, -fy, 1) > ('p’ -d, 1)

P, g comprise a gradient or gradient space representation for
local surface orientation.

Reflectance map expresses the reflectance of a material directly
In terms of viewer-centered representation of local surface
orientation.
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Reflectance Map (ps=0, gs=0)
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The Reflectance Map — Lambertian surface from overhead source position

R(p,q) =
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Reflectance Map
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Shading on Lambertian surface — Overhead point source

1
\fp2+q2+l

I(x,»)= p(N-[0,0.1)= p

Z

=R(p.q)

e

(X,y,H(x,y)) L N

Credit: Ohad Ben-Shahar CS BGU
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Reflectance Map
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Shape from Shading

Shading on Lambertian surface — General point source

—p-L-x—q-L},+LZ p-p;+q-q;+1

I=p(N-L)= =
Pl ) p1Jp2+q2+l\/sz+Ly2+L22 p,,/p2+q2+l\/p12+qlz+1
AT

(x, v, H(x,)) o

Credit: Ohad Ben-Shahar CS BGU
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Reflectance Map
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The Reflectance Map — Lambertian surface from general source position

p;+q-q; +1
R(qu): : p QpL. q Q; 2
\/p +q +l\/pl +q,” +1

-

Gradient point of maximum brightness



1]
I

Reflectance Map (General)
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Figure 10-13. The reflectance map is a plot of brightness as a function of
surface orientation. Here it is shown as a contour map in gradient space. In the
case of a Lambertian surface under point-source illumination, the contours turn
out to be nested conic sections. The maximum of R(p,q) occurs at the point
(p,q) = (ps,qs), found inside the nested conic sections, while R(p,q) = 0 all
along the line on the left side of the contour map.
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Reflectance Map
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Isophote 1

N

l | ' (ps’qs
Given Intensity I in image, 0z \Q(/ :

S

there are multiple (p,q) ==
combinations (= surface o7
orientations). oy \\

Figure 10-13. The reflectance map is a plot of brightness as a function of

= Use mu Itl ple | ma ges W|th surface orientation. Here it is shown as a contour map in gradient space. In the

case of a Lambertian surface under point-source illumination, the contours turn

|ff ren || h r out to be nested conic s‘ections. The maximum of R(p,q) occurs at the point

d_ e e t g t source (p,q) = (ps,gs), found inside the nested conic sections, while R(p,q) = 0 all
directions. along the line on the left side of the contour map.




4

Multiple Images = Multiple
Maps

Can isolate p, g as contour intersection
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Figure 10-21. In the case of a Lambertian surface illuminated successively by
two different point sources, there are at most two surface orientations that pro-
duce a particular pair of brightness values. These are found at the intersection
of the corresponding contours in two superimposed reflectance maps.




Example: Two Views

I (x,y)=R/(p.q)
Il(xny) — Rz(p: Q)

Photometric Stereo

Ps— 49—
z Vf !
15 B 1
. . |
Still not unique for certain intensity pairs.




Constant Albedo

I,=pS,N

Photometric Stereo

PN =S

Solve linear equation system
to calculate N.
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= Varying Albedo
e
=gl | Solution Forsyth & e QOut of shadow:
Ponce:
I(z,y) = kB(x)
For each point source, we = kB(z,y)
know the source vector (by :@p (z QlN z,Y) - @
assumption). We assume we
= Q( y) - Vi

know the scaling constant of
the linear camera (k). Fold
the normal (N) and the
reflectance (p(x,y)) into one
vector g, and the scaling e In shadow:
constant and source vector I(x,y) =0
into another V;,

where g(z,y) = p(xz,y) N (x,y) and V| = kS, where k is the constant connecting
the camera response to the input radiance.
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Multiple Images:
Linear Least Squares Approach

e Combine albedo and normal
e Separate lighting parameters
e More than 3 images => overdetermined system
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Vi
V = ( Vg ) %(ﬂi,y) — {Il(ﬂf,y),fg(ﬂ?,y),...}In(IB?y)}T

i(z,y) = Vg(z,y) _
g is obtained by solving this linear system: g_ (X,y):V_1 I(X,y)

e How to calculate albedo pand N?
g, y) = p(x, y)N(xy)

- N=L, p(xy) =gl
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Example LLS Input
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Problem: Some regions in some images are in
the shadow (no image intensity).




Dealing with Shadows (Missing

——
=" Info)
——MB0r each point source, ® Out of shadow:
know the source
I.(x,y)=kB(x,
tor (by assumption). /() (%.)
> assume we know the = kp(x, y)(N(x, y)eS ].)
ling constant of the _o(x.v)e V.
car camera. Fold the B52)e Y,
mal and the
lectance into one ® [n shadow:
tor g, and the scaling B
Ij(X9Y) _ O

stant and source
tor into another Vj No partial shadow
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Matrix Trick for Complete
Shadows

e Matrix from Image Vector:

I(z,y) 0 0
Leg—| O EEw o0
0 0 v In(zyy)

e Multiply LHS and RHS with diag matrix
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Ii =1IVg(z,y)
(If(x,y)\ (Il(x,y) 0 .. 0 \(VIT\
2 0 L (x, . .. g
le (x,y)J L (63) : Hv Jg -
17 (x, ) 0 .0 Lewl\v’ I
| | ///
Known Known Unknown

Known

= Relevant elements of the left vector and the matrix
are zero at points that are in shadow.




iy
,ﬁ

1)

Obtaining Normal and Albedo
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Given sufficient sources, we can solve the
previous equation (most likely need a least
squares solution) for g(x, y).

Recall that N(Xx, y) is the unit normal.

This means that p(x,y) is the magnitude of
g(x, y).
This yields a check

— If the magnitude of g(X, y) is greater than 1,
there’s a problem.

And N(x, y) = d(Xx, y) / p(X,y).

- —
-
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Example LLS Input
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Example LLS Result
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e Reflectance / albedo:

H




wi il __%__ _._
\\ss___nw



Goal
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Shape as surface with depth and normal
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Recovering a surface from

= =
== normals - 1
=== ®Rccall the surface is ® If we write the known
ritten as vector g as
(xﬁyﬂf(xﬁy)) (gl (xay)\
X, — Xy
his means the normal gxny)=| &(%.7)
as the form: g,(x,y)
( fx\\ ® Then we obtain values
_f for the partial derivatives
\/f +f +1 ly of the surface:

[ )= (g,(x, )/ g:(x,))
L) =(g,(x,»)/g,(x,))
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Recovering a surface from
normals - 2
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® Recall that mixed second @ \We can now recover the

partials are equal --- this surface height at any
gives us an integrability point by integration
check. We must have: along some path, e.g.

T

(g (x.)/8:(x,)) _ X

Oy Feey) =] f(s.y)ds +
A&, (x,)/g(x,)) 0

Ox

JX]”y(x,t)dt +c
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Height Map from Integration
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How to integrate?



Possible Solutions

 Engineering approach: Path integration
(Forsyth & Ponce)

* In general: Calculus of Variation
Approaches

« Horn: Characteristic Strip Method

« Kimmel, Siddigi, Kimia, Bruckstein: Level
set method

* Many others ....



Shape by Integation (Forsyth&Ponce)

 The partial derivative gives the change in surface height
with a small step in either the x or the y direction

* \e can get the surface by summing these changes in
height along some path.

- /0f Of
f(%y):jé (8373,9) -dl +c

For example, we can reconstruct the surface at (u,v) by starting at (0,0), sum-
ming the y-derivative along the line x = 0 to the point (0,v), and then summing
the xz-derivative along the line y = v to the point (u,v)

B U (‘_}f | WU af ‘
fwo) = [ S+ [ Faod



Obtain many images in a fixed view under different illuminants
Determine the matrix ) from source and camera information

Create arrays for albedo, normal (3 components),
p (measured value of 97) and
&3
q (measured value of ay)

For each point in the image array
Stack image values into a vector %
Construct the diagonal matrix 7
Solve IVg =11%

to obtain g for this point

albedo at this point is | g |
normal at this point is %%

p at this point is %%
72

. . . N
g at this point is A
end

Check: 1is (QEAA—fE)Q small everywhere?
top left corner of height map is zero
for each pixel in the left column of height map
height value=previous height value + corresponding q value

end

for each row
for each element of the row except for leftmost

height value = previous height value + corresponding p value

end
end

Simple Algorithm
Forsyth & Ponce

Problem: Noise and
numerical (in)accuracy are
added up and result in
distorted surface.

Solution: Choose several
different integration paths,
and build average height
map.



I
ﬁ

il

Mathematical Property:
Integrability

e Smooth, C2 continuous surface:

Z(x, y)xy=Z(x: y)yx

o 9p_04q
Jdy 0x

. 0P 9qn- .
= check if (35_ aZ)Z is small
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/

3

V- —
T




iy
,ﬁ

il

Enforcing Integrability
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e The solution for surface gradients might not
be inconsistent.

e Hence there is no Z such that Z, = pand 2,

e To overcome this inconvenience, a good
idea is to insert a step enforcing
integrability to guarantee that when we

integrate p and g we will obtain the surface
Z.
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Enforcing Integrability
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The discrete Fourier transform can be used to find
the depth Z and enforce the integrability constraint
from the estimated p and g as follows;

e We compute the Fast Fourier Transform (FFT) of p
and g.

e Letc, and ¢, are the Fourier transform of p and g
respectively, then

p =2 cy(@,0,)e"
q — Zcq (a)x ’ a)y)ej(a)xX“Lwyy)

Frankot, RobertT., and Rama Chellappa. "Amethod for enforcing integrability in shape from
shading algorithms.™ Pattern Analysis and Machine Intelligence, IEEE Transactionson 10, no. 4
(1988): 439-451.
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Enforcing Integrability
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(o, X+@ 0 3 ;
p=>c,(@, @) p="2(xy) -0, (0,0,
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q= Zcq (a)x’a)y)ej(wxxmyy) q =%Z(x, y)<i>(— ja)y)FZ (cox,a)y)

Where F, is the Fourier transform of Z(x,y),

e Then Z can be computed as the inverse Fourier
transform of c(w,, »,) where:

Z=3 clo,@,)e" "

e Such that,
B J(O)ch (a)x 1 a)y) + a)qu (a)x 1 a)y))

@ 0,) = 0’ + w2
X y

Frankot, RobertT., and Rama Chellappa. "Amethod for enforcing integrability in shape from
shading algorithms.™ Pattern Analysis and Machine Intelligence, IEEE Transactionson 10, no. 4
(1988): 439-451.
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= = Enforcing Integrability
:___:'E 7 = Zc(a)x,a)y)ej(wXHwyy)
‘ where
- l(o,c (o, 0,)+ o,C (0, 0,))
C(a)x,a)y) =

2 2
w, + 0,

e The function Z has three important properties;

— It provides a solution to the problem of reconstructing
a surface from a set of non-integrable p and g.

Frankot, RobertT., and Rama Chellappa. "Amethod for enforcing integrability in shape from
shading algorithms.™ Pattern Analysis and Machine Intelligence, IEEE Transactionson 10, no. 4
(1988): 439-451.
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= = Enforcing Integrability
:__:'E 7 = Zc(a)x,a)y)ej(wXHwyy)
‘ where
- l(o,c (o, 0,)+ o,C (0, 0,))
C(a)x,a)y) =

2 2
w, + 0,

e The function Z has three important properties;

— Since the coefficients ¢(w,, »,) do not depend on x and
y, Z can be easily differentiated with respect to x and y
to give a new set of integrable p and g, say p' and g/,

such that:
, 0L : j(@x+ayy) : j(@x+a,Y)
D =&=Zja)xc(a)x,a)y)e v =Zcp(a)x,a)y)e ’
' az - j(a)xx+a) y) 1 j(wxx"'a) y)
q :E=ZJa)yc(a)X,a)y)e Y :Zcq(a)x,a)y)e Y

Frankot, RobertT., and Rama Chellappa. "Amethod for enforcing integrability in shape from
shading algorithms.™ Pattern Analysis and Machine Intelligence, IEEE Transactionson 10, no. 4
(1988): 439-451.
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= = Enforcing Integrability
:___:'E 7 = Zc(a)x,a)y)ej(wXHwyy)
‘ where
- l(o,c (o, 0,)+ o,C (0, 0,))
C(a)x,a)y) =

2 2
w, + 0,

e The function Z has three important properties;

- Most importantly, p' and g’ are the integrable pair
closest to the old pair of p and q.

e This can be viewed as if we have projected the old p
and g onto a set which contains only integrable pairs.

Frankot, RobertT., and Rama Chellappa. "Amethod for enforcing integrability in shape from
shading algorithms.™ Pattern Analysis and Machine Intelligence, IEEE Transactionson 10, no. 4
(1988): 439-451.




SHAPE FROM SHADING
(Calculus of Variations Approach)

 First Attempt: Minimize error in agreement
with Image Irradiance Equation over the
region of interest:

[] (1, y) = R(p, ) dxdy

object




SHAPE FROM SHADING
(Calculus of Variations Approach)

« Better Attempt: Regularize the Minimization of
error In agreement with Image Irradiance Equation
over the region of interest:

[[ 2 +p,2+0%+0% + A(1(x,y) - R(p,q))° dxdy

object
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Horn: Characteristic Strip Method
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Horn,
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Small step in X,y — change in depth: Chapterll,

B — D S+ g Ey. pp. 250-255

New values of p,q at this new point (X,y):

bp=roéxr+séy and oOg=sd6z+1tdy
(r, s, t: second partial derivatives of z(x,y) w.r.t. x and y)

P\ _m (%), H=(" °) Hessian: curv. of surface
8q 5y 12

S
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Horn: Characteristic Strip Method

(A

F

Horn,
Irradiance Equation, Reflectance Map: | Chapterll,

pp. 250-255
E(z,y) = R(p,q)

Derivatives (chain rule):

bBe=rR,+sR;, and E,=sRk,+tR,,

() =5 (%)

Relationship between gradient
In the iImage and gradient In the
reflectance map

- —
T
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== Horn: Characteristic Strip Method
?f“:; Horn,
o 2 Equations for 3 unknowns (r,s,t): We Chapterll,
can’t continue in artibrary direction. pp. 250-255

— Trick: Specially chosen direction

(51‘) _ (Rp) 5¢ Step in image E(xy) parallel
-\ Ry to gradient in R
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=#=—% Horn: Characteristic Strip Method
;:'7?'—: Horn,
o 2 Equations for 3 unknowns (r,s,t): We Chapterll,
can’t continue in artibrary direction. pp. 250-255

— Trick: Specially chosen direction

Step in image E(X,y) parallel
to gradient in R

Solvmg for new™walues for p q:

u(;
—~

6¢. be computed via
*gradient of image

>) ( ) Change In (p,g) can
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Horn: Characteristic Strip Method

//é\\iw\\

Figure 11-6. Curiously, the step taken in pg-space is parallel to the gradient of
E(z,y), while the step taken in ry-space is parallel to the gradient of R(p, g).
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Horn: Characteristic Strip Method

i=R1h ?;"=Rq: é=p-R13+qRqa
f}:Ema ':.:'"I‘_"‘Eya
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dots denote differentiation with respect to &

Solution of differential equations: Curve on surface

X+6X, y+dy, Z+4&z, p+ép. q+8g
X Y. Z.Pq
Figure 11-5. The solution of the shape-from-shading problem is determined by

solving five differential equations for z, y, z, p, and ¢g. The result is a characteristic
strip, a curve in space along which surface orientation is known.
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Horn: Characteristic Strip Method

Shape recovery via characteristic strips

Shape from Shading via Characteristic Curves
Given
* I{x,v) of an (orthographic) projection of unknown Hyx,v)
* The reflectance map R(p.q)
* Initial data x, 1, H(X,¥,), P(X,V,), q(Xp0,)
Develop a curve solution on Hfx,y) by taking small steps of size 0s
via the system & =R &
=R
&H =(pR, +qR, )
p=1%
qg=1&
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Horn: __Characteristic Strip Method
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Horn,
Chapterll,
pp. 250-255

Figure 11-7. The shape-from-shading method is applied here to the recovery
of the shape of a nose. The first picture shows the (crudely quantized) gray-level
image available o the program. The second picture shows the base characteristics
superimposed, while the third shows a contour map eomputed from the elevations
found along the characteristic curves,
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Linear Approaches for SFS
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e Linear approaches reduce the non-linear problem
into a linear through the linearization of the image
irradiance equation .

e Theidea is based on the assumption that the lower
order components in the reflectance map
dominate. Therefore, these algorithms only work
well under this assumption.




1]
)

Simple Scenario

e We will be concerned with the simplest scenario, where the
following assumptions hold;

— Camera; orthographic projection.
- Surface reflectivity; Lambertian surface
- Known/estimated illumination direction.
- Known/estimated surface albedo/

- The optical axis is the Z axis of the camera and the surface can
be parameterized as Z = Z(x,y).
e The image irradiance (amount of light received by the
camera to which the gray-scale produced is directly
proportional) can be defined as follows;

]|
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E(,Y) =R, (p.q)=pl 'n=—L—1"[-p—ql" (A)
\/1+p2+q2

e Eq(A) is the typical starting point of many shape from
shading techniques, yet it is of a great mathematical
complexity, it is a non-linear partial differential equation in p

= p(x,y) and g = g(x,y), which are the gradients of the
unknown surface Z = Z(x,y)
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= = Simple Scenario
— E(x,y):Rp,,(p,q)=p|Tn=\/H|;’2+q2 "-p-al"  (A)

e EQ(A) can be rewritten as follows:

E(x,y) = £ [i.i,.1,1[-p,~q1]" = pipiati) (A)
J1+ 2+ J1+ P2+

Where I = [iy,iy,i,]"
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Pentland’s Approach
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e Under the assumptions of :
— Lambertian surface,
— orthographic projections,
— the surface being illuminated by distant light sources,
and
— the surface is not self-shadowing,

e R —
A

e Pentland defined the image irradiance equation as
follows;

p(ixp+iyq—iz): psinocost +(sinosinz +coso
J1+p?+q° J1+p?+q°

Where light source direction is defined as:

E(x,y)=R(p.q) =

| =[sin o cosz,sinosinz,cos o]’

Pentland, A., "Shape Information From Shading: A Theory About Human Perception,” Computer
Vision., Second International Conference on , vol., no., pp.404-413, 5-8 Dec 1988.
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= Pentland’s Approach

= — L —ip—iq+i :

= == TURY SR [ ) U oL LIk AU

e S \/CI'SUS L+ p* g YL+ P+
p(ixp+iyq_iz): psSinocosz +QsinosSinz +Coso

E(x,y)=R(p.q) =

S pi+q? J1+ p? +q° (B)

e It is assumed that the surface has constant albedo, hence

it can be ignored as it is not a function of surface points
anymore.

e In (A’) the surface normal is obtained from the cross
product (1,0,p)x(0,1,q), yet in (B) the cross product is
applied in the inverse way, i.e. (0,1,g)x(1,0,p), hence the
normal vector becomes (p,q,-1) instead of (-p,-g,1).

e Moreover when using the representation of the illumination
direction in terms of its slant and tilt, the negative sign in
(p,q,-1) is ignored since COS o = COS(—0)

Pentland, A., "Shape Information From Shading: A Theory About Human Perception,” Computer
Vision., Second International Conference on , vol., no., pp.404-413, 5-8 Dec 1988.
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Pentland’s Approach

p(ixp+iyq—iz): psinocost +(sinosint +Ccoso
frp?+q? JI+p'+a® (@)
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E(x,y)=R(p.q) =

e R —
A

e By taking the Taylor series expansion of (B) about p = p,

and g = g,, and ignoring the higher order terms, the image
irradiance equation will be reduced to;

E(x,y) = R(p, Q) ~ R(py. ) + (P m)Z—R(pO,qm(q—qc,)@(po,qo)
P oq

e For Lambertian surface, the above equation at p,=g,= 0
reduces to;

E(X,y) =coso+ pcoszsino +qsinzsino

Pentland, A., "Shape Information From Shading: A Theory About Human Perception,” Computer
Vision., Second International Conference on , vol., no., pp.404-413, 5-8 Dec 1988.




g

—g—
= Pentland’s Approach
?;i:_'.:": E(x.y) = R(.q) — p(ixp+i2yq _ziZ): psin o-cow+qsin aszinr+c03c7
‘ J1+p?+q J1+p?+q (B)
E(X,y) =coso+ pcoszsino +qsinzsinc (C)

e Next, Pentland takes the Fourier transform of both sides of
(C).

e Since the first term on the right is a DC term, i.e. constant
with respect to the variables we are looking for (surface
normals), it can be dropped. Using Fourier transform
identities, we have the following;

o < .
P =&Z(X, y)<——>(— ja)X)FZ (a)x,a)y)
_ 0 3 o j Where F, is the Fourier
4= aZ(X, Y) ( Jo, )FZ (a)x ’ a)y) transform of Z(x,y),

Pentland, A., "Shape Information From Shading: A Theory About Human Perception,” Computer
Vision., Second International Conference on , vol., no., pp.404-413, 5-8 Dec 1988.
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= Pentland’s Approach
—— S
':;’:_':; E(x.y) = R(p.q) = p(lxp+lzyq _:Z): psin o-cow+qsin aszinr+c03c7
‘ \/1+p +0 \/1+p +0 (B)
E(X,y) =coso+ pcoszsino +qsinzsinc (C)

e Taking the Fourier transform of (C), we will get the
following;

Fe =(-io,)F, (a)x , @, )Cos rSiNo + (— o, )FZ (a)x @, )sin rsinoc
(D)

Where Fr is the Fourier transform of the given image E(x,y).

Pentland, A., "Shape Information From Shading: A Theory About Human Perception,” Computer
Vision., Second International Conference on , vol., no., pp.404-413, 5-8 Dec 1988.
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= Pentland’s Approach
?;i:_'.:": E(x.y) = R(.q) — p(ixp+i2yq _ziZ): psin o-cow+qsin aszinr+c03c7
‘ J1+p?+q J1+p?+q (B)
E(X,y) =coso+ pcoszsino +qsinzsinc (C)

Fe = (- jo,)F, (@, @, )coszsino + (- jo, JF, (@,, @, Jsinzsine

e The depth map (our sought surface) Z(x,y) can be (D)
computed by rearranging the terms in (D), and then taking
the inverse Fourier transform as follows;

Fc =F, (a)x,a)y)[— Jo,cosTsIino — Jo, SINTSIN aJ

F
e Hence, - FZ (wx’wy): - j(()x COS 7 SiN GE— ja)y sinzsSino (E)
203) =3I, (0,0, o

Pentland, A., "Shape Information From Shading: A Theory About Human Perception,” Computer
Vision., Second International Conference on , vol., no., pp.404-413, 5-8 Dec 1988.
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= Pentland’s Approach
=< : 2
o FZ(wx’wy)_—ja)XCOSTsina—ja)ysinrsina )
Z(x,y)=3" {FZ (a)x,a)y )} (F)

e This algorithm gives a non-iterative, closed-form solution using
Fourier transform.

e The problem lies in the linear approximation of the reflectance
map, which causes trouble when the non-linear terms are
dominant.

e As pointed out by Pentland, when the quadratic terms in the
reflectance map dominate, the frequency doubling occurs, in this
case, the recovered surface will not be consistent with the
illumination conditions.

Pentland, A., "Shape Information From Shading: A Theory About Human Perception,” Computer
Vision., Second International Conference on , vol., no., pp.404-413, 5-8 Dec 1988.
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= Shah’s Approach
::'7;'—: E(x,y)= P [i.i,.0,1[-p,—a.1]' = Cip-ia+i) (A%)
: \/1+ p°+0° \/1+ p°+q°

e Shah employed the discrete approximations of p and g using finite
differences in order to linearize the reflectance map in terms of Z.
The reflectance function for Lambertian surfaces is defined as
follows;

—L,p—1,0+1, cosc+ pcoszsino+qsinzsine
J1+ p? 4?2 J1+p?+q° (B)

R(p.q) =

| =[sin o cosz,sinosinz,coso]’

o I (1) _ coszsSino
*1(3) coS &
o I(2):sinrsina
Y 1(3) coS &

=Ccosrttanoc

=sinrtano

P. Tsai and M. Shah. Shape from shading using linear approximation. Image and Vision Computing,
12(8):487--498, 1994.
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= Shah’s Approach
:::_EE E(x,y)= P [i.i,.0,1[-p,—a.1]' = Cip-ia+i) (A%)
: \/1+ p°+0° \/1+ p°+q°

—L,p—1,d+1, coso+ pcoszsino+qsinzsina

J1+p2+q? J1+p?+q° (B)
e Comparing (B) with (A",

- surface albedo is ignored (assumed to be constant over the whole
surface).

Using the following discrete approximations for p and g;

R(p.q) =

p=2(Xy)—Z(Xx-1Y)

q=2(x,y)—Z(x,y-1)

P. Tsai and M. Shah. Shape from shading using linear approximation. Image and Vision Computing,
12(8):487--498, 1994.
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= = Shah’s Approach
E(. ‘M, pp
e s E X, — P | ,i ,i —p— ’11' :P(—lxp—lyq+lz) (A’)
— (%) N p2+q2[x yo11=p—a] o
R(p,q):_ixp_iyq"‘iz :COSO'+ pCOSTSin0'+qsinrsinO-

\/1+ p°+q° \/1+ p°+q° (B)
P=2(xy)-Z(x-1Yy)

gq= Z(X’ y)_Z(X’ y_l)

e Shah linearized the function f = E- R = 0 in terms of Z in the
vicinity of Zk-1 which is the surface recovered in iteration k-1.

e For a fixed point (x,y) and a given image E, a linear approximation
of the function f about a given depth map is obtained using Taylor
series expansion up through the first order terms.

P. Tsai and M. Shah. Shape from shading using linear approximation. Image and Vision Computing,
12(8):487--498, 1994.
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= Shah’s Approach
:::_.E—: E(x,y)= P [i.i,.0,1[-p,—a.1]' = Cip-ia+i) (A%)
: \/1+ p°+0° \/1+ p°+q°

—L,p—1,d+1, coso+ pcoszsino+qsinzsina
J1+p2+q? J1+p?+q° (B)

p=2(Xy)—Z(x-1Y)

q= Z(X’ y) _Z(X’ y_l)
e For an N by N image, there are N2 such equations, which will form
a linear system.

e This system can be solved easily using the Jacobi iterative scheme,
which simplifies the Taylor series expansion up to the first order of
f into the following equation (f = E - R);

F(Z(x,y)=0=~F(Z"(x ) +(Z(xy)-Z"(xY))

R(p.q) =

df (2™ (x,Y)) (C)
dZ (x, y)

P. Tsai and M. Shah. Shape from shading using linear approximation. Image and Vision Computing,
12(8):487--498, 1994.
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f(Z(%y) =0~ f(Z" (% Y)+(Z(XYy)-Z"(xY)) d (dZZ”(‘X(i(/,)y)) (©)

e lLetZ'(x,y)= Z (x,y) then

7N (X, y) _ 71 (X, y) . dff((zznn__l(())((, );)))) (D)
dZ(x,y)

e Where

df ™ (x,y) _ (p+a)(pi, +ai, +1) (i, +1,)
dZ(x,y) J(@+ p? +q2)3\/1+ix2 +i J(@+ p? +q2)\/1+ix2 +i]

e Assuming Z9x,y) = 0, then Z(x,y) can be extracted iteratively
from (D).

P. Tsai and M. Shah. Shape from shading using linear approximation. Image and Vision Computing,
12(8):487--498, 1994.
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Another Solution to SFS:
Kimmel, Siddiqgi, Kimia, Bruckstein
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Proposed Solution: Evolve a curve such that
it tracks the height contours of z(x, y).
[Kimmel et al., IJCV9I5]

e R —
T

Height climbed while progressing a distance
IACT in the direction n in_the (x.y) plane is
given by |[AC| = |Az|cot(a).

Let » denote time in the course of evolution, K\
i.e., z=1t. Since E = pAcos(a), we have /\]AZ\\
AC| _ _ E/pA ol

V1= (B/pA)2 n
X

pdf document
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Proposed Solution: Evolve a curve such that
it tracks the height contours of z(x, y).
[Kimmel et al., IJCV9I5]

e R —
T

T he curve evolution equation is:
ac L/ pA -
{ 8/1 Ez/(p}‘i)2

C(s.0)
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Examples - Pyramids
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shaded image equal height contours

numerical solution true surface
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shaded image equal height contours
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Application Area: Geography
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Abb. 13 Sehrsglicts. Sctodghetrchumianeg & Unarmndoeggabiars auf Dl &5 v ieren
DOM (Azdocrng = [0w:), thaciagers iz dee bares (= yet) 22 moacchan (=i} Sorelesoe wad dos
Mohmitoosn (=Maan) AbY Ddusgsmabusb 1.2 800
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Application: Braille Code
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Abbiidung 3

Oben Iinks: Messanordnung mit einer Kamera und vier blauen LED-Leuchtieldern.
Unten finks: Ausschnitt einer Naltschachtel mit Blindenschrift-Mragung.

Rechts: 3D-Bild nach SFS-Analyse. Darunter ist ein Hohenprofil durch drei Braille-Punkte dargestelit

pdf document
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Mars Rover Heads to a New
Crater NYT Sept 22, 2008




1]
I

Limitations
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e Controlled lighting environment
— Specular highlights?
— Partial shadows?
- Complex interrreflections?

e Fixed camera
- Moving camera?
— Multiple cameras?

=> Another approach: binocular /
geometric stereo




