Computer Vision

Samer M Abdallah, PhD
Faculty of Engineering and Architecture
American University of Beirut
Beirut, Lebanon

Geometric Camera Calibration

September 2, 2004
Series outline

- Cameras and lenses
- Geometric camera models
- Geometric camera calibration
- Stereopsis
Lecture outline

- The calibration problem
- Least-square technique
- Calibration from points
- Radial distortion
- A note on calibration patterns
Camera calibration

Camera calibration is determining the intrinsic and extrinsic parameters of the camera.

The are three coordinate systems involved: image, camera, and world.

Key idea: to write the projection equations linking the known coordinates of a set of 3-D points and their projections, and solve for the camera parameters.
Projection matrix

\[M = \begin{pmatrix}
\alpha r_1^T - \alpha \cot \theta r_2^T + u_0 r_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\
\frac{\beta}{\sin \theta} r_2^T + v_0 r_3^T & \beta t_y + v_0 t_z \\
r_3^T & t_z
\end{pmatrix} \]

Replacing \(M \) by \(\lambda M \) in

\[
\begin{align*}
u &= \frac{m_1 \cdot P}{m_3 \cdot P} \\
v &= \frac{m_2 \cdot P}{m_3 \cdot P}
\end{align*}
\]

does not change \(u \) and \(v \).

\(M \) is only defined up to scale in this setting.
The calibration problem

Given \(n \) points \(P_1, \ldots, P_n \) with known positions and their images \(p_1, \ldots, p_n \)

Find \(i \) and \(e \) such that

\[
\sum_{i=1}^{n} \left[\left(u_i - \frac{m_1(i, e) \cdot P_i}{m_3(i, e) \cdot P_i} \right)^2 + \left(v_i - \frac{m_2(i, e) \cdot P_i}{m_3(i, e) \cdot P_i} \right)^2 \right] \text{ is minimized}
\]
Linear systems

Square system:
- Unique solution
- Gaussian elimination

Rectangular system:
- underconstrained: Infinity of solutions
- Overconstrained: no solution

Minimize $|Ax-b|^2$
How do you solve overconstrained linear equations?

- Define $E = |e|^2 = e \cdot e$ with

$$e = Ax - b = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} - b$$

$$= x_1c_1 + x_2c_2 + \cdots x_nc_n - b$$

- At a minimum,

$$\frac{\partial E}{\partial x_i} = \frac{\partial e}{\partial x_i} \cdot e + e \cdot \frac{\partial e}{\partial x_i} = 2 \frac{\partial e}{\partial x_i} \cdot e$$

$$= 2 \frac{\partial}{\partial x_i} (x_1c_1 + \cdots + x_nc_n - b) \cdot e = 2c_i \cdot e$$

$$= 2c_i^T(Ax - b) = 0$$

- or

$$0 = \begin{bmatrix} c_1^T \\ \vdots \\ c_n^T \end{bmatrix} (Ax - b) = A^T(Ax - b) \Rightarrow A^T A \mathbf{x} = A^T \mathbf{b},$$

where $\mathbf{x} = A^T \mathbf{b}$ and $A^T = (A^T A)^{-1} A^T$ is the pseudoinverse of A!
Homogeneous linear equations

Square system:
- Unique solution = 0
- Unless $\det(A) = 0$

Rectangular system:
- 0 is always a solution

Minimize $|Ax|^2$ under the constraint $|x|^2 = 1$
How do you solve overconstrained homogeneous linear equations?

\[E = |Ux|^2 = x^T(U^TU)x \]

- Orthonormal basis of eigenvectors: \(e_1, \ldots, e_q \).
- Associated eigenvalues: \(0 \leq \lambda_1 \leq \ldots \leq \lambda_q \).
- Any vector can be written as

\[x = \mu_1 e_1 + \ldots + \mu_q e_q \]

for some \(\mu_i \) (\(i = 1, \ldots, q \)) such that \(\mu_1^2 + \ldots + \mu_q^2 = 1 \).

\[
E(x) - E(e_1) = x^T(U^TU)x - e_1^T(U^TU)e_1 \\
= \lambda_1^2 \mu_1^2 + \ldots + \lambda_q^2 \mu_q^2 - \lambda_1^2 \\
\geq \lambda_1^2(\mu_1^2 + \ldots + \mu_q^2 - 1) = 0
\]

The solution is the eigenvector \(e_1 \) with least eigenvalue of \(U^TU \).
Example: Line fitting

Problem: minimize

\[E(a, b, d) = \sum_{i=1}^{n} (a x_i + b y_i - d)^2 \]

with respect to \((a, b, d)\).

- Minimize \(E\) with respect to \(d\):
 \[
 \frac{\partial E}{\partial d} = 0 \implies d = \frac{1}{n} \sum_{i=1}^{n} a x_i + b y_i = \bar{x} a + b \bar{y}
 \]

- Minimize \(E\) with respect to \(a, b\):

 where \(U = \begin{pmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{pmatrix}\) and

 \[
 U^T U = \begin{pmatrix} \sum_{i=1}^{n} x_i^2 - n \bar{x}^2 & \sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} \\ \sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} & \sum_{i=1}^{n} y_i^2 - n \bar{y}^2 \end{pmatrix}
 \]
Estimation of the projection matrix

Given \(n \) points \(P_1, \ldots, P_n \) with known positions and their images \(p_1, \ldots, p_n \),

\[
\begin{pmatrix} u_i \\ v_i \end{pmatrix} = \begin{pmatrix} m_1 \cdot P_i \\ m_3 \cdot P_i \\ m_2 \cdot P_i \\ m_3 \cdot P_i \end{pmatrix} \iff \left(m_1 - u_i m_3 \right) P_i = 0
\]

The constraints associated with the \(n \) points yield a system of \(2n \) homogeneous linear equations in the 12 coefficients of the matrix \(M \),

\[
\mathcal{P}m = 0 \quad \text{with} \quad \mathcal{P} \overset{\text{def}}{=} \begin{pmatrix} P_1^T & 0^T & -u_1P_1^T \\ 0^T & P_1^T & -v_1P_1^T \\ \vdots & \vdots & \vdots \\ P_n^T & 0^T & -u_nP_n^T \\ 0^T & P_n^T & -v_nP_n^T \end{pmatrix} \quad \text{and} \quad m \overset{\text{def}}{=} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = 0
\]

When \(n \geq 6 \), homogeneous linear least-square can be used to compute the value of the unit vector \(m \) (hence the matrix \(M \)) that minimizes \(|Pm|^2\) as the solution of an eigenvalue problem. The solution is the eigenvector with least eigenvalue of \(P^TP \).
Estimation of the intrinsic and extrinsic parameters

Once \mathcal{M} is known, you still got to recover the intrinsic and extrinsic parameters!

This is a decomposition problem, NOT an estimation problem.

\[\rho \mathcal{M} = \begin{pmatrix} \alpha r_1^T - \alpha \cot \theta r_2^T + u_0 r_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} r_2^T + v_0 r_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ r_3^T & t_z \end{pmatrix} \]

- Intrinsic parameters
- Extrinsic parameters
Estimation of the intrinsic and extrinsic parameters

Write \(M = (A, b) \), therefore

\[
\rho(A, b) = \mathcal{K}(R, t) \iff \rho \begin{pmatrix}
a_1^T \\
a_2^T \\
a_3^T
\end{pmatrix} = \begin{pmatrix}
\alpha r_1 - \alpha \cot \theta r_1^T + u_0 r_1^T \\
\beta \\
r_3^T
\end{pmatrix}
\]

Using the fact that the rows of a rotation matrix have unit length and are perpendicular to each other yields

\[
\begin{aligned}
\rho &= \varepsilon / |a_3|, \\
r_3 &= \rho a_3, \\
u_0 &= \rho^2 (a_1 \cdot a_3), \\
v_0 &= \rho^2 (a_2 \cdot a_3), \\
\end{aligned}
\]

where \(\varepsilon = \mp 1 \).

Since \(\theta \) is always in the neighborhood of \(\pi / 2 \) with a positive sine, we have

\[
\begin{aligned}
\rho^2 (a_1 \times a_3) &= -\alpha r_2 - \alpha \cot \theta r_1, \\
\rho^2 (a_2 \times a_3) &= \frac{\beta}{\sin \theta} r_1, \\
\rho^2 |a_1 \times a_3| &= \frac{\alpha}{\sin \theta}, \\
\rho^2 |a_2 \times a_3| &= \frac{\beta}{\sin \theta}. \\
\end{aligned}
\]

Thus,

\[
\begin{aligned}
\cos \theta &= \frac{(a_1 \times a_3) \cdot (a_2 \times a_3)}{|a_1 \times a_3| |a_2 \times a_3|}, \\
\alpha &= \rho^2 |a_1 \times a_3| \sin \theta, \\
\beta &= \rho^2 |a_2 \times a_3| \sin \theta, \\
r_1 &= \frac{\rho^2 \sin \theta}{\beta} (a_2 \times a_3) = \frac{1}{|a_2 \times a_3|} (a_2 \times a_3), \\
r_2 &= r_3 \times r_1. \\
\end{aligned}
\]

Note that there are two possible choices for the matrix \(R \) depending on the value of \(\varepsilon \).
Estimation of the intrinsic and extrinsic parameters

The translation parameters can now be recovered by writing $Kt = \rho b$, and hence $t = \rho K^{-1}b$. In practical situations, the sign of t_z is often known in advance (this corresponds to knowing whether the origin of the world coordinate system is in front or behind the camera), which allows the choice of a unique solution for the calibration parameters.
Taking radial distortion into account

Assuming that the image centre is known \((u_0 = v_0 = 0)\), model the projection process as:

\[
p = \frac{1}{z} \begin{pmatrix} 1/\lambda & 0 & 0 \\ 0 & 1/\lambda & 0 \\ 0 & 0 & 1 \end{pmatrix} \, M \, P
\]

where \(\lambda\) is a polynomial function of the squared distance \(d^2\) between the image centre and the image point \(p\).

It is sufficient to use low-degree polynomial:

\[
\lambda = 1 + \sum_{p=1}^{q} \kappa_p d^{2p}, \quad \text{with} \; q \leq 3 \; \text{and the distortion coefficients} \; \kappa_p \; (p = 1, \ldots, q)
\]

\[
d^2 = \hat{u}^2 + \hat{v}^2
\]

This yields highly nonlinear constraints on the \(q + 11\) camera parameters.
The accuracy of the calibration depends on the accuracy of the measurements of the calibration pattern.
Line intersection and point sorting

- Extract and link edges using Canny;
- Fit lines to edges using orthogonal regression;
- Intersect lines.
References

- “Geometric Frame Work for Vision – Lecture Notes”. A. Zisserman, University of Oxford