Photometric Stereo, Shape from Shading SfS
Chapter 12.1.1. Szelisky

Guido Gerig
CS 6320, Spring 2012

Credits: M. Pollefey UNC CS256, Ohad Ben-Shahar CS BGU, Wolff JUN (http://www.cs.jhu.edu/~wolff/course600.461/week9.3/index.htm)
Photometric Stereo

Depth from Shading?

First step: Surface Normals from Shading

Second step: Re-integration of surface from Normals
Examples

http://www.youtube.com/watch?v=sfCQ7f7PMbc&feature=related

Simulated voyage over the surface of Neptune's large moon Triton

http://www.youtube.com/watch?v=nwzVrC2GQXE

http://www.youtube.com/watch?v=KiTA6ftyQuY
Shape from Shading

Inverting the image formation process

Image formation = “Shading from shape” (and light sources)

Credit: Ohad Ben-Shahar CS BGU
Shape from Shading

Authors: Emmanuel Prados and Olivier Faugeras

a) Synthetic image generated from the classical Mozart's face [Zhang-Tsai-etal:99]; b) reconstructed surface from a) by new algorithm; c) real image of a face; d)-e) reconstructed surface from c) by new algorithm.
Photometric Stereo

• Assume:
 – a local shading model
 – a set of point sources that are infinitely distant
 – a set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources
 – A Lambertian object (or the specular component has been identified and removed)
Setting for Photometric Stereo

Multiple images with different lighting (vs binocular/geometric stereo)
Goal: 3D from One View and multiple Source positions

Input images

Usable Data Mask
Scene Results

Needle Diagram: Surface Normals

Albedo

Re-lit:
Projection model for surface recovery - usually called a Monge patch
Lambertian Reflectance Map

LAMBERTIAN MODEL

\[E = \rho \langle n, n_s \rangle = \rho \cos \theta \]

\[\cos \theta = \frac{1 + pp_L + qq_L}{\sqrt{1 + p^2 + q^2} \sqrt{1 + p_L^2 + q_L^2}} \]
REFLECTANCE MAP IS A VIEWER-CENTERED REPRESENTATION OF REFLECTANCE

\[(f_x, f_y, -1) = (0,1,f_x) \times (1,0,f_y)\]

Surface Orientation

\((0,1,f_x)\)
\((1,0,f_y)\)
\((-f_x, -f_y, 1)\)

\[z = f(x,y)\]

Depth

X

Y

IMAGE PLANE

Wolff, November 4, 1998
REFLECTANCE MAP IS A VIEWER-CENTERED REPRESENTATION OF REFLECTANCE

\[(-f_x, -f_y, 1) = (-p, -q, 1) \]

\(p, q \) comprise a gradient or gradient space representation for local surface orientation.

Reflectance map expresses the reflectance of a material directly in terms of viewer-centered representation of local surface orientation.
Reflectance Map \((ps=0, qs=0)\)

The Reflectance Map – Lambertian surface from overhead source position

\[
R(p, q) = \frac{1}{\sqrt{p^2 + q^2 + 1}}
\]
Reflectance Map

Shading on Lambertian surface – Overhead point source

\[I(x, y) = \rho(\hat{N} \cdot [0,0,1]) = \rho \frac{1}{\sqrt{p^2 + q^2 + 1}} = R(p, q) \]
Reflectance Map

Shape from Shading

Equation:

\[I = \rho(\hat{N} \cdot \hat{L}) = \rho \frac{-p \cdot L_x - q \cdot L_y + L_z}{\sqrt{p^2 + q^2 + 1} \sqrt{L_x^2 + L_y^2 + L_z^2}} = \rho \frac{p \cdot p_L + q \cdot q_L + 1}{\sqrt{p^2 + q^2 + 1} \sqrt{p_L^2 + q_L^2 + 1}} \]
The Reflectance Map – Lambertian surface from general source position

\[R(p, q) = \frac{p \cdot p_L + q \cdot q_L + 1}{\sqrt{p^2 + q^2 + 1} \sqrt{p_L^2 + q_L^2 + 1}} \]

Gradient point of maximum brightness
Reflectance Map (General)

\[p = \frac{\partial z}{\partial x} \]
\[q = \frac{\partial z}{\partial y} \]

Figure 10-13. The reflectance map is a plot of brightness as a function of surface orientation. Here it is shown as a contour map in gradient space. In the case of a Lambertian surface under point-source illumination, the contours turn out to be nested conic sections. The maximum of \(R(p, q) \) occurs at the point \((p, q) = (p_s, q_s)\), found inside the nested conic sections, while \(R(p, q) = 0 \) all along the line on the left side of the contour map.
Reflectance Map

Given Intensity I in image, there are multiple (p, q) combinations (= surface orientations).

⇒ Use multiple images with different light source directions.

Figure 10-13. The reflectance map is a plot of brightness as a function of surface orientation. Here it is shown as a contour map in gradient space. In the case of a Lambertian surface under point-source illumination, the contours turn out to be nested conic sections. The maximum of $R(p, q)$ occurs at the point $(p, q) = (p_s, q_s)$, found inside the nested conic sections, while $R(p, q) = 0$ all along the line on the left side of the contour map.
Multiple Images = Multiple Maps

Can isolate p, q as contour intersection

\[I_1, I_2 \]

\[(p,q) \]

Figure 10-21. In the case of a Lambertian surface illuminated successively by two different point sources, there are at most two surface orientations that produce a particular pair of brightness values. These are found at the intersection of the corresponding contours in two superimposed reflectance maps.
Example: Two Views

\[I_1(x, y) = R_1(p, q) \]
\[I_2(x, y) = R_2(p, q) \]

Still not unique for certain intensity pairs.
Constant Albedo

\[I_1 = \rho S_1 . N \]
\[I_2 = \rho S_2 . N \]
\[I_3 = \rho S_3 . N \]

\[
\begin{bmatrix}
I_1 \\
I_2 \\
I_3
\end{bmatrix} =
\begin{bmatrix}
S_1^T \\
S_2^T \\
S_3^T
\end{bmatrix} \rho \mathbf{N}
\]

\[
\rho \mathbf{N} = \mathbf{S}^{-1} \mathbf{I}
\]

Solve linear equation system to calculate \(\bar{N} \).
Varying Albedo

Solution Forsyth & Ponce:

For each point source, we know the source vector (by assumption). We assume we know the scaling constant of the linear camera \(k \). Fold the normal \(\mathbf{N} \) and the reflectance \(\rho(x,y) \) into one vector \(\mathbf{g} \), and the scaling constant and source vector into another \(\mathbf{V}_j \).

- Out of shadow:

\[
I(x, y) = kB(x) = kB(x, y) = k \rho(x, y) \mathbf{N}(x, y) \cdot \mathbf{S}_1 = \mathbf{g}(x, y) \cdot \mathbf{V}_1
\]

- In shadow:

\[
I(x, y) = 0
\]

where \(\mathbf{g}(x, y) = \rho(x, y) \mathbf{N}(x, y) \) and \(\mathbf{V}_1 = k\mathbf{S}_1 \), where \(k \) is the constant connecting the camera response to the input radiance.
Multiple Images: Linear Least Squares Approach

- Combine albedo and normal
- Separate lighting parameters
- More than 3 images => overdetermined system

\[\mathbf{v} = \begin{pmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \\ \vdots \\ \mathbf{v}_n^T \end{pmatrix} \quad \mathbf{i}(x, y) = \{I_1(x, y), I_2(x, y), \ldots, I_n(x, y)\}^T \]

\[\mathbf{i}(x, y) = \mathbf{v}\mathbf{g}(x, y) \]

\(\mathbf{g} \) is obtained by solving this linear system: \(\bar{\mathbf{g}}(x, y) = \mathbf{V}^{-1}\mathbf{i}(x, y) \)

- How to calculate albedo \(\rho \) and \(\bar{N} \)?

\[\bar{\mathbf{g}}(x, y) = \rho(x, y)\bar{N}(x, y) \]

\[\rightarrow \bar{N} = \frac{\bar{\mathbf{g}}}{|\bar{\mathbf{g}}|} , \quad \rho(x, y) = |\bar{\mathbf{g}}| \]
Example LLS Input

Problem: Some regions in some images are in the shadow (no image intensity).
Dealing with Shadows (Missing Info)

- For each point source, we know the source vector (by assumption). We assume we know the scaling constant of the linear camera. Fold the normal and the reflectance into one vector g, and the scaling constant and source vector into another V_j

- Out of shadow:
 \[
 I_j(x, y) = kB(x, y) = k\rho(x, y) (N(x, y) \cdot S_j) = g(x, y) \cdot V_j
 \]

- In shadow:
 \[
 I_j(x, y) = 0
 \]

No partial shadow
Matrix Trick for Complete Shadows

- Matrix from Image Vector:

\[
I(x, y) = \begin{pmatrix}
I_1(x, y) & \ldots & 0 & 0 \\
0 & I_2(x, y) & \ldots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \ldots & 0 & I_n(x, y)
\end{pmatrix}
\]

- Multiply LHS and RHS with diag matrix

\[
Ii = IVg(x, y)
\]

\[
\begin{pmatrix}
I_1^2(x, y) \\
I_2^2(x, y) \\
\vdots \\
I_n^2(x, y)
\end{pmatrix} = \begin{pmatrix}
I_1(x, y) & 0 & \ldots & 0 \\
0 & I_2(x, y) & \ldots & \ldots \\
\vdots & \ddots & \ddots & \ddots \\
0 & \ldots & 0 & I_n(x, y)
\end{pmatrix}\begin{pmatrix}
V_1^T \\
V_2^T \\
\vdots \\
V_n^T
\end{pmatrix}g(x, y)
\]

\[\Rightarrow\text{ Relevant elements of the left vector and the matrix are zero at points that are in shadow.}\]
Obtaining Normal and Albedo

• Given sufficient sources, we can solve the previous equation (most likely need a least squares solution) for \(g(x, y) \).

• Recall that \(N(x, y) \) is the unit normal.

• This means that \(\rho(x,y) \) is the magnitude of \(g(x, y) \).

• This yields a check
 – If the magnitude of \(g(x, y) \) is greater than 1, there’s a problem.

• And \(N(x, y) = g(x, y) / \rho(x,y) \).
Example LLS Input
Example LLS Result

- Reflectance / albedo:
Recap

- Obtain normal / orientation, no depth
Goal

Shape as surface with depth and normal
Recovering a surface from normals - 1

- Recall the surface is written as
 \[(x, y, f(x, y))\]

- This means the normal has the form:

 \[
 N(x, y) = \begin{pmatrix}
 \frac{1}{\sqrt{f_x^2 + f_y^2 + 1}} \\
 -f_x \\
 -f_y \\
 1
 \end{pmatrix}
 \]

- If we write the known vector \(\mathbf{g} \) as

 \[
 \mathbf{g}(x, y) = \begin{pmatrix}
 g_1(x, y) \\
 g_2(x, y) \\
 g_3(x, y)
 \end{pmatrix}
 \]

- Then we obtain values for the partial derivatives of the surface:

 \[
 f_x(x, y) = \left(\frac{g_1(x, y)}{g_3(x, y)}\right)
 \]
 \[
 f_y(x, y) = \left(\frac{g_2(x, y)}{g_3(x, y)}\right)
 \]
Recall that mixed second partials are equal --- this gives us an integrability check. We must have:

\[
\frac{\partial (g_1(x,y)/g_3(x,y))}{\partial y} = \frac{\partial (g_2(x,y)/g_3(x,y))}{\partial x}
\]

We can now recover the surface height at any point by integration along some path, e.g.

\[
f(x, y) = \int_0^x f_x(s, y)\, ds + \int_0^y f_y(x, t)\, dt + c
\]
Height Map from Integration

How to integrate?
Possible Solutions

- Engineering approach: Path integration (Forsyth & Ponce)
- In general: Calculus of Variation Approaches
- Horn: Characteristic Strip Method
- Kimmel, Siddiqi, Kimia, Bruckstein: Level set method
- Many others ….
Shape by Integration (Forsyth&Ponce)

• The partial derivative gives the change in surface height with a small step in either the x or the y direction
• We can get the surface by summing these changes in height along some path.

\[f(x, y) = \int_C \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) \cdot dl + c \]

For example, we can reconstruct the surface at \((u, v)\) by starting at \((0, 0)\), summing the \(y\)-derivative along the line \(x = 0\) to the point \((0, v)\), and then summing the \(x\)-derivative along the line \(y = v\) to the point \((u, v)\)

\[f(u, v) = \int_0^v \frac{\partial f}{\partial y}(0, y)dy + \int_0^u \frac{\partial f}{\partial x}(x, v)dx + c \]
Obtain many images in a fixed view under different illuminants.

Determine the matrix \mathcal{V} from source and camera information.

Create arrays for albedo, normal (3 components),
- p (measured value of $\frac{\partial L}{\partial x}$) and
- q (measured value of $\frac{\partial L}{\partial y}$)

For each point in the image array
- Stack image values into a vector i
- Construct the diagonal matrix I
- Solve $I\mathcal{V}g = Ii$
- to obtain g for this point

albedo at this point is $|g|$
normal at this point is $\frac{g}{|g|}$
p at this point is $\frac{N_1}{N_2}$
q at this point is $\frac{N_2}{N_3}$

end

Check: is $(\frac{\partial p}{\partial y} - \frac{\partial q}{\partial x})^2$ small everywhere?

top left corner of height map is zero

for each pixel in the left column of height map
- height value = previous height value + corresponding q value
end

for each row
- for each element of the row except for leftmost
- height value = previous height value + corresponding p value
end

Simple Algorithm
Forsyth & Ponce

Problem: Noise and numerical (in)accuracy are added up and result in distorted surface.

Solution: Choose several different integration paths, and build average height map.
Mathematical Property: Integrability

- Smooth, C2 continuous surface:

\[Z(x, y)_{xy} = Z(x, y)_{yx} \]

\[\Rightarrow \quad \frac{\partial p}{\partial y} = \frac{\partial q}{\partial x} \]

\[\Rightarrow \text{ check if } \left(\frac{\partial p}{\partial y} - \frac{\partial q}{\partial x} \right)^2 \text{ is small} \]
SHAPE FROM SHADING
(Calculus of Variations Approach)

• First Attempt: Minimize error in agreement with Image Irradiance Equation over the region of interest:

\[\int_{\text{object}} \int (I(x, y) - R(p, q))^2 \, dx \, dy \]
SHAPE FROM SHADING (Calculus of Variations Approach)

• Better Attempt: Regularize the Minimization of error in agreement with Image Irradiance Equation over the region of interest:

\[
\int\int_{object} p_x^2 + p_y^2 + q_x^2 + q_y^2 + \lambda(I(x, y) - R(p, q))^2 \, dx \, dy
\]
Horn: Characteristic Strip Method

Small step in \(x, y \rightarrow \) change in depth:
\[
\delta z = p \delta x + q \delta y.
\]

New values of \(p, q \) at this new point \((x, y)\):
\[
\delta p = r \delta x + s \delta y \quad \text{and} \quad \delta q = s \delta x + t \delta y
\]
(\(r, s, t \): second partial derivatives of \(z(x, y) \) w.r.t. \(x \) and \(y \))

\[
\begin{pmatrix}
\delta p \\
\delta q
\end{pmatrix}
= H
\begin{pmatrix}
\delta x \\
\delta y
\end{pmatrix}, \quad H = \begin{pmatrix}
r & s \\
s & t
\end{pmatrix}
\]
Hessian: curv. of surface

\[
r = \frac{\partial p}{\partial x} \quad s = \frac{\partial p}{\partial y} = \frac{\partial q}{\partial x} \quad t = \frac{\partial q}{\partial y}
\]
Irradiance Equation, Reflectance Map:

\[E(x, y) = R(p, q) \]

Derivatives (chain rule):

\[E_x = r \, R_p + s \, R_q \quad \text{and} \quad E_y = s \, R_p + t \, R_q, \]

\[
\begin{pmatrix}
E_x \\
E_y
\end{pmatrix} = \mathbf{H} \begin{pmatrix}
R_p \\
R_q
\end{pmatrix},
\]

Relationship between gradient in the image and gradient in the reflectance map.
Horn: Characteristic Strip Method

2 Equations for 3 unknowns (r, s, t): We can’t continue in arbitrary direction.

→ Trick: Specially chosen direction

\[
\begin{pmatrix}
\delta x \\
\delta y
\end{pmatrix}
= \begin{pmatrix}
R_p \\
R_q
\end{pmatrix} \delta \xi
\]

Step in image E(x, y) parallel to gradient in R

Horn, Chapter 11, pp. 250-255
2 Equations for 3 unknowns (r,s,t): We can’t continue in arbitrary direction.

→ Trick: Specially chosen direction

\[
\begin{pmatrix}
\delta x \\
\delta y
\end{pmatrix}
= \begin{pmatrix}
R_p \\
R_q
\end{pmatrix} \delta \xi
\]

Step in image \(E(x,y)\) parallel to gradient in \(R\)

Solving for new values for \(p,q\):

\[
\begin{pmatrix}
\delta p \\
\delta q
\end{pmatrix}
= H \begin{pmatrix}
\delta x \\
\delta y
\end{pmatrix} = H \begin{pmatrix}
R_p \\
R_q
\end{pmatrix} \delta \xi
\]

\[
\begin{pmatrix}
\delta p \\
\delta q
\end{pmatrix}
= \begin{pmatrix}
E_x \\
E_y
\end{pmatrix} \delta \xi
\]

Change in \((p,q)\) can be computed via gradient of image

Horn, Chapter 11, pp. 250-255
Figure 11-6. Curiously, the step taken in pq-space is parallel to the gradient of $E(x, y)$, while the step taken in xy-space is parallel to the gradient of $R(p, q)$.

Horn: Characteristic Strip Method
Horn: Characteristic Strip Method

\[\dot{x} = R_p, \quad \dot{y} = R_q, \quad \dot{z} = p R_p + q R_q, \]
\[\dot{p} = E_x, \quad \dot{q} = E_y, \]

dots denote differentiation with respect to \(\xi \)

Solution of differential equations: Curve on surface

Figure 11-5. The solution of the shape-from-shading problem is determined by solving five differential equations for \(x, y, z, p, \) and \(q \). The result is a characteristic strip, a curve in space along which surface orientation is known.
Horn: Characteristic Strip Method

Shape recovery via characteristic strips

Shape from Shading via Characteristic Curves

Given

- $I(x,y)$ of an (orthographic) projection of unknown $H(x,y)$
- The reflectance map $R(p,q)$
- Initial data $x_0, y_0, H(x_0,y_0), p(x_0,y_0), q(x_0,y_0)$

Develop a curve solution on $H(x,y)$ by taking small steps of size δs via the system

$$\delta x = R_p \delta s$$
$$\delta y = R_q \delta s$$
$$\delta H = (pR_p + qR_q) \delta s$$
$$\delta p = I_x \delta s$$
$$\delta q = I_y \delta s$$
Figure 11-7. The shape-from-shading method is applied here to the recovery of the shape of a nose. The first picture shows the (crudely quantized) gray-level image available to the program. The second picture shows the base characteristics superimposed, while the third shows a contour map computed from the elevations found along the characteristic curves.
Another Solution to SFS: Kimmel, Siddiqi, Kimia, Bruckstein

Proposed Solution: Evolve a curve such that it tracks the height contours of $z(x, y)$.

[Kimmel et al., IJCV95]

Height climbed while progressing a distance $|\Delta C|$ in the direction \hat{n} in the (x, y) plane is given by $|\Delta C| = |\Delta z| \cot(\alpha)$.

Let z denote time in the course of evolution, i.e., $z = t$. Since $E = \rho \lambda \cos(\alpha)$, we have

$$
\left| \frac{\Delta C}{\Delta t} \right| = \cot(\alpha) = \frac{E/\rho\lambda}{\sqrt{1 - (E/\rho\lambda)^2}}.
$$

(11)
Proposed Solution: Evolve a curve such that it tracks the height contours of $z(x, y)$.
[Kimmel et al., IJCV95]

The curve evolution equation is:

$$
\begin{align*}
\frac{\partial C}{\partial t} &= \frac{E/\rho \lambda}{\sqrt{1-E^2/(\rho \lambda)^2}} \cdot \hat{n}, \\
C(s, 0) &= C_0(s).
\end{align*}
$$
Examples - Pyramids

shaded image equal height contours

numerical solution true surface
Examples - Three Mountains

shaded image

equal height contours

numerical solution

true surface
Application Area: Geography
Application: Braille Code

Abbildung 3:

Mars Rover Heads to a New Crater NYT Sept 22, 2008
Limitations

- Controlled lighting environment
 - Specular highlights?
 - Partial shadows?
 - Complex interreflections?

- Fixed camera
 - Moving camera?
 - Multiple cameras?

=> Another approach: binocular / geometric stereo