```
Early Draft, final version to come soon.
```


MATLAB session for Computer vision

Date: Jan 26, 2012

1 Read cursor position and values

```
[x,y] = ginput(n)
```

enables you to select n points from the current axes and returns the x - and y-coordinates in the column vectors x and y, respectively. You can press the Return key to terminate the input before entering n points.

$$
[\mathrm{x}, \mathrm{y}]=\text { ginput }
$$

gathers an unlimited number of points until you press the Return key.
Link:
More information about this function

2 Point operation

2.1 Thresholding an image (binarize) with specified threshold

Example: Suppose we have a image which size is 3×5, we want to threshold this image using 0.5. The following code does it and we set all pixels which are larger than the threshold as 1 , the pixels which are smaller or equal to the threshold as 0 .

```
I = rand(3,5);
I(I>0.5) = 1;
I(I<=0.5) = 0;
```


2.2 Scaling intensity values.

Example: Suppose we have a image which size is 4×7, the range of the image is $[0,1]$, we want to rescale the image range to $[0,255]$. The following is the code to do this.

```
I = rand(4,7);% original image which range is between 0 and 1
Inew = I*255;
```


2.3 Others

Example: If we have two matrix (A, B) and we want to do component-wise matrix multiplication, we need to do the following. (The sizes of A, B are the same.)
$\mathrm{C}=\mathrm{A} . * \mathrm{~B} ;$

If we have two matrix (A, B) and we want to do standard matrix multiplication, we need to do the following. (Now, the sizes of A, B may not the same, we just need to make sure A is $m \times n$ and B is $n \times l)$.
$\mathrm{C}=\mathrm{A} * \mathrm{~B} ;$

3 Math operations

3.1 Introduce SVD (preparation of camera calibration)

Example, we have a matrix X which size is $m \times n$, we want to do singular value decomposition.
$[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svd}(\mathrm{X}) ;$
Link:
More information about this function in MATLAB website SVD in wikipedia

