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ABSTRACT

The magnetic resonance imaging (MRI) technique known as diffusion tensor

imaging (DTI) provides a unique method for investigating the architecture of neural

white matter in human subjects in-vivo. DTI has a promising ability to better

understand the biological root of disease in white matter between healthy subjects

and those presenting white matter pathology or altered cognitive function. Because

of the complexity of the acquired data, new image analysis techniques are essential

to enable clinical research. This thesis presents a framework for evaluating tract

specific group differences in populations of diffusion tensor images.

The ability of DTI to quantify diffusion parameters in living tissue requires

a careful understanding of the imaging protocol and techniques for estimating

diffusion parameters from measurements. An investigation of the effect of imaging

noise on both tensor estimation and gradient sequence design is presented using

both simulation and validation experiments. This evaluation provides recommen-

dations for future studies as well as an understanding of potential confounds in

retrospective analysis. Techniques for atlas building and tract-based analysis are

developed to provide a reference coordinate frame for statistical analysis. Atlas

building enables the study of a population of images in a common coordinate

system. Novel validation measures for comparing streamline tractography results

are used to evaluate the results of atlas tract identification. Tract-based analysis

of diffusion measures within atlas space enables intuitive statistical methods for

testing the differences of specific tracts. The statistical framework allows for joint

analysis of multiple diffusion statistics and accounts for along tract correlation.

These methods provides a generic framework for neuroimaging studies and has

been demonstrated on clinical studies of normal development and schizophrenia to

illustrate potential new findings as well as confirmation of previous studies.



For my grandfather Claude B Goodlett.



CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTERS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of White Matter Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Application Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Normal Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.2 Schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Thesis and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Overview of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Diffusion Weighted Magnetic Resonance
Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Source of Diffusion Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Diffusion Tensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Higher Order Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Scalar Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Fiber Tractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Statistical Analysis of DTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. DIFFUSION WEIGHTED IMAGE PREPROCESSING . . . . . . 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 ML Estimation of Rician Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Simulation of Tensor Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Experiments and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



4. DTI ATLAS BUILDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Tensor Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Spatial Transformations of Tensor Images . . . . . . . . . . . . . . . . . 43
4.3.2 Interpolation and Averaging of Tensor Images . . . . . . . . . . . . . 45

4.4 Atlas Tractography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Preservation of Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5. MEASURES FOR VALIDATION OF TRACTOGRAPHY . . . 52

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Tractography Comparison Measures . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Volumetric Overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.2 Point Cloud Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.3 Ellipsoid Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.4 Functional Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Evaluation of Atlas Tractography . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6. TRACT STATISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Tract Oriented Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Functional Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 Example Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7. CLINICAL APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Study of Brain Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2.1 Cross-Sectional Atlases of Development . . . . . . . . . . . . . . . . . . 76
7.2.2 Normal Development From One to Two years . . . . . . . . . . . . . . 76
7.2.3 Hypothesis Testing Between Controls and MVMs in Neonates . 83

7.3 Schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.2.1 Atlas Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.2.2 HARDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.3 Additional Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.4.1 Improvement of Atlas Building . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.4.2 Physical Meaning of Diffusion Measures . . . . . . . . . . . . . . . . . . 105

vii



8.4.3 Tract Oriented Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.4.4 Longitudinal Tract Oriented Statistics . . . . . . . . . . . . . . . . . . . 106
8.4.5 Incorporating Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

9. PUBLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

9.1 Journal Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.2 Peer-Reviewed Conference Publications . . . . . . . . . . . . . . . . . . . . . . . 108
9.3 Invited Presentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
9.4 Peer-Reviewed Short Papers and Workshops . . . . . . . . . . . . . . . . . . . 109

APPENDICES

A. SOFTWARE USER GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B. GRADIENT DIRECTION SCHEMES . . . . . . . . . . . . . . . . . . . . . 130

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

viii



LIST OF TABLES

3.1 Mean and variance of FA values in aligned and unaligned voxels. . . . . 37

3.2 Mean and variance of trace values in white matter. . . . . . . . . . . . . . . . 37

5.1 Mean and standard deviation of geometric distance measures between
warped atlas tract and individual tract over the population. . . . . . . . . 60

5.2 Mean and standard deviation of average absolute difference in FA and
MD between atlas tract and warped individual tract. . . . . . . . . . . . . . 60

5.3 Summary of measure advantages and disadvantages. . . . . . . . . . . . . . . 61

7.1 Tract differences from one to two years . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2 Tract differences from neonate controls to MVMs . . . . . . . . . . . . . . . . 89

B.1 6 direction gradient list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.2 21 direction gradient list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.3 60 direction gradient list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



LIST OF FIGURES

1.1 Diagram of a neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The random walk of water molecules within anisotropic tissue such as
an axon fiber bundle tends to travel more easily along the fiber bundle. 12

2.2 Example of noncrossing and crossing fibers. . . . . . . . . . . . . . . . . . . . . . 13

2.3 Single streamline trace through a tensor field. . . . . . . . . . . . . . . . . . . . 16

3.1 Geometric interpretation of Rician noise . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Example of tensors with principal eigenvectors aligned or unaligned
with a gradient direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Simulated comparison of ML estimation and averaging of DWI intensity. 27

3.4 The orientation dependence of estimated FA and trace under different
sampling schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Comparison of Frobenius norm of the difference between the estimated
and true tensor in Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . 29

3.6 Comparison of MD estimate in Monte Carlo simulations . . . . . . . . . . . 30

3.7 Comparison of FA estimate in Monte Carlo simulations . . . . . . . . . . . 30

3.8 Simulated estimation of FA for highly isotropic tensors. . . . . . . . . . . . 32

3.9 Histograms from diffusion weighted images . . . . . . . . . . . . . . . . . . . . . 34

3.10 Labels for aligned and unaligned voxels . . . . . . . . . . . . . . . . . . . . . . . . 35

3.11 Histograms of estimated FA using weighted least squares estimation
for aligned and unaligned tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Flowchart of atlas building process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Deformation of tensor fields into atlas space preserves the full infor-
mation needed for fiber tractography and diffusion statistic analysis. . 40

4.3 Comparison of FA and feature images. . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Comparison of affine and diffeomorphic registration. . . . . . . . . . . . . . . 44

4.5 Axial slice of the FA and ellipsoids for the affine and deformable atlases 48

4.6 Fibers in atlas and corresponding fibers in subject space . . . . . . . . . . . 49

4.7 FA gradient in affine and diffeomorphic atlases . . . . . . . . . . . . . . . . . . 50

5.1 Example of instability of overlap measures for thin structures. . . . . . . 54



5.2 Closest point distances for atlas and individual tractography results
for the right cingulum in a subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Histogram of closest point distances from atlas tract to individual tract. 55

5.4 Ellipsoid representation of bundle shape. . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Mean and standard deviation of differences between functions pro-
duced by atlas tractography and individual tractography mapped to
atlas for the right uncinate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.6 Fiber bundles in population atlas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Diffusion properties within a fiber bundle are summarized as a func-
tion of arc length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.2 Schematic diagram of tract analysis procedure. . . . . . . . . . . . . . . . . . . 65

6.3 Visualization of the PCA modes for the joint analysis of FA and FRO 69

6.4 Discriminant for genu tract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.5 Discriminant for left motor tract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1 Axial slices of atlases at neonate, 1 year, 2 year, and adult. . . . . . . . . . 77

7.2 Axial slices of all subjects after nonlinear registration . . . . . . . . . . . . . 79

7.3 Comparison of atlas and individual tractography . . . . . . . . . . . . . . . . . 80

7.4 Tract and arc length functions for genu . . . . . . . . . . . . . . . . . . . . . . . . 81

7.5 Tract and arc length functions for splenium . . . . . . . . . . . . . . . . . . . . . 82

7.6 Tract and arc length functions for left cortico-spinal tract . . . . . . . . . . 84

7.7 Tract and arc length functions for right cortico-spinal tract . . . . . . . . 85

7.8 Discriminant function for the genu tract . . . . . . . . . . . . . . . . . . . . . . . 86

7.9 Discrimination function left cortico-spinal tract . . . . . . . . . . . . . . . . . . 87

7.10 Template fiber tracts in atlas of neonate subjects overlaid on the FA
image of the neonate atlas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.11 Discriminant for splenium from control to MVM groups . . . . . . . . . . . 88

7.12 Fiber bundles for analysis of schizophrenia data. . . . . . . . . . . . . . . . . . 90

7.13 Functions and discriminant for fornix . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.14 Functions and discriminant for left uncinate . . . . . . . . . . . . . . . . . . . . 92

7.15 Functions and discriminant for right uncinate . . . . . . . . . . . . . . . . . . . 93

7.16 Functions and discriminant for left cingulum . . . . . . . . . . . . . . . . . . . . 94

7.17 Functions and discriminant for right cingulum . . . . . . . . . . . . . . . . . . . 95

8.1 FA image and fiber tracts from atlas of adults. . . . . . . . . . . . . . . . . . . 104

xi



LIST OF ABBREVIATIONS

ADC apparent diffusion coefficient

CSF cerebrospinal fluid

DWI diffusion weighted imaging

DTI diffusion tensor imaging

FA fractional anisotropy

FLD Fisher linear discriminant

FRO Frobenius norm

HARDI high angular resolution diffusion imaging

LLS linear least squares

LPS left-posterior-superior

MD mean diffusivity

MRI magnetic resonance imaging

ML maximum likelihood

MVM mild ventriculomegaly

NLS nonlinear least squares

PCA principal component analysis

PDF probability density function

ROI region of interest

sMRI structural MRI

SNR signal-to-noise ratio

WLS weighted least squares



ACKNOWLEDGMENTS

As a graduate student, I have had the opportunity to work with a number of

talented researchers and meet many lifelong friends. A move midway through

my graduate studies from the University of North Carolina at Chapel Hill to

the University of Utah initially seemed like a challenge, but the support of the

faculty and students at both institutions has made the transition enjoyable and

professionally rewarding. Thanks to my family for endless support throughout my

many years as a student.

This document is due in large part to the tireless assistance and encouragement

from my advisor Guido Gerig. I would also like to thank the rest of my committee

Sarang Joshi, P. Thomas Fletcher, Edward Hsu, and Carl-Fredrik Westin who have

all been both professional mentors and personal friends.

At the University of North Carolina, I am indebted to the faculty, staff and

students of the medical image display and analysis group (MIDAG) especially the

advice and guidance from Stephen M Pizer. I would also like thank Brad Davis,

Remi Jean, Martin Styner, Clement Vachet, John Gilmore, Weili Lin, and Eli

Broadhurst in particular for assitance in developing the research of this thesis.

The University of Utah and especially the scientific computing and imaging

institute faculty, staff, and students have been very welcoming and accommodating

in my transition here. I would like to thank Ross Whitaker, Ran Tao, and Sylvain

Gouttard for helpful discussions. Also thanks to everyone in the third floor lab for

making time at work enjoyable.

I would also like to think the national alliance for medical image computing (NA-

MIC) which provided both the funding for my studies under grant U54 EB005149

as well as a wealth of opportunities to improve my research and education. The

interaction with the students, scientists, and engineers of the NA-MIC project



provided an education in medical image analysis that could not have been matched

anywhere else.

xiv



CHAPTER 1

INTRODUCTION

1.1 Motivation

The development of medical imaging technology revolutionized the ability to

safely investigate human anatomy. In particular, the invention of magnetic reso-

nance imaging (MRI) has enabled noninvasive investigation of the central nervous

system in living humans. Clinical evaluation of neurological disorder routinely

acquires MRI of patients to diagnose damage to the nervous system from trauma,

stroke, tumors, or other lesions, and modern psychiatric investigations routinely

rely on imaging technology to probe the underlying biology of mental disorder.

However, prior to the development of diffusion imaging, conventional MRI lacked

the capacity to investigate the structure of the axon fiber bundles that comprise

the brain white matter. Pioneering work in the 1980s by Le Bihan et al. enabled

the acquisition of diffusion weighted imaging (DWI) with spatially varying mea-

surements of the diffusion rate of water [60]. Basser et al. later introduced the

diffusion tensor formalism to characterize the anisotropic diffusion found in white

matter structures [9, 10]. The development of DWI and diffusion tensor imaging

(DTI) has enabled detailed investigation of white matter fiber bundles by mapping

the anisotropic diffusion of water generated by axon fiber bundles. However, for

image analysis, diffusion imaging presents an added dimension of complexity over

traditional imaging because of the multivariate, directional nature of the diffusion

images. The development of new algorithms to process and analyze diffusion

images, therefore, provides a unique opportunity to improve clinical understanding

of brain white matter and to shed light on the biological basis of development and

disease.

The human brain is a complex organ built from many interconnected processing
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units. Tissue in the brain is often classified into white or grey matter based

on function and anatomical structure. The grey matter of the brain comprises

the processing circuitry of the nervous system, whereas the white matter consists

primarily of bundles of axons that connect regions of the brain to each other as well

as to peripheral motor and sensory neurons. These can be thought of analogous to

a computer system consisting of processing units (grey matter) and wiring (white

matter). Traditional structural MRI (sMRI) contrast produces images where the

white matter appears as a homogeneous region. However, the microstructure of

the white matter consists of a coherent structure of directionally organized axons

separated into distinct fiber bundles. The development of DTI provides a new type

of image contrast that allows the investigation of this microstructure by measuring

macroscopically the molecular self-diffusion of water locally at each voxel of brain

images. The underlying assumption in DTI is that diffusion of water molecules

is restricted across fiber bundles but relatively unrestricted along fiber bundles.

As a result, changes in tissue microstructure such as axon packing density, axon

diameter, myelination, and other factors of tissue microstructure are reflected in

directional diffusion measurements.

Scientific investigations trying to make inferences about white matter struc-

ture from DTI require sophisticated processing methods to translate the complex

diffusion data into an anatomically relevant set of measurements. Computational

methods are required to align populations of images, estimate tensors, compute

fiber tractography, and perform statistical analysis. This thesis combines these

techniques in a framework for investigating tract specific differences in diffusion

properties between populations. The methods presented in this thesis draw inspi-

ration from the field of brain mapping [101]. The field of brain mapping is concerned

with transferring data from a population of brain images to a reference anatomy

by spatial transformations of each image. This thesis provides an alternative

computational framework for brain mapping and statistical analysis of DTI that

provides several advantages for the analysis of specific tracts.
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1.2 Overview of White Matter Anatomy

The central nervous system is the biological seat for cognitive thought, sensory

information processing, homeostatic regulation, and control of motor function.

The major components of the central nervous system are the spinal cord, the

medulla, the midbrain and pons, the cerebellum, the thalamus, and the cerebrum

or telencephalon. This thesis focuses on imaging and analysis of fiber tracts in

the cerebrum. The cerebrum consists of two large hemispheres divided along

the center by the central sulcus. Each hemisphere is a highly folded structure

of neural tissue with the cortex comprising a few millimeters of the outside surface

and containing most of the gray matter used for processing. The interior includes

primarily white matter connections and subcortical structures such as the thalamus,

the hypothalamus, the basal ganglia, the amygdala, and the hippocampus. The

creases in the surface of the cortex are known as sulci and the folds of cortical

tissue are gyri.

The fundamental cell of the nervous system is the neuron. As depicted in

Fig. 1.1, the neuron consists of a cell body receiving signal through a set of dendrites

and a long axon that connects via a synapse to other neurons. The presynaptic

ending of the axon releases neurotransmitters that can excite or inhibit the postsy-

naptic neuron. Large collections of axons in the white matter of the brain make up

the fiber bundles imaged using DTI. The bundles are often divided based on location

and function into three categories: association, projection, and commissural.

Association fibers connect regions within the same hemisphere of the cerebral

cortex. For example, neighboring gyri are often connected by short U-shaped

fibers. The uncinate fasciculus connects the frontal lobe to the temporal lobe

in each hemisphere. The arcuate fasciculus is another structure that connects

Wernicke’s and Broca’s areas, which are responsible for speech production and

comprehension, respectively. The cingulum and the fornix are two other major fiber

bundles involved in the classic circuit of Papez. The circuit of Papez is a major

component of the limbic system responsible for many activities including memory

formation and learning. The cingulum connects regions of the cingulate cortex
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Figure 1.1. Diagram of a neuron. The neuron consists of a cell body with receiving
dendrites and an axon that connects to another neuron. Large collection of axons
formed in organized bundles known as fiber tracts make up the white matter of the
nervous system.

to the hippocampus, and the fornix connects the hippocampus to the mamillary

bodies.

Projection fibers are responsible for connecting the cortex to subcortical struc-

tures and the spinal cord. Sensory input and control of motor function for the

body pass through the internal capsule tract. The internal capsule includes bidi-

rectional connections between the thalamus and the cortex as well as bidirectional

connections between the spinal cord and thalamus. The fiber tract connecting the

postcentral gyrus, which is responsible for processing of sensory input, is referred

to in this thesis as the sensory tract. The fiber tract connecting the precentral or

motor gyrus to the spinal cord is referred to as the motor tract.

Commissural fibers are responsible for connecting the two hemispheres of the

cerebrum. The corpus callosum is by far the largest commisural connection and

is a large structure in the center of the midsagittal plane. The anterior region

of the corpus callosum is often referred to as the genu, or bend, of the corpus

callosum, whereas the posterior region is referred to as the splenium. Other smaller

commissural connections include the anterior and posterior commisures. For fur-

ther information on the anatomy of the nervous system, the reader is referred to

Haines [45].
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1.3 Application Areas

A wide variety of application areas in medicine and neuroscience exist for the

methods presented in this thesis. These methods enable researchers to build a

normative model of white matter diffusivity for fiber tracts and to use this model

for statistical comparison. A significant number of neuroscience investigations into

a variety of mental disorders already rely on DTI to investigate white matter

changes. In this thesis, the primary clinical applications are the study of normal

and abnormal development in children from birth to two years and the study of

schizophrenia in adults. Additional applications using the methodology of this

thesis are mentioned briefly in section 8.3.

1.3.1 Normal Development

The study of normal development presents an opportunity both to gain a

better scientific understanding of the process of development as well to obtain a

baseline of normal anatomy for the investigation of psychiatric disease. The rapid

developmental changes in childhood are accompanied by significant development of

the brain after birth. The brain increases in total volume after birth until about the

age of 5 [29]. White matter structures increase in volume and develop well into early

adulthood, while cortical gray matter regions undergo a period of growth followed

by pruning in later adolescence [39]. MRI is an attractive tool for the investigation

of development because of the minimal risk posed to healthy subjects. DTI, in

particular, presents a safe method for investigating the myelination, development,

and pruning of axon bundles during development.

MRI has so far proved to be a valuable tool for the investigation of normal

development. Investigations so far have focused primarily on morphometric mea-

sures such as brain volume, cortical thickness, white and grey matter volumes,

etc. However, the rapid change of tissue properties during development present

major challenges for traditional morphometry studies based on segmentation. The

quantitative nature of diffusion imaging may provide a more stable reference for

many of these studies [47]. Furthermore, DTI elucidates additional features of

tissue microstructure, especially in white matter. A majority of myelination occurs
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before birth and during the first 2 years of life with some myelination occurring

throughout life [29]. There has been substantial interest recently in acquiring large

databases of pediatric DTI images [19]. Preliminary analysis of DTI statistics in

pediatric subjects has illustrated the capacity of DTI to quantify biological changes

due to development such as changes in myelination and axon packing. Gilmore

et al. quantified differences in DTI images of neonates between fiber tracts to

investigate differences in development rates [40]. In a review of DTI applied to

pediatric imaging, Casicio et al. found consistent reports of increased anisotropy

and decreased total diffusion due to development [22]. Bonekamp et al. found

DTI measurements to be reproducible in pediatric studies [18]. Clinical studies

such as these have so far required time-consuming manual region of interest (ROI)

segmentation to identify regions for statistical analysis. This thesis provides an

improved technology for efficient processing of large image databases that is both

repeatable and reliable. DTI atlases built over different ranges of development

serve to illustrate the development of white matter properties over time, and the

construction of atlases from normal data provides a reference point for studying

abnormal development.

1.3.2 Schizophrenia

In addition to the study of normal development, this thesis also examines differ-

ences between adults with schizophrenia and controls. Schizophrenia is a psychiatric

disorder affecting approximately 1% of the worlds population and accounts for a

large percentage of public health resources [72]. Clinical symptoms of the disease

include delusions, apathy, and auditory hallucinations [59]. There is some evidence

that schizophrenia involves deficits in connectivity between different functional

regions. Because of this hypothesis, recent studies have made extensive use of

DTI in the investigation of schizophrenia to determine the location and extent

of possible white matter differences between Schizophrenics and controls. Many

studies have relied on voxelwise analysis methods such as statistical parametric

mapping (SPM). For example, Burns et al. found reduced anisotropy in the left
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uncinate and arcuate fasciculus in adult schizophrenics versus matched controls [20].

The advantage of this method of analysis is efficient processing requiring minimal

manual intervention. However, the major drawback is that the statistical analysis

can only test the relatively weak hypothesis of no differences between two popula-

tions that requires sophisticated multiple comparison correction and results in hard

to interpret “blobs” of significance. Other groups have used manually drawn ROI

to investigate specific hypotheses about differences between white matter anatomy.

Kubicki et al. found anisotropy differences in the uncinate fasciculus with manual

selection [58]. Although these methods are able to test more specific hypotheses,

they suffer from time consuming manual segmentation. The methods presented in

this thesis are useful tools for future research in schizophrenia, because they provide

an automatic method to perform tract specific analysis of diffusion values.

1.3.3 Other Applications

Many other clinical neuroscience studies have acquired DTI, in addition to the

areas of application focused on in this thesis. A significant number of studies

have used DTI to investigate the anatomical root of the behavioral disconnects

associated with autism. Alexander et al. showed that after controlling for age, IQ,

and other factors, there are significant differences between diffusion measurements

in the corpus callosum between subjects with autism and controls [1]. Barnea-

Gorlay et al. observed decrease tensor anisotropy in white matter in a variety of

areas including white matter deep to the ventromedial prefrontal cortex and the

anterior cingulate gyrus [8]. Krabbe disease is a degenerative disease characterized

by loss of axon myelination, and there is hope that DTI can be a useful tool for

characterizing the progress of the disease as well as potential treatments [44]. Other

disorders such as Alzheimers, drug addiction, alcoholism, etc. may involve deceits

of white matter that can be investigated using DTI [99, 107, 62]. Although this

thesis will not focus on any of these other application areas, the methods of this

thesis are potentially valuable in any of these investigations.
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1.4 Thesis and Contributions

Thesis: Populations of diffusion tensor images provide valuable insight

into white matter tissue structure. Measurement error and image pre-

processing steps must be controlled to minimize error in statistics. Com-

putation of an anatomically relevant coordinate system through atlas

building and fiber tract modeling provides an intuitive shape-based frame-

work for understanding differences in white matter microstructure. The

combination of preprocessing, atlas building, and tract analysis provides

a robust framework for making inferences about white matter differences

in populations.

This thesis describes the following developments in image analysis that contribute

to the analysis of DTI:

1. An analysis of diffusion tensor estimation under different acquisition schemes

illustrates the bias introduced by gradient sampling schemes with repeated

directions.

2. An analysis of diffusion tensor estimation methods shows a preferences to-

wards weighted least squares tensor estimation to achieve efficient computa-

tion with reduced bias and variability of derived tensor measures.

3. A method for spatial normalization of tensor images based on unbiased atlas

building allows populations of tensor images to be analyzed in a common

coordinate frame.

4. Measures for evaluating geometric and functional differences in tractography

are introduced and evaluated with specific application to validation of the

spatial normalization.

5. A novel method for computing tract oriented statistics enables population

comparison to account for multivariate tensor shape measures and along tract

correlation.

6. The atlas building method is applied to cross-sectional data of normal devel-

opment to understand the maturation of diffusion properties over time.
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7. The tract oriented statistical method is applied to group analysis of pediatric

and adult schizophrenia data.

8. The framework developed in this thesis is made available as an open source

toolkit for the benefit of the scientific community.

1.5 Overview of Chapters

The following chapters of this thesis cover a background on DTI of human

populations as well as present the contributions of this thesis for statistical analysis.

Chapter 2 presents a review of the use of DTI for the study of white matter

anatomy. The imaging process and fundamental assumptions of DTI are reviewed.

This chapter also provides a brief background on brain mapping, diffeomorphic

image registration, and statistical analysis in neuroimaging.

Chapter 3 presents the contributions of this thesis in preprocessing of diffusion

weighted images. Numerical simulation of the effects of diffusion weighting gradient

design on measurements are presented and validated with experiments using real

images.

Chapter 4 develops a method for the computation of a population atlas from

diffusion images that includes invertible transformations between each image and

a population mean.

Chapter 5 develops metrics for comparing fiber bundles generated from trac-

tography and uses these methods to evaluate the spatial normalization method

presented in Chapter 4.

Chapter 6 builds on the previous chapter by developing a novel statistical

method for tract oriented analysis of diffusion properties.

Chapter 7 covers the application of the methods developed in this thesis to

clinical problems including neurodevelopment and schizophrenia.

Chapter 8 reviews the contributions of the thesis, discusses limitations of the

methodology, and presents potential areas of future research and development.

Appendix A presents a users manual for the software developed in conjunction

with Chapter 4 of this thesis.



CHAPTER 2

BACKGROUND

2.1 Diffusion Weighted Magnetic Resonance
Imaging

This section provides a mathematical background for measuring the diffusion of

water using DWI and DTI and the application to evaluating white matter tissue

properties.

2.1.1 Source of Diffusion Signal

MRI acquires images by applying powerful magnetic fields to tissue to align the

nuclei of hydrogen atoms present in the water of the human body. In the presence

of a strong magnetic field, these protons align their spins with the direction of the

magnetic field. When a radio frequency (RF) pulse is used to knock the spins out

of alignment, a corresponding RF signal is generated as the spins recover. Tradi-

tionally, structural MRI has focused on measuring two constants of this recovery,

T1 and T2, as a mechanism for providing tissue contrast. Diffusion imaging relies on

the use of two gradient pulses to dephase and then rephase protons within a voxel.

The self-diffusion of water along the direction of gradient pulses causes protons to

experience varying field strengths during the two pulses as a result of diffusion.

As a result, the phases of protons do not completely refocus after application of

the second gradient resulting in signal attenuation. The modeling equation is the

Stejskal-Tanner equation

Si = Si exp(−bgiDgTi ), (2.1)

where Si is the observed intensity in a gradient direction gi, S0 is the intensity

without diffusion weighting, and b is a constant proposed by Le-Bihan [97, 60]. b

is defined as
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b = γ2G2δ2

(
∆− δ

3

)
, (2.2)

where γ is the gyromagnetic ratio, G is the amplitude of the diffusion weighting

gradient, δ is the duration of the gradient, and ∆−δ is the time between the end of

one gradient pulse and start of the next pulse [67]. (2.1) provides the fundamental

mechanism for measuring the diffusion of water in a particular direction. The value

giDg
T
i is the measured diffusion in direction gi for a voxel and is referred to as the

apparent diffusion coefficient (ADC).

2.1.2 Diffusion Tensor Model

In materials with isotropic diffusion such as free water, the diffusion of water

measured in any direction is the same. However, in brain white matter the presence

of biological tissue such as axons hinders the diffusion of water. The structure of

axon bundles creates an anisotropic limitation on the diffusion of water based on

the orientation of fiber bundles within the tissue. Figure 2.1 shows an example of

a tissue arrangement that generates diffusion anisotropy compared with another

that produces more isotropic diffusion. If the orientation of the fiber direction was

known prior to the imaging experiment, the anisotropy could be measured by 1

ADC measurement along the fiber orientation and 1 measurement perpendicular

to the orientation. However, the fiber orientation of brain white matter varies over

the image and is not known prior to imaging.

To solve this problem, the diffusion tensor model was introduced [9]. In this

model, diffusion is approximated as a single Gaussian distribution for each voxel

with probability density function (PDF)

p(x|xo, τ) =
1

(2π)3/2|D(τ)|1/2
exp

(
−(x− xo)TD(τ)−1(x− xo)

2

)
. (2.3)

This gives the probability that a particle originally located at point x0 is at point

x after time τ . The covariance is assumed to depend on the time τ as restrictive

interfaces for the diffusion are more likely to affect the diffusion at larger τ . That

is, at low τ D is typically closer to isotropic. D is measured by the log ratio of

nondiffusion weighted signal to diffusion weighted signal following (2.1) in at least
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Figure 2.1. The random walk of water molecules within anisotropic tissue such
as an axon fiber bundle tends to travel more easily along the fiber bundle.

six linearly independent directions. The diffusion tensor D is a covariance matrix

and is therefore symmetric positive-definite. Further details on the estimation of

the diffusion tensor from observed signals will be covered in Chapter 3.

2.1.3 Higher Order Models

Although the tensor model of diffusion has proven useful in clinical studies, there

are several well-known deficiencies associated with the tensor model. The primary

deficit is the inability of the tensor model to deal with fiber crossings or other

complex fiber architectures. An illustration of this problem is shown in Fig. 2.2,

where crossing fibers reduce the anisotropy of the measured tensor. This problem

was initially identified by Tuch et al. who showed that multiple fiber orientations

per voxel could be resolved using high b-values and increase angular sampling [103].

The problem arises from multiple compartments of tissue within the relatively large

spatial size of a voxel.

Higher order distributions have been a recent area of research interest for in-

stances where the microstructure of a voxel is substantially heterogeneous. Prelimi-

nary work on q-space MRI showed that more complex measurements could be made

but were clinically unfeasible at the time [11]. A variety of different models have

been proposed to overcome the limitation of DTI including higher order diffusion
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Figure 2.2. Example of noncrossing and crossing fibers.

tensors [77, 78], q-ball imaging [102], spherical harmonics [27], and mixtures of

tensors [80, 56]. However, high angular resolution diffusion imaging (HARDI)

imaging techniques are not yet widely used in clinical neuroscience studies. Given

the focus of this thesis on population studies, the following chapters will focus

primarily on the single tensor model. Chapter 8 gives a brief discussion on future

work that could extend the methods of this thesis to more complex diffusion models.

2.1.4 Scalar Invariants

The analysis methods presented in this thesis rely on the ability of DTI to pro-

vide quantitative information about tissue microstructure. Several scalar quantities

have been proposed to summarize information about tissue microstructure from the

diffusion tensor. Because the diffusion tensor, D, is symmetric positive-definite, the

spectral decomposition theorem ensures that there exists

D = VΛVT , (2.4)

where V has as columns the eigenvectors {ê1, ê2, ê3} and Λ are the corresponding

eigenvalues {λ1, λ2, λ3}. If λ1 >> λ2, λ3, then the hypothesis is that ê1 points in

the same direction as the underlying fiber bundle. The eigenvalues of the tensor

are rotationally invariant. That is, they are the same when measuring arbitrary
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rotations of the tensor. As the orientation of the tissue structures is not known

prior to the experiment, only scalar measures that are invariant to rotation are

considered here. For this reason, measures will be expressed in terms of both

the tensor elements and eigenvalues. This section will cover invariant measures to

evaluate the anisotropy and size of diffusion tensors.

Initial ADC diffusion measurements were made by MRI in a small, two or three,

number of directions. Rotationally invariant measures were initially proposed as

part of the diffusion tensor model by Basser and Pierpaoli to avoid error introduced

by the choice of laboratory reference frame when using a small number of measure-

ment directions [10, 83]. Some of the initially proposed measures include fractional

anisotropy (FA), mean diffusivity (MD), relative anisotropy (RA), the lattice index

(LI), and the organization index. The purpose of these measures is to produce

a contrast for MRI that reflects the biological tissue invariant to changes in the

laboratory coordinate frame. Because these measures are rotationally invariant,

they can be expressed in terms of the eigenvalues of the diffusion tensor. For

computational efficiency, many are implemented in terms of the tensor elements to

avoid diagonalizing the tensor matrix.

By far the most commonly used measures in the published literature are the FA

and MD. FA is a dimensionless quantity bounded between 0 ≤ FA ≤ 1. Tensors

with high FA are elongated in 1 dimension and narrow in the other dimensions.

Tensors with low FA are close to spherical. FA is defined as

FA =

√
3√
2

∣∣D− 1
3
trace(D)I

∣∣
|D|

(2.5)

FA =
1√
2

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2√

λ2
1 + λ2

2 + λ2
3

. (2.6)

Mean diffusivity is the average ADC over all directions and can be expressed as

MD = trace(D)/3 (2.7)

MD = (λ1 + λ2 + λ3)/3. (2.8)

A related size measure is the trace of the tensor, tr(D), which is equal to 3MD.

MD is expressed in physical diffusion units of mm2/s. Another metric of tensor
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size which will be used in this thesis is the Frobenius norm (FRO) of the diffusion

tensor,

‖D‖F =

√√√√ 3∑
i=1

3∑
j=1

D2
ij (2.9)

‖D‖F =
√
λ2

1 + λ2
2 + λ2

3. (2.10)

Another pair of measures include the axial and radial diffusivity λ⊥ and λ‖,

λ⊥ = λ1 (2.11)

λ‖ =
λ1 + λ2

2
. (2.12)

Axial and radial diffusivity are expressed in physical units of mm2/s. The definition

of additional invariant measures not used in this thesis can be found in [10, 83, 108].

Although the true relationship between these invariant measures and the un-

derlying tissue properties remains unknown, there have been several important

findings that give credibility to the use of these measures as biomarkers for tissue

change. Early results in developing anisotropy measures showed these measures

were typically high in white matter regions in cat and primate animal models as

well as humans [83]. Investigation of Krabbe disease using the RA showed a strong

correlation with known deficits in myelination in patients with the disease and was

shown to be more sensitive than standard T2 imaging [44]. Experiments in diffusion

imaging of the developing mouse brain showed a correlation between anisotropy

and development of brain tissue [70]. Song et al. showed that mice with a genetic

deficiency in myelin production with no additional axonal damage displayed higher

values for λ⊥ than matched controls that would also correspond to lower FA and

higher MD [96]. This study gives credibility to the use of anisotropy as a biomarker

for changes in tissue myelination. In a related field to material presented later in

this thesis, a negative correlation of MD with age and a positive correlation of FA

with age has been shown in healthy developing adolescents [88]. These findings

are unable to demonstrate the specificity of DTI invariant changes with biological

causes. They do, however, provide credibility for the use of DTI as a biomarker for

tissue change.
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2.1.5 Fiber Tractography

Segmenting anatomically known fiber bundles remains an important challenge

for DTI analysis. The most common approach, fiber tractography, integrates the

field of tensor principal eigenvectors to create streamlines that sample anatomical

fiber bundles [14]. The fiber tractography algorithm used in this thesis is a relatively

simple streamline method based on 4th order Runge-Kutta integration. In this

algorithm, a seed region is defined manually. Within the seed region, a streamline

is initialized at each voxel center and propagated by following the principal eigen-

vector of the tensor using a fixed step size. Tensors are interpolated using linear

interpolation of the tensor elements. Eigenvector sign is disambiguated by ensuring

that the inner product of the previous direction with the current eigenvector is

positive. An example tracing of a streamline through a fiber bundles is shown

in Fig. 2.3. Tracts are terminated when they reach a region of low FA, typically

around 0.2. A second ROI is typically also specified and only streamlines that pass

through both are retained. The goal of the tractography algorithm used in this

thesis is to select a reasonable geometry for the analysis of diffusion statistics and

is not intended to determine if two brain regions are connected.

Figure 2.3. Single streamline trace through a tensor field.
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Additional research has been reported by groups working on explicit volumetric

segmentation of white matter tracts. Several groups have proposed distance metrics

between tensors to enable levelset segmentation of white matter fiber tracts [106,

61]. Nonparametric methods for calculating the distribution of diffusion has been

applied to enable segmentation of difficult structures such as the cingulum [7].

Other research has used Finsler metrics to enable optimization of paths through a

tensor field [68, 69]. A similar approach using a geodesic distance between points in

an image is used to identify volumetric fiber bundles [35]. These methods provide

more explicit segmentation of the volume of white matter fiber bundles. The focus

of this thesis is statistical analysis of diffusion properties parametrized fiber bundles.

Therefore, this thesis will rely on streamline tractography methods.

The tractography algorithm used in this thesis is deterministic. To obtain better

connectivity measures from DTI probabilistic tractography has been proposed to

evaluate the connectivity between two regions of the brain. Friman et al. proposed

a Bayesian approach for dealing with local uncertainty in fiber orientation to obtain

a global measure of connectivitiy [36]. Later work by Zhang et al. developed a fast

and efficient sampling method to solve this connectivity problem using a particle

filter [113]. Both of these models are able to integrate information over the tract

to overcome local ambiguity in the orientation of fiber bundles due to noise.

2.2 Statistical Analysis of DTI

Most approaches to group analysis in the clinical DTI literature have relied

on voxel-based analysis or manually drawn ROI. An overview of the differences

between voxel-based and ROI analysis in DTI population studies was described by

Snook et al [95]. ROI analysis typically uses manual segmentation of white matter

structures. Within the ROIs, diffusion properties such as FA or MD are averaged

to create a single statistic. Examples of studies using ROI methods can be found in

normal development [18, 40, 47], schizophrenia [57], and Krabbe’s disease [44]. The

major drawback of ROI analysis is the time consuming and unreliable manual iden-

tification of regions, especially the challenge to identify the long, curved structures
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common in DTI fiber tracts. Furthermore, reliability is reduced by the interrater

and intrarater variability introduced by manual segmentation. This thesis improves

on previous methods in the ability to perform automatic processing through the

use of high-dimensional deformable registration as well as the ability to focus on

testing specific hypotheses regarding tracts of interest using a novel method for

joint analysis of multivariate tensor measures in a tract model.

Voxel-based analysis methods are characterized by alignment of images to a

template followed by independent hypothesis tests per voxel that are typically

smoothed and corrected for multiple comparisons. The most popular frameworks

for voxelwise analysis are the statistical parametric mapping (SPM) and FMRIB

software library (FSL) [37, 94]. Voxelwise analysis has been applied in DTI studies

including autism [8] and schizophrenia [20]. The major challenge in voxel-based

analysis is the need for multiple comparison correction and smoothing that can

make localization of changes challenging to interpret [51].

One of the most popular frameworks for statistical analysis of DTI is the

tract-based spatial statistics (TBSS) software [93]. TBSS is a modified voxelwise ap-

proach for analysis of diffusion properties using nonlinear registration to a template

combined with a skeletonization of FA voxels. FA values are globally projected onto

the skeleton followed by pointwise hypothesis tests on the skeleton. This method

improves the localization of voxelwise approaches for DTI by projecting diffusion

invariants on a white matter surface. However, this approach lacks a method for

performing analysis of specific tracts. Furthermore the use of local rather than

global hypothesis tests limits the ability to account for along tract correlation of

diffusion values.

Tract oriented analysis has been proposed as a mechanism for understanding the

diffusion statistics of white matter tracts in the context of the anatomy as extracted

by fiber tractography. Jones et al. created the pointwise assessment of streamline

tractography attributes (PASTA) tool, a graphical tool for visualizing diffusion

statistics of a fiber bundle [52]. Lin et al. used a length normalized framework for

investigating diffusion statistics in the pyramidal tract [63]. Corouge et al. proposed
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to analyze tensors as a function sampled along arc length of fiber bundles using

appropriate statistics for the space of diffusion tensors [23]. These methods will be

extended in this thesis with the development of methods normalizing measures in a

population and a novel statistical framework for populations of arc length functions.

In work closely related to the proposed methodology, [112] propose a method for

statistical analysis along the two-dimensional medial manifolds of fiber tracts for

specific tracts of interest after unbiased group alignment. On the tract medial axis,

permutation tests are applied to detect clusters of pointwise differences between MD

of groups. This method has the advantage of modeling structures using a medial

sheet rather than an arc length function as will be used in this thesis. However, this

flexibility in geometric modeling comes at the price of increased data dimensionality.

The global method for tract analysis discussed in Chapter 6 of this thesis cannot

be easily applied to functional data parametrized by 2 variables. For those tracts

that can be adequately modeled as a single parameter function, uncinate, fornix,

cingulum, etc., this thesis provides a statistical mechanism more appropriate for

addressing global changes in tract statistics.

O’Donnell and Westin used clustering to obtain a consistent set of fiber tracts

across a population [75]. Further work used the population of fiber tracts to perform

pointwise statistics along tract functions [76]. An alternative framework by Maddah

et al. performs joint clustering and point matching of fiber bundles [64]. This

framework has been applied to a study of schizophrenia in adults [65].



CHAPTER 3

DIFFUSION WEIGHTED IMAGE

PREPROCESSING

3.1 Introduction

Clinical neuroimaging studies that acquire DTI commonly rely on derived tensor

measures such as FA or MD for statistical analysis. Most studies in the literature

employ voxelwise or ROI analysis of derived measures, although some studies have

begun to use tract specific analysis [40]. In any of these methods, the precision

and accuracy of diffusion measurements must be well understood to understand

the limits and power of statistical analysis. DTI is particularly sensitive to errors

introduced by imaging noise for three major reasons. First, since multiple diffusion

weighted images are needed, each individual image must be acquired relatively

quickly, reducing the signal-to-noise ratio (SNR) for each image. Second, unlike

structural MRI, where intensities are primarily used to establish contrast between

tissue types, DTI measures quantitative physical properties requiring a more careful

evaluation of noise. Finally, many of the interesting features of the image such as

the FA are nonlinear transformations of the original images and consequently need

to be analyzed carefully to understand the impact of imaging noise. In this chapter,

simulation of the influence of Rician noise on tensor derived measures is presented

along with an evaluation of the simulation against in-vivo experiments.

Since the introduction of DTI, many studies have investigated the effects of

noise on tensor measurements through theory and Monte Carlo simulation. Early

on, Bastin et al. showed the effect of imaging noise and SNR on estimation of

FA using Monte Carlo simulation [15]. Skare et al. later extended this work to

show a comparison of the effect of noise on different anisotropy measures [92].

Basser and Pajevic illustrated some of the nonlinearities in diffusion tensor statistics
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by demonstrating the sorting bias associated with estimating the value of the

eigenvalues of diffusion tensors [12]. Anderson presented a theoretical framework

for investigating the effects of noise and developed some preliminary results on the

implications for fiber tractography [4]. Hasan compared different gradient encoding

schemes for DTI by developing metrics on the geometry of diffusion weighting

gradients [46]. Mangin et al. combine distortion correction and tensor estimation

to reduce motion artifacts in tensor statistics [66]. Derek Jones elaborated on

the previous investigations by simulating the effect of noise under a variety of

gradient directions [49]. Further investigation of the impact of imaging noise on fiber

tractography was developed by Basser and Pajevic [13]. Jones and Basser showed

how Rician noise tends to underestimate high values of the ADC along gradient

directions [50]. Koay et al. describe methods to overcome negative eigenvalues in

tensor estimation caused by imaging noise [55]. Basu et al. used the Rician noise

model to demonstrate statistical bias and develop a regularization filter for diffusion

weighted images [16]. Fillard et al. combined a maximum likelihood (ML) tensor

estimator with a regularization function to jointly smooth and estimate a tensor

field [31, 32].

This chapter builds on previous work by combining a comparison of gradient

direction schemes with tensor estimation methods to study the error in diffusion

tensors given the noisy image acquisition typical in a clinical framework. This

chapter assumes the use of a single diffusion tensor model per voxel and does not

consider high angular resolution diffusion imaging (HARDI). The simulations in

this chapter show that increasing the number of gradient directions reduces the

bias introduced by sparse sampling of highly anisotropic tensors. Furthermore,

experiments demonstrate the increased variability caused by linear least squares

estimation on sequences with many gradient directions. Finally a novel in-vivo

experiment validates the predictions of the simulation.
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3.2 Methods

The estimated diffusion in a direction g can be understood as a function of

observed diffusion weighted MR intensities via the Stejskal-Tanner equation

Si = S0 exp
(
−bgiDgTi

)
. (3.1)

Magnetic resonance images are acquired by computing the Fourier transform of a

measured k-space signal. Noisy k-space measurements are converted into a complex

spatial image via the inverse Fourier transform. The complex spatial image is

converted to a real image by taking the magnitude at every voxel. Pure thermal

noise in both the real and imaginary components of k-space is well-approximated

by a Gaussian distribution, and noise in the magnitude signal Si is consequently

well-characterized by a Rician distribution [91, 90]. A noisy measurement R of an

underlying signal A in the diffusion weighted image is a random variable given by

R =

√
(A+X)2 + (Y i)2, X, Y ∼ N(0, σ2), (3.2)

where X and Y are Gaussian random variables. The PDF for a Rician random

variable R with true intensity A and noise variance σ2 is

f(x|A, σ) =
x

σ2
exp

(
−x

2 + A2

2σ2

)
I0

(
xA

σ2

)
, (3.3)

where I0 is the zero-order modified Bessel function of the first kind. By substituting

A = 0 into (3.3), the PDF reduces to that of a Raleigh distribution,

.f(x|σ) =
x

σ2
exp

(
− x2

2σ2

)
, (3.4)

which is assumed to be the distribution of background voxels in an image. When A

is much larger than σ, (3.3) converges to a Gaussian distribution. The consequence

of these two limits is that low intensity voxels have a positive measurement bias,

E[R] > A, whereas high intensity values are relatively unbiased. A geometric

interpretation of Gaussian noise in the complex plane can be seen in Fig. 3.1,

where low magnitude signals appear biased because more mass of the measurement

PDF falls outside circles of equivalent magnitude.
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Figure 3.1. Geometric interpretation of Rician noise. All values in concentric
circles about the origin have the same magnitude in the final image. For small
circles, magnitudes, the mass of the measurement distribution is greater outside
the circle than inside.

The ADC in a direction gi is measured in a voxel by the log of the ratio of a

baseline signal S0 and an attenuated diffusion weighted signal Si. Because diffu-

sion weighted measures have low intensity, they are likely to be positively biased.

Overestimation of a diffusion weighted intensity Si causes an underestimation of

diffusion in the direction gi because of the exponential decay in the Stejskal-Tanner

equation (3.1). Measurements of low diffusion have lower attenuation and cor-

respondingly less bias. The tendency to underestimate high ADC values causes

two major challenges for reliable measurements in DTI. First, MD is likely to be

underestimated for regions with high diffusion. This is a particular problem in

the cerebrospinal fluid (CSF), where the ADC is high in all directions. Secondly,

anisotropy can be underestimated depending on the alignment of the principal

diffusion direction of a highly anisotropic tensor with the gradient directions. The

maximum measured ADC of a highly anisotropic tensor depends on the gradient

direction sampling. Although a noiseless measurement of the tensors in Fig. 3.2

would produce identical results, the tensor shown in Fig. 3.2(a) is more likely to

be biased because of the large ADC measurement of the gradient direction aligned

with the principal eigenvector.
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(a) Aligned (b) Unaligned

Figure 3.2. Example of tensors with principal eigenvectors aligned or unaligned
with a gradient direction.

The relevant tissue parameters for each voxel in the image are the six unique

components of the diffusion tensor along with the baseline T2 intensity S0 that will

be formed into the 7 element vector β. Specifically, the elements of β are defined

as

D =

 β0 β1 β2

β1 β3 β4

β2 β4 β5

 , logS0 = β6. (3.5)

Assuming there are N gradient directions with unit vector gi and b-value bi, then

the matrix X, which is N × 7, can be used to express the relationship between the

vector β and the observed signals S:

X = −

 b1g
2
0x 2b1g0xg0y 2b1g0xg0z b1g

2
0y 2b1g0yg0z b1g

2
0z 1

...
...

...
...

...
... 1

bNg
2
Nx 2bNgNxg0y 2bNgNxgNz bNg

2
Ny 2bNgNyg0y bNg

2
Nz 1

 .

(3.6)

Using the definition of X in (3.6), the Stejksal-Tanner equation, (3.1), can be

reformulated as

S = exp (Xβ) . (3.7)

A minimum of seven gradient images with at least two different b-values are

required to have a fully determined system for the parameters of the diffusion

tensor. Because diffusion weighted images typically have low SNR, acquiring more

images than the minimum seven is desirable to improve SNR and obtain more robust

measures of the diffusion parameters. Imaging protocols in clinical use commonly

employ repetitions of gradient directions and are typically processed by averaging

of repetitions on the scanner using a number of excitations (NEX) setting greater
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than 1, or the repeated images are processed offline where corresponding images are

registered and averaged. Alternatively, many studies acquire additional diffusion

weighted images using more unique gradient directions, and the additional obser-

vations are combined in the tensor estimation. In images with multiple repetitions

of the same gradient direction, the signals are typically averaged. However, the

mean of the signals is a poor estimator of the true signal A, because of the bias

in the Rician distribution. Averaging of magnitude values tends to overestimate

the signal, which leads to underestimation of high ADC values. Retrospective

analysis of data with repeated directions could employ ML estimation of Rician

distributed measurements or incorporate the measurements into an appropriate

tensor estimation routine.

For gradient schemes with more than the minimal number of gradient directions,

several methods exist in the literature for estimating diffusion tensors from the

diffusion weighted images. For the following investigation, these methods have

been implemented in both MATLAB and c++ using the insight toolkit (ITK). The

most common approach has been a linear least squares (LLS) estimator for the

tensor parameters β from the log of the observed signal intensities S with baseline

signal S0 [108].

β̂lls = (XTX)
−1

XT (ln S). (3.8)

The matrix X, which is Nx7, was described in (3.6). To avoid the reweighting

penalties associated with the logarithm, nonlinear least squares (NLS) estimation

numerically optimizes the objective function

fnls(β) = ||S− exp (Xβ) ||2 (3.9)

on the diffusion weighted signal. For efficient optimization of sum of squares func-

tions such as (3.9), Levenberg-Marquardt optimization is employed. The optimizer

is initialized using the LLS solution. Salvador et al. proposed a weighted least

squares (WLS) estimator

β̂wls = (XTW2X)
−1

(XTW2(ln S)) (3.10)

W = Diag(Xβ̂lls) (3.11)
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based on an analysis of the log Rician probability distribution [87]. The implemen-

tation used in this work uses one iteration of weight computation.

An ML estimate of the diffusion tensor using the log-likelihood function of the

Rician distribution was proposed by Fillard et al. [31]. Here, a similar method

does not use a spatial regularization term or the log of the tensor matrix. The

spatial regularization term is avoided to provide the best estimate for each voxel

independently. The ML method explicitly accounts for the noise model and uses

an estimate of the noise level computed from the background of the image. The

ML estimation of tensor parameters is obtained by numerical optimization of the

log-likelihood function

logL(β) =
∑
i

log

(
Si
σ2

)
− S2

i + S2
0e

2Xiβ

2σ2
+ log

(
I0

(
SiS

2
0e

2Xiβ

σ2

))
, (3.12)

where Xi is a row of the matrix X and N is the number of gradient directions.

Our implementation uses a gradient descent optimizer to maximize the objective

function. The analytical derivative of the log-likelihood function (3.12) is

∇ lnL(β) =
N∑
i=1

−S
2
0Xi

σ2
e2Xiβ +

Xie
XiβS0Si
σ2

I1

(
SiS0e

Xiβ

σ2

)
/I0

(
SiS0e

Xiβ

σ2

)
.

The following section presents an evaluation of the different tensor estimation

methods across several different gradient sampling schemes using a Monte Carlo

framework for simulating the effect of imaging noise on derived properties.

3.3 ML Estimation of Rician Parameters

ML estimation of the true intensity A from a set of Rician distributed samples

was compared to averaging the observed samples. ML estimation is optimal in

the asymptotic limit, but clinically applicable studies do not have the capability

to acquire unlimited repetitions, so a comparison of ML estimation to standard

averaging at expected noise levels and sample sizes is necessary. Four different signal

levels were simulated, and the ML estimator is substantially less biased, as shown

in Fig. 3.3. This result demonstrates the bias that can be introduced by averaging

repeated images to improve SNR in image acquisition, and the improvement by
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Figure 3.3. Simulated comparison of ML estimation (dashed line) and averaging
(solid line) of DWI intensity. Shown above are histograms of Monte-Carlo simula-
tion at four intensity levels (a) 0 (b) 10 (c) 50 (d) 100. The sigma used, σ = 27,
was experimentally determined from test data. Ten samples of the intensities were
used in the estimators, and 5,000 repetitions were performed. The ML estimator
is less biased at signal levels that commonly occur in real images.

using ML estimation of intensities for retrospective analysis. The primary drawback

of the ML method is the singularity that occurs when the intensity is very close

to zero. At very low signal levels, quantization artifacts coupled with numeric

instability make it difficult to obtain an estimator that does not converge to zero.

This instability indicates that careful selection of b-values is important to ensure

that the diffusion weighted signal is not completely attenuated.
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3.4 Simulation of Tensor Estimation

A framework for Monte Carlo simulation was implemented in MATLAB to

compute the distribution of estimated tensors from the predicted signal of a given

true tensor with added Rician noise. The true tensor in all simulations had a fixed

trace of 2.1× 10−3mm2/s, which is a typical value for white matter. Several levels

of anisotropy and orientation were simulated. The simulations used a b-value of

1000 s/mm2, a noise level of σ = 27 estimated experimentally from the background

of an image acquired on a clinically used scanner, and a baseline signal of 250. Three

different gradient direction schemes were employed and are referred to using the

following abbreviations:

6x10 6 gradient directions with 10 repeated measurements for each direction

21x3 21 gradient directions with 3 repeated measurements along for each direction

60x1 60 gradient directions with 1 measurement for each direction

A complete list of the gradient directions is given in appendix B.

The simulation experiments show that the positive bias of Rician noise at

low signal level can lead to underestimation of FA and trace. Furthermore, the

orientation of the tensor within the gradient fields correlates with the bias, and

statistical comparison of structures with different fiber orientations is, therefore,

potentially biased. Many common clinical gradient schemes use the minimal six

gradient directions and with these schemes, the expected bias depends on the

orientation of the fiber structure with respect to the gradient direction sampling.

Figure 3.4 shows the bias and variability of the FA and trace of a fixed diffusion

tensor as the tensor rotates in space relative to a gradient direction. The simulations

show that estimated FA is substantially correlated with orientation. The trace

estimate has less bias due to orientation, but the trace is underestimated in gradient

schemes with repeated directions.

Figures 3.5, 3.6, and 3.7 show the simulated distribution of the Frobenius norm

of the difference between the estimated and true tensor, MD, and FA, using a 60 di-

rection protocol. Weighted least squares and maximum likelihood perform similarly,

whereas linear least squares has more variability. Nonlinear least squares tends to
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Figure 3.4. The orientation dependence of estimated FA and trace under different
sampling schemes. The horizontal axis ranges from the principal diffusion direction
unaligned with any gradient direction for x = 0 to being perfectly aligned with one
of the gradient directions for a rotation of x = π/4. The noise level is σ = 27 as
determined from our collected data. Notice in the 6 direction scan the difference in
mean estimated FA of .04 (5%) between the same tensor orientated at 0 and π/4
radians. Weighted least squares estimation was used for this simulation.
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Figure 3.5. Comparison of Frobenius norm of the difference between the estimated
and true tensor in Monte Carlo simulations of a tensor with FA=0.8 using 10,000
repetitions and a 60 direction protocol
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Figure 3.6. Comparison of MD estimate in Monte Carlo simulations of a tensor
with FA=0.8 using 10,000 repetitions and a 60 direction protocol

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
FA

F
re

qu
en

cy

 

 

True Value

lls
nls
wls
ml

Figure 3.7. Comparison of FA estimate in Monte Carlo simulations of a tensor
with FA=0.8 using 10,000 repetitions and a 60 direction protocol
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have a lower estimate of trace. Figure 3.8 indicates that most estimation methods

produce similar estimates of anisotropy on tensors that are close to isotropic.

The simulations demonstrate the bias due to orientation of tensor derived mea-

sures when using protocols with a minimal number of gradient directions. Further-

more, when protocols with many gradient directions are used, linear least squares

estimation can increase variability, and nonlinear least squares estimation can

underestimate trace. The simulations predict that the minimum error is introduced

by using as many isotropic nonrepeated gradient directions as possible with WLS

or ML estimation methods.

3.5 Experiments and Validation

Test sets of real DTI data were acquired under different imaging protocols to

compare with the Monte Carlo simulations. Three sets of images of a single healthy

adult volunteer were acquired on a Siemens Allegra 3T head-only scanner. The

scanning time for each sequence was approximately 12 minutes. Diffusion weighted

images were acquired with an isotropic resolution of 2× 2× 2 mm3 resolution and

image size 128×128×39. Three different sequences were used: 6 directions with 10

repetitions, 21 directions with 3 repetitions, and 60 directions with 1 repetition. All

scans were of approximately equal time to demonstrate the trade-off between image

repetition and acquiring more gradient directions. To eliminate bias from differences

in the baseline images, the 14 acquired baseline images were registered to a T2 atlas

using a rigid transformation and normalized mutual information. The baseline

images were averaged to produce a common baseline image that was used as the

reference for the S0 signal in the following experiments. The transformation from

each baseline image to the atlas was also applied to the diffusion weighted images

in the corresponding set, and the gradient directions were corrected by the rotation

component of the transformation. For sequences with repeated directions, the

corresponding gradient directions were averaged as is typical in current processing

methods. The noise level σ was estimated from the set of background voxels {Bi}

using the formula,
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(a) FA 0.0

(b) FA 0.2

Figure 3.8. Simulated estimation of FA for highly isotropic tensors. In this case,
all estimation methods perform similarly.
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σ̂ =

√√√√ 1

2N

N∑
i=1

B2
i . (3.13)

Figure 3.9 show that a Rayleigh distribution fits the distributions of the background

voxels.

A white matter segmentation was created by coregistration of a T1 structural

image to the averaged baseline image and applying a tissue segmentation tool to

the two channels [105, 104]. A label image was created from the six direction image

by identifying voxels within the white matter segmentation that are highly aligned

or highly unaligned with the closest gradient direction. The angle for each voxel is

given by θ = arccos(mini(~̂e1 · ~gi)), where ê1 is the estimated principal eigenvector.

In the six direction scan, nearby gradients are separated by π/2, and as a result,

the maximum angle between the principal eigenvector and the nearest gradient

direction is π/4 so θ ∈ [0, π/4). The threshold for aligned tensors was θ < π/16

and for unaligned tensors θ > 3π/16. In this experiment, tensors labeled to one

of the classes had to have the same label in all three of the gradient schemes.

Figure 3.10 shows the labels for the test data overlaid on the FA image.

The difference between the histograms of FA for aligned and unaligned tensors

decreases with an increase in the number of gradient directions as shown in Fig. 3.11.

Table 3.1 lists the mean difference between aligned and unaligned voxels using the

three different gradient schemes and each tensor estimation method. Table 3.2 gives

the mean and variance of the estimate for trace for each estimation method and

acquisition scheme. The experimental results confirmed the simulation prediction

of underestimated anisotropy in tensors aligned in the 6 direction scan, because the

difference decreases as the number of gradient direction increases. The experimental

estimate of tensor trace is higher for low directions images, which is different

than the simulation prediction. The difference could be due to the assumption

of a single tensor model in the simulation. The evidence indicates that studies

comparing different regions could be substantially biased by the orientation of the

tissue within the magnetic field. Therefore, studies relying on statistical analysis of

anisotropy measures should use as many gradient directions as possible within the
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Figure 3.9. Histograms from diffusion weighted images. The histogram on the left
(a) is a sample from the background used for estimating the noise level σ = 27. The
Rayleigh distribution parametrized by σ fits the histogram nicely. The figure on
the right (b) is a histogram of the observed intensity values in one of the diffusion
weighted images. As shown in Fig. 3.3, intensities measurement are biased up to
four times the noise level, and a significant percentage of the voxels in (b) falls
within this range.
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(a) Axial view of Splenium (b) Sagittal view of Corpus Callosum

Figure 3.10. Labels for aligned and unaligned voxels. The voxels labeled as
aligned or unaligned are highlighted in red and green, respectively. The figure on
the left (a) shows an axial slice of the Splenium and the figure on the right (b)
shows a sagittal view of the corpus callosum.
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Figure 3.11. Histograms of estimated FA using weighted least squares estimation
for aligned and unaligned tensors with (a) 6 gradient directions with 10 repetitions
(b) 21 gradient directions with 3 repetitions and (c) 60 gradient directions with 1
repetition. Notice the significant reduction in difference between the two histograms
as the number of gradient directions increases, because of a decrease in noise bias.



37

Table 3.1. Mean and variance of FA values in aligned and unaligned voxels.
6 (10 reps) 21 (3 reps) 60 (1 reps)

lls (aligned): 0.401 (0.0240) 0.414 (0.0259) 0.403 (0.0269)
lls (unaligned): 0.453 (0.0298) 0.444 (0.0291) 0.422 (0.0291)
difference: 0.053 0.030 0.019
nls (aligned): 0.401 (0.0240) 0.417 (0.0265) 0.399 (0.0270)
nls (unaligned): 0.453 (0.0298) 0.449 (0.0304) 0.420 (0.0299)
difference: 0.053 0.032 0.020
wls (aligned): 0.401 (0.0240) 0.419 (0.0267) 0.406 (0.0276)
wls (unaligned): 0.453 (0.0298) 0.451 (0.0306) 0.427 (0.0306)
difference: 0.053 0.032 0.021
ml (aligned): 0.416 (0.0272) 0.425 (0.0272) 0.407 (0.0278)
ml (unaligned): 0.461 (0.0303) 0.458 (0.0315) 0.427 (0.0309)
difference: 0.045 0.033 0.021

The difference rows highlight the change between the mean FA of the aligned and
unaligned voxels. The difference between the mean FA decreases with an increase
in the number of gradient directions, indicating that some of the difference is due
to the choice of gradient sampling.

Table 3.2. Mean and variance of trace values in white matter.
6 directions (10 reps) 21 directions (3 reps) 60 directions (1 reps)

LLS: 2.373e-03 (7.2071e-08) 2.304e-03 (7.7886e-08) 2.307e-03 (2.2293e-07)
NLS: 2.373e-03 (7.2071e-08) 2.289e-03 (7.7122e-08) 2.235e-03 (2.0839e-07)
WLS: 2.373e-03 (7.2071e-08) 2.307e-03 (7.8263e-08) 2.311e-03 (2.2847e-07)
ML: 2.472e-03 (8.5249e-08) 2.383e-03 (1.0698e-07) 2.326e-03 (2.4044e-07)

The six direction scan has the highest estimated trace. In the 21 and 60 direction
scans, the nonlinear least squares method has a lower estimate of the trace than
the other methods. The ML estimator has the highest estimate of trace of all the
methods.

time constraints instead of repeating a minimum number of gradient directions. The

results from the analysis of the in-vivo scans confirms the results of the simulation

experiments.

3.6 Conclusions

In this chapter, the magnitude of error in DTI measurements caused by imaging

noise was evaluated through Monte Carlo simulations and in-vivo experiments. Low

direction gradient acquisition schemes introduce a statistical bias due to orien-
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tation within the magnetic field with a clinically relevant magnitude of around

5% for highly anisotropic tensors. Furthermore, standard linear least squares

tensor estimation introduces additional variability in tensor estimation when many

gradient directions are employed. Understanding the magnitude of these two effects

is critical for interpreting the results of statistical analysis. For new imaging

studies, these results indicate that scans with one image for each of a large number

of gradient direction should be preferred over protocols with a small number of

repeated gradient directions, and that WLS or ML tensor estimation should be

preferred.



CHAPTER 4

DTI ATLAS BUILDING

4.1 Introduction

This chapter uses the techniques of registration and atlas building to provide

intersubject correspondence for statistical analysis of diffusion data. An overview

of the procedure is shown in Fig. 4.1. The metric for optimizing the registration

parameters is based on a structural operator of the tensor volumes. An initial

alignment is performed by computing the affine transformation between the struc-

tural images, and applying the transformation to the tensor volumes. An unbiased,

deformable atlas building procedure is then applied that produces mappings be-

tween each subject and a common atlas coordinate system using the method of

Joshi et al. [53]. Deformed images are averaged to produce a template tensor

atlas suitable for fiber tractography, as shown in Fig. 4.2. The atlas tracts may be

mapped back into individual native space using the inverse of the transformations

to the atlas. In the native space, individual diffusion statistics are collected.

This provides a mechanism for establishing a population correspondence of atlas

geometry. Preliminary validation is provided by showing an improvement over

affine registration alone. Validation measures for comparing fiber tracts produced

in the atlas are provided in Chapter 5.

4.2 Registration

This chapter presents an intermediate, heuristic solution for DTI registration

positioned between using only baseline images and using metrics based directly

on the diffusion tensors. A feature image for registration is based on a structural

operator of the FA image that is sensitive to major fiber bundles. Given a tensor

image I and the corresponding FA image FA, the structural operator C is defined
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Figure 4.1. Flowchart of atlas building process.

Figure 4.2. Deformation of tensor fields into atlas space preserves the full
information needed for fiber tractography and diffusion statistic analysis.
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in terms of the maximum eigenvalue of the Hessian,

C = max [eigenvalues(H)], where H ≡

 FAxx FAxy FAxz
FAyx FAyy FAyz
FAzx FAzy FAzz

 . (4.1)

Figure 4.3 shows the FA image of a tensor field and the corresponding structural

image C. As discussed in early computer vision work, the second derivative of

Gaussian serves as an efficient detector of ridge structures [21]. The Hessian serves

as a computational approach for finding the direction of maximum ridge response.

Let hi(x) be a mapping that gives the corresponding point in the subject image Ii

for all x in the domain Ω of the atlas image Î. Given two images I1 and I2, the

image match functional that is optimized in the registration process is

M(I1(x), I2(h(x))) =

∫
x∈Ω

[C1(x)− C2(h(x))]2dx, (4.2)

the mean squared error between C1 and C2.

The feature image C is chosen over existing methods for two main reasons.

First, C is a good detector of major fiber bundles that occur as tubular or sheet-like

structures. Callosal fibers form a thin swept U; the corona radiate is a thin fan;

the cingulum is a tubular bundle. C serves as a feature detector for all types of

these thin structures. Consequently, C optimizes correspondence of fiber tracts

better than the baseline image, because C has the strongest response at the center

of major fiber bundles, whereas the baseline image has the strongest signal in the

cortico-spinal fluid (CSF). In practice, achieving maximal response at the center of

a sheet like structure requires the width of the derivative kernel to be appropriately

optimized. In this work, the scale was chosen heuristically by computing the feature

image using uniform sampling of a range of scales from .5−4mm. Visual inspection

of these results was used as a guideline for selecting σ in order to have a strong

response in white matter structures, especially the corpus callosum and internal

capsule. As a secondary consideration, the scale was also chosen to be sure that

the fornix and cingulum bundles were preserved in the feature image. C is used

instead of a full tensor metric or the FA itself in order to reduce overfitting the

diffeomorphic registration by using the same feature for registration that will be
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Figure 4.3. Comparison of FA and feature images. The top row shows axial,
sagittal, and coronal slices of the FA image from a DTI scan of a 1-year old
subject. The bottom row shows the result of the structural operator on the FA
image taken at σ = 2.0mm. Major fiber bundles such as the (a) genu of the corpus
callosum, (b) splenium of the corpus callosum, (c) fornix, and (d) internal capsules
are highlighted, whereas the background noise is muted.
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used for statistical comparison. The Hessian at a fixed scale is a first step towards

basing the registration on a geometric model of the white matter, and future work

could investigate a multiscale approach to computing C to make the measurement

dependent only on the local width of the structure.

Using the definition for the image match functional, registration of the images

proceeds in two stages. First, each subject image is aligned into a standardized

coordinate system by affine alignment of the baseline image with a T2 atlas using

normalized mutual information. However, the affine registration does not account

for the nonlinear variability of the white matter geometry, and atlases built from

only affine aligned images result in blurring of many of the white matter struc-

tures. For this reason, a deformable registration procedure is employed to obtain

anatomical correspondence between the population of images Ii and a common

atlas space [53]. This procedure jointly estimates an atlas image Î and a set

of diffeomorphic mappings hi that define the spatial correspondence between Î

and each Ii. Figure 4.4 shows the improved correspondence attained from the

deformable registration. The computed transformations are applied to each tensor

volume as described in the next section.

4.3 Tensor Processing

The application of high-dimensional transforms to the DTI volumes must ac-

count for the space of valid tensors. The orientation of a diffusion tensor provides

a measurement of fiber orientation relative to the anatomical location, and spatial

transformations of the tensor fields must account for the reorientation of the tensor.

Furthermore, because diffusion tensors are symmetric positive-definite matrices,

operations on the images must preserve this constraint.

4.3.1 Spatial Transformations of Tensor Images

When spatial transformations of diffusion images are performed to align the

anatomy of different scans, the tensors must also be transformed to maintain the

relationship between anatomy and tensor orientation. The finite strain approach of

Alexander et al. to reorient tensors in a deformation field decomposes the local linear
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Figure 4.4. Comparison of affine and diffeomorphic registration. The top six
images show the correspondance of the affine atlas and the five subject images at a
point in the splenum of the corpus callosum. Notice the corresponding index in the
subject images does not necessarily correspond to the same anatomical location.
The bottom six images show the deformable atlas and subject images with the same
point selected. Here, the atlas provides better anatomical correspondence, and the
deformable atlas has sharper structures.
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approximation of the transformation into a rotation and deformation component [2].

The local linear transformation, F , is found by computing the Jacobian matrix from

the deformation field with finite differences. The rotation of each tensor is computed

by performing singular value decomposition (SVD) on the local transformation

F . A local linear deformation F is decomposed into a rotation matrix R and a

deformation matrix U , where

F = UR. (4.3)

The local transformation of a tensor D is given as

D′ = RDRT . (4.4)

4.3.2 Interpolation and Averaging of Tensor Images

The space of valid diffusion tensors does not form a vector space. Euclidean

operations on diffusion tensors such as averaging can produce averages with a

larger determinant than the interpolating values, which is not physically sensible.

Furthermore, operations on diffusion tensors are not guaranteed to preserve the

positive-definite nature of diffusion. The Riemannian framework has been shown

as a natural method for operating on diffusion tensors, which preserves the physical

interpretation of the data, and constrains operations to remain in the valid space

of symmetric positive-definite matrices [33, 34, 81]. In these methods, statistics

are computed in a tangent space to the manifold of symmetric positive definite

matrices. For the case of computing statistics of diffusion tensors, the mean is

defined as a Fréchet mean that minimizes the geodesic distances between the mean

tensor, D̂, and the set of tensors Di,

D̂ = arg min
D

N∑
i=1

d(D,Di)
2. (4.5)

Covariance statistics are computed in the tangent plane located at the mean D̂

on the manifold. Further simplifications have shown an efficient method for com-

putation using the Log-Euclidean metric [5, 6]. This simplification assumes that

the identity matrix is a close approximation to the mean, removing the need to
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compute the mean via a gradient descent algorithm. Interpolation and averaging

are treated as weighted sums in the Log-Euclidean framework defined as

D̂ = exp

(
N∑
i=1

wi log(Di)

)
, (4.6)

where log and exp are the matrix logarithm and exponential, respectively. To

produce the atlas tensor volume, the deformed tensor volumes with locally rotated

tensors are averaged per-voxel using the Log-Euclidean scheme,

Irot(x) = R(x)I(x)R(x)T , (4.7)

Î(x) = exp

(
1

N

N∑
i=1

log(Irot
i (hi(x)))

)
. (4.8)

4.4 Atlas Tractography

The atlas tensor volume provides an image with improved SNR that is used

to create template fiber tracts. The diffusion tensors obtained from averaging

across the population can be integrated using streamline tractography approaches

with significantly less outliers than in noisy individual images. For the purpose of

this study, a simple streamline integration method based on fourth order Runge-

Kutta integration of the principal eigenvector field is applied. Manual seeding

and clustering of resulting tracts is used to input prior anatomical knowledge

into the segmentation of fiber bundles. After creation of the template atlas fiber

tracts, diffusion statistics from the individual cases are mapped to the atlas tracts.

When mapping the diffusion properties from native space to the template tracts,

scalar invariants are interpolated from the native space using trilinear interpolation.

The procedure results in a fiber bundle for each subject with the geometry of

the template atlas tract but replacing the diffusion properties with those mapped

from the subject. In this work, tracts were chosen by the author to illustrate

the methodology, but future clinical studies should rely on clinical hypotheses and

expert neuroanatomical knowledge for tract definition. The set of individual tracts

with corresponding geometry but varying diffusion properties are compared in a
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novel statistical framework as described in Chapter 6. Validation of the atlas tracts

is investigated in Chapter 5.

4.5 Experiments and Results

The atlas building procedure was initially tested on 5 image volumes of healthy

1-year-old subjects from a clinical study of neurodevelopment. The images were

acquired on a Siemens head-only 3T scanner. Multiple sets of diffusion weighted

images were taken for each subject and averaged to improve signal-to-noise ratio.

Each dataset consisted of 1 baseline image and 6 gradient direction images with

b=1000s/mm2 using the standard orientation scheme. An image volume of 128 ×

128× 65 voxels was acquired with 2× 2× 2 mm3 resolution. Imaging parameters

were TR/TE = 5200ms/73ms.

For each set of diffusion weighted images, the diffusion tensors were estimated

using LLS estimation. In this case all least squares techniques are equivalent

because a minimal gradient encoding was applied. The structural image C was

computed from the FA volume with σ = 2.0mm. Affine and deformable alignment

were computed using the methods described in section 4.2. The warped DTI

volumes were averaged to produce an affine atlas and a deformable atlas. Figure 4.5

shows a comparison between the tensor volumes of the two atlases. Tractography

was performed in the atlas space, and the tract bundles were warped to each subject

image using hi. Figure 4.6 shows the results of tractography in the atlas and the

corresponding warped fibers in two subject images.

4.6 Preservation of Edges

Visual inspection of tractography in the atlas volume shows an initial qualitative

validation that the registration and averaging methods provide anatomically sen-

sible results. Histogram comparisons of derived tensor measures in the affine and

diffeomorphic atlas show an initial quantitative validation of the improvement of

the deformable registration over affine registration alone. The gradient magnitude

of the FA was measured in the whole brain of the affine and deformable atlases.

Figure 4.7 shows the gradient magnitude images and a histogram comparison. At
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(a) Affine (b) Affine

(c) Deformable (d) Deformable

Figure 4.5. Axial slice of the FA and ellipsoids for the affine and deformable
atlases. (a) and (c) show a slice of the FA for the affine and deformable atlases.
(b) and (d) illustrate a subregion of tensors in the splenum of the corpus callosum.
Notice that the FA image of the affine atlas is more blurry, and that the tensors in
the splenum are more swollen in the affine atlas.
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(a) Atlas

(b) Image 1 (c) Image 2

Figure 4.6. Fibers in atlas and corresponding fibers in subject space. Fibers traced
in the corpus callosum of the atlas (a) are mapped to corresponding locations in
the subject images (b) (c) despite pose and shape changes.
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(a) Affine (b) Deformable

(c) Gradient Magnitude Histogram (d) Cumulative Histogram

Figure 4.7. FA gradient in affine and diffeomorphic atlases. (a) and (b) show an
axial slice of the gradient magnitude image. Notice the structures in the marked
regions that are visible in the deformable atlas, but not the affine atlas, and the
increased sharpness of the splenium of the corpus callosum. Figures (c) and (d)
show the histogram and cumulative histogram of gradient magnitude intensities in
the whole brain.
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the 90th percentile of the cumulative histogram, the deformable atlas has a gradient

magnitude of 684 whereas the affine atlas is 573, an increase of 20%. This shows

that the deformable atlas better preserves thin structures via improved alignment.

4.7 Conclusion

This chapter presented an automatic method for producing correspondence in

diffusion tensor images through deformable registration and a novel image match

metric that aligns images based on local geometry measures. Transformations are

applied to the tensor images using the finite strain model for tensor rotation and

a Riemannian framework for averaging and interpolation. Tractography can be

performed in the atlas space to identify a fiber bundle population model. Initial

validation of the deformable registration showed an improvement in thin structure

preservation over affine alignment alone. Additional validation is presented in

Chapter 5 to evaluate the differences between tracts computed in the atlas and

those generated in the subjects native space.



CHAPTER 5

MEASURES FOR VALIDATION OF

TRACTOGRAPHY

5.1 Introduction

Chapter 4 presented a method for building an atlas from a population of DTI

that is used in Chapter 6 for tract-based statistical analysis. To validate the use of

atlas building for the tract-based analysis, some error bounds need to be placed on

differences between tracts produced in the population atlas and those generated in

individual images. This problem is closely related to many other validation prob-

lems in DTI analysis. This chapter, therefore, proposes a set of validation measures

for evaluating differences in fiber bundles generated by streamline tractography.

Several groups have previously proposed measures for evaluating tractography

and DTI atlas building. Zhang et al. proposed several methods for evaluating

their registration procedure including differences in tensor parameters as well as

evaluation of white matter fiber bundle differences [115]. The fiber bundle measure

is similar to that presented later in section 5.2.2 but does not account for the

distribution of closest point distances between two fiber bundles. Ziyan et al.

proposed a fiber match metric, FiT, to evaluate the agreement of a fiber bundle

deformed into an image for the particular case of comparing tracts to a registered

image [117]. This method, however, is unable to compare tracts produced by

different algorithms and places an emphasis on the tangent vector of individual

streamlines. This chapter presents a set of measures for evaluating the difference

between fiber bundles including both geometric measures and comparison of the

diffusion statistics segmented by fiber bundles. These measures can be used for

evaluating new tractography algorithms, quality control, measuring reproducibility,

and comparing atlas-based segmentation to manual tractography. In this thesis,
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measures are used to evaluate tractography mapped from an atlas to fiber bundles

generated by tractography in native space.

5.2 Tractography Comparison Measures

This section covers a set of measures that can be used to compare streamlines

generated by fiber tractography. The motivation is to compare fiber bundles using

measures that are robust to outliers, provide physical intuition, and focus on the

global shape of the fiber bundle rather than individual streamlines.

5.2.1 Volumetric Overlap

As a preliminary measure of volumetric overlap, the probabilistic overlap metric

implemented in Valmet was adapted to tractography [38]. This measure is referred

to as the binary tractography overlap (BTO) and is defined by

BTO = 1−
∑

i |PA(xi)− PB(xi)|∑
i PA(xi) + PB(xi)

. (5.1)

Here, PA(xi) is a measure of the probability that voxel xi is part of the fiber

tract. This is approximated by dividing the number of streamlines in the voxel by

the median number of streamlines over all voxels containing any streamlines and

clamping to a maximum value of 1. This approximation is intended to label as high

probability voxels of the tract containing a significant number of streamlines while

tapering out the influence for voxels with only a few streamlines.

This method benefits from the similarity to existing volumetric overlap measures

and its relative simplicity. Furthermore, this method can compare streamline meth-

ods with recently proposed volumetric tractography methods [35, 68]. However,

volumetric overlap measures for tractography have several serious drawbacks. First,

the measure is limited to grid-based measurements that are significantly affected

by partial voluming effects. Second, many fiber tracts in the human brain are

long in 1 dimension and narrow in 1 or 2 orthogonal dimensions. For example,

the cingulum is a long thin tube. As shown in Fig. 5.1, misregistration of fiber

bundles by less than 1 voxel in thin dimensions can result in overlap measures that

are significantly smaller, whereas larger structures misaligned by similar physical
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(a) Overlap = 0.3 (b) Overlap = 0.9

Figure 5.1. Example of instability of overlap measures for thin structures.

amounts have much higher overlap measures. An additional drawback of the BTO

measure is the lack of physical units that gives little intuition into how tracts differ.

5.2.2 Point Cloud Divergence

A second method of measuring tract differences can be considered that treats

fiber bundles as sampled point clouds. This approach avoids some of the drawbacks

of converting streamlines into a voxel grid. To compare two fibers bundles A and

B, find the distance between each point pi in A and the closest point qi in B. A

graphical representation showing the closest point distance for each fiber bundle is

shown in Fig. 5.2. For efficient lookup of the closest point, a Delaunay triangulation

of the points in tract B can be computed and used for fast lookup of the closest point

to pi. This produces a distribution of distances d(pi, qi), from bundle A to bundle

B. As shown in Fig. 5.3, these distributions are heavily weighted towards zero with

a large percentage of points being very close. At the maximum of the distribution,

there are typically a small number of streamlines, which diverge between the bundles

that produce large distances. Previous research has considered the minimum, mean,

or maximum of such distributions [24, 115]. However, the minimum and mean
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Figure 5.2. Closest point distances for atlas and individual tractography results
for the right cingulum in a subject.
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Figure 5.3. Histogram of closest point distances from atlas tract to individual
tract.

distance are heavily biased by the large percentage of closest point distances that

are very close to zero. The maximum, on the other hand, is extremely sensitive to

the outliers common in streamline tractography.

Instead, a family of closest point distances between two fiber bundles A and

B, PCα(A,B), should be defined as the α quantile of the distribution of distances

from A to B. Choosing α to be relatively close to 1 gives a measure that is resistant

to outliers, but gives an intuition of how close the bulk of points are between the
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two bundles. For example, CP.9(A,B) = 2.0mm provides an upper confidence limit

that 90% of points in A are within 1 voxel of B with the 2 × 2 × 2 mm3 voxels

common in DTI. PCα is not symmetric with respect to the order of A, B and is

therefore not a true metric. Although the measure could be made symmetric by

combining both the closest point distances from A to B and B to A, the asymmetry

is left to enable measurements such as tract A being contained within a larger tract

B. For this situation, PCα(A,B) would be small, but PCα(B,A) would be large.

5.2.3 Ellipsoid Distance

A third measure provides a global estimate of the distance between two tracts.

For this metric, an ellipsoid is computed for each fiber bundle and serves as a first

order shape model. The ellipsoid for each fiber bundle is computed by finding

the center and covariance of all points making up the fiber bundle. A diagram

of two fiber bundles and their respective ellipsoids is shown in Fig. 5.4. Because

streamline tractography is prone to outliers, the ellipsoid is computed by the fast im-

plementation of the minimum covariance determinant (MCD) estimator [85]. The

distance between the two ellipsoids is measured in two ways. First, the Euclidean

distance between the centers of the two ellipsoids is referred to as EDc. Second,

the Bhattacharyya coefficient EDρ is used to measure the difference between the

ellipsoids [54]. For Gaussian distributions with means m1,m2 and covariances S1, S2

with pooled covariance S = (S1 + S2)/2,

B =
1

8
(m2 −m1)TR−1(m2 −m1) +

1

2
ln

(
|S|√
|S1||S2|

)
(5.2)

EDρ = e−B. (5.3)

EDρ is bounded 0 ≤ EDρ ≤ and equals 1 when the distributions are equal.

5.2.4 Functional Difference

The previous three measures all focus on establishing geometric distances be-

tween two fiber bundles. The final proposed measure instead describes differences

in the diffusion parameters sampled by the fiber bundles. This provides a more

explicit measure of differences for studies focused on the statistical analysis of
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Figure 5.4. Ellipsoid representation of bundle shape.

scalar invariants. Using the methodology described by Corouge et al., an arc length

function for FA and MD is compared between fiber bundles [23]. To summarize

the functional difference, FD, the mean difference between the function for bundle

A, fA(t), and the function for bundle B, fB(t), is computed by

FD =
1

tn − tm

∫ tn

tm

|fA(t)− fB(t)|dt. (5.4)

(5.4) is computed for both FA and MD.

For this study, all tracts were mapped into a template atlas space to compare

the functional differences. A single origin was used for each tract to compare the

tract generated in the atlas to the native space tract mapped to the atlas. To

ensure that functions for both bundles have the same domain, the values for tm

and tn are restricted to the interval that contains at least an adequate percent of

the total streamlines. For this study, the interval was restricted to contain at least

30% of the streamlines for both fiber bundles. An example of fA(t) − fB(t) for a

population is shown in Fig. 5.5. The summary measure, Eq. 5.4, is the average

absolute difference over the domain.

5.3 Evaluation of Atlas Tractography

The measures from the previous section were used to evaluate tractography

based on an atlas built from images of 37 subjects in a study of schizophrenia

in adults. Each subject was imaged using a protocol with 8 nondiffusion weighted
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Figure 5.5. Mean and standard deviation of differences between functions pro-
duced by atlas tractography and individual tractography mapped to atlas for the
right uncinate.

images and 51 diffusion weighted images at a resolution of 1.6667×1.6667×1.7mm3.

A b-value of 900 was used for the diffusion weighted images. The purpose of

this application was to use the proposed measures to evaluate differences between

tractography produced by mapping from an atlas to tractography generated in

an individual. As is true for most DTI studies, there is no ground truth for the

true geometry of fiber bundles. Instead, this evaluation bounds differences of atlas

mapped tractography to native space analysis. An atlas was computed using the

method described in Chapter 4. Fiber bundles were extracted in the mean atlas

image using a Runge-Kutta streamline tractography algorithm. Manual clustering

and cutting of the tract was performed to obtain an anatomically appropriate

set of streamlines for several tracts. The five extracted tracts were the fornix,

left and right cingulum, and left and right uncinate and are shown in the atlas

space in Fig. 5.6. These atlas tracts were mapped into each individual using the

transformations from the atlas building.

Tractography was then computed in each individual image space. Seed regions

for the tractography were manually developed in the atlas and then mapped to each

subject using the atlas transformations. After testing a variety of FA thresholds

for the individual tractography, a global threshold of FA = 0.15 was chosen to
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Figure 5.6. Fiber bundles in population atlas.

give a reasonable approximation of tract geometry. No additional cleaning of the

individual tracts was performed. This method potentially exaggerates the difference

between atlas and individual tractography because obvious tract outliers were not

removed in the individual tracts. Furthermore, due to manpower constraints, seed-

ing ROIs were not manually selected in each individual. This validation study could

be extended by expert manual seeding, clustering, and tractography parameter

setting for each individual subject.

The results of individual tractography and tractography mapped from the atlas

were then compared for each tract and subject. A summary of the mean and stan-

dard deviation of proposed measures over the population is presented in Tbl. 5.1.

Table 5.2 gives a summary of the differences in scalar invariants sampled along

these tracts. The binary overlap metrics are significantly lower than those typically

encountered in segmentation studies. However, as mentioned in section 5.2.1, this

is likely due to the thin shape of fiber bundles. The CP measure indicates that

for most bundles, 90% of points in the atlas tract are within slightly about 1 voxel

of the native space tract. This lends evidence that the atlas mapped tracts are

in reasonable agreement with tracts produced by individual tractography. The

ellipsoid measures are also within a relatively small range, further supporting the

evidence of the CP measure. Functional measures showed the atlas tract to be

about 10% lower for FA and 4% higher for MD. This difference may be due
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Table 5.1. Mean and standard deviation of geometric distance measures between
warped atlas tract and individual tract over the population.

Tract BTO CP.5 CP.9 EDc EDρ

fornix 0.46 (0.08) 0.60 (0.25) 2.55 (2.77) 5.19 (3.01) 0.68 (0.21)
uncinate-left 0.40 (0.07) 0.48 (0.13) 2.51 (2.27) 6.15 (3.77) 0.79 (0.09)
uncinate-right 0.48 (0.06) 0.49 (0.21) 2.00 (1.17) 4.56 (2.29) 0.77 (0.11)
cingulum-left 0.49 (0.04) 0.33 (0.04) 0.99 (0.22) 5.55 (3.12) 0.78 (0.07)
cingulum-right 0.50 (0.05) 0.31 (0.03) 0.97 (0.27) 5.59 (2.38) 0.77 (0.06)

Table 5.2. Mean and standard deviation of average absolute difference in FA
and MD between atlas tract and warped individual tract. Percent differences are
expressed as the ratio of the difference to the value from individual tractography.

Tract FDFA FDFA% FDMD FDMD%

fornix 0.07 (0.04) 16.40% 2.07e-04 (9.24e-05) 13.21%
uncinate-left 0.04 (0.01) 9.78% 3.58e-05 (1.38e-05) 3.98%
uncinate-right 0.03 (0.01) 8.41% 3.75e-05 (1.55e-05) 3.99%
cingulum-left 0.05 (0.02) 9.60% 3.21e-05 (1.24e-05) 3.68%
cingulum-right 0.05 (0.02) 9.62% 2.94e-05 (9.21e-06) 3.33%

to partial voluming effects combined with the use of taking the mean value at

corresponding arc length values. The atlas tract often appears slightly larger than

the individual tract and using the mean FA at each arc length point biases the atlas

tract lower. The fornix showed greater differences than the other tracts, indicating

that individual tractography does not consistently agree with the atlas for this tract.

As no gold standard exists, further evaluation is needed to determine a preference

for the atlas or individual tract.

5.4 Conclusion

This chapter presented a set of metrics that can be used to evaluate the similarity

of tractography results. The application of these metrics here is the comparison of

atlas-based tractography to tractography generated in the individual. A summary

of some of the advantages and disadvantages of each measure is presented in

Tbl. 5.3. Volumetric overlap proved to be hard to evaluate given that many tracts

are narrow in at least 1 dimension, resulting in relatively low overlap measures
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Table 5.3. Summary of measure advantages and disadvantages.
Measure Advantages Disadvantages
BTO Similar to previous methods Unstable for thin tracts

Compare streamline to volume Lack of physical units
PC Physical measures Requires parameter α

Robust to outliers
ED Physical measures Simplified tract representation

Robust to outliers
FD Error analysis of invariant

statistics
Not a geometric measure

with even subvoxel differences in registration. The point cloud divergence served

to be particularly useful because of the physical units involved, as well as resistant

to outliers in unstable streamline tractography. Ellipsoid distance also provides a

physical measurement of difference in tract location, size, and shape; the drawback

is the simplification of the tract shape. Future work on the ellipsoid distance could

decompose the difference into measures of frame difference, and scale changes of

the ellipsoid in a common frame. Functional diffusion differences is a useful tool

for evaluating variability of statistics but does not provide a geometric evaluation.

Together, these methods can be used to improve quality control and validation of

DTI analysis. Other uses of these metrics could include the comparison of different

tractography routines, the evaluation of reproducibility on repeated scans of the

same anatomy, and generation of variance measures to be used for power analysis

for future clinical studies. Future work using an expert segmentation of individual

tracts could further evaluate atlas based tractography. The measures presented here

provide confidence that tracts mapped from the atlas provide a reasonable similarity

to individual tractography and are appropriate as the basis for the tract-based

statistics presented in the following chapter.



CHAPTER 6

TRACT STATISTICS

6.1 Introduction

The diffusion properties of white matter tracts measured by DTI provide

a unique source of information for group comparison and regression in clinical

neuroimaging studies. Previous work has shown the importance of modeling the

diffusion properties of a fiber tract as a function sampled by arc length along the

axis of the bundle [23, 35, 28]. The major challenge in implementing tract oriented

statistics in population studies is finding a consistent spatial parametrization within

and between populations. Defining anatomically equivalent ROIs to seed tractogra-

phy for large population studies is time consuming, error prone, and often requires

significant postprocessing such as cleaning and clustering [40]. Furthermore, even

given tractography seeds for each image, the natural variability of brain size and

shape prohibits a naturally consistent parametrization for arc length models of

diffusion. To solve both the needs for tract segmentation in individual cases as

well as shape normalization for fiber tracts, we apply a population-based regis-

tration method. Jones et al. [48] and Xu et al. [110] described the advantages

of spatial normalization for DTI population studies. Recent work has focused on

the use of unbiased methods for mapping tensor images to a common coordinate

system [114, 82]. A reference atlas of fiber bundles visible in DTI was produced

by [71]. Xu et al. [109] highlighted the need for smooth invertible mappings in a

registration framework. Other work on DTI atlas building has used the geometry

information contained within tractography results rather than image registration to

build a population model [75]. In this framework, atlas building for DTI creates a

global spatial normalization that can be used to parametrize tract oriented measures

across a population.
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This chapter combines the anatomically relevant coordinate system of tract

statistics with the population coordinate system provided by atlas building. The

combination of the tract coordinate system with atlas building provides an au-

tomated, clinically interpretable framework for understanding group differences.

Furthermore, whereas most previous studies have analyzed tensor derived measures

such as FA and MD independently, the method presented in this chapter enables the

joint analysis of multiple tensor measures. In this method, deformable registration,

as described in Chapter 4, is used to estimate and remove shape variability in a

population of images. Analysis of shape normalized fiber bundles is performed

in an anatomically relevant coordinate system defined by fiber tractography. The

diffusion measures are treated as a continuous smooth function of arc length in

atlas space, and statistical tests are applied for the joint analysis of the orthogonal

measures FA and FRO. The framework provides a single multivariate hypothesis

test between groups, eliminating the need for multiple comparison correction and

incorporating the joint information of tensor anisotropy and size. Visualization of

the linear discriminant provides a clinically meaningful interpretation of the group

differences as shown in the example study of pediatric images.

6.2 Tract Oriented Statistics

After spatial normalization of tensor images, described in Chapter 4, diffusion

measures across subjects can be compared. In previous work, this has been accom-

plished primarily through voxel-based tests that require sophisticated smoothing

and multiple comparison correction. Although this type of analysis is effective for

hypothesis generation, the results are often challenging to interpret, and strong

group differences are necessary to overcome multiple comparison correction. I

propose to use a semiparametric B-spline model of diffusion statistics along fiber

bundles as the basis for group analysis.

Following previous work by Corouge et al., the diffusion properties of fiber tracts

are modeled as smooth functions of arc length [23]. In this model, the diffusion data

in a fiber bundle is reduced to a function of arc length for each tensor measure of
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interest. As illustrated in Fig. 6.1, tensor measures in a bundle are averaged at each

cross-section along the bundle to produce a function of arc length. In practice, this

is achieved by manually placing a plane at a geometric or anatomical landmark

of the fiber tract. The streamlines are then sampled at equivalent arc length

distances from the origin and points with corresponding arc length are considered

homologous. In our framework, template fiber bundles are computed in the tensor

atlas using streamline tractography, and the improved signal-to-noise ratio of the

atlas allows reliable extraction of fiber bundles. Furthermore, the origin for defining

along tract correspondence is defined only once in the atlas space, significantly

improving efficiency and repeatability of the analysis. The template fiber tract is

warped back into the individual subject images to collect the diffusion data, as

shown in Fig. 6.2. Because the geometry of the individual fiber bundles is identical

in atlas space, the data for each subject are parametrized consistently. In the

reduction of each tract to an arc length function, the exact same point geometry

from the atlas is used, but varying diffusion measures are mapped from each subject,

as shown in the right side of Fig. 6.2.

The analysis of diffusion properties focuses on invariant measures of tensor shape

for two primary reasons. First, tensor orientation is an unstable measurement due

to approximations of tensor reorientation during deformation. More important,

(a) Fiber bundle (b) Arc length Function

Figure 6.1. Diffusion properties within a fiber bundle (a) are summarized as a
function of arc length (b). For example, the FA value along the cross-section at
points A,B,C,D,E are averaged and become the value of the function at the points
A,B,C,D,E along the x-axis of the arc length function.
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Figure 6.2. Schematic diagram of tract analysis procedure.

however, rotationally invariant measures such as anisotropy and MD have been

linked to changes in tissue properties [17]. The most commonly used measurements

of tensor shape are FA and MD. However, Ennis and Kindlmann showed that

FA and MD are not orthogonal and therefore not appropriate for joint statistical

analysis [30]. The nonorthogonality implies that differences in FA have different

meanings depending on the magnitude of the MD. In this framework, FA is used

as a measure of anisotropy because of its common usage in the literature. As a

measure orthogonal to FA, the FRO of the tensor D is chosen as a measure of the

tensor size.

6.3 Functional Data Analysis

The population of multivariate functions produced by the fiber tract model

requires a new method for statistical inference. Image sampling as well as the

fiber tract extraction process create a sampled representation of the fiber bundle

diffusion properties. However, there exists a continuous underlying biology that

generates these samples. Therefore, statistical analysis of the sampled diffusion

functions must account for the underlying continuity and spatial correlation of the

samples. Statistics of the diffusion curves are computed as an infinite dimensional
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extension to multivariate statistics known as functional data analysis [84].

The simplest extensions of ordinary statistics to the functional setting is the

sample mean function f̄(t), parametrized by arc-length t for N samples, given by

f̄(t) =
1

N

N∑
i=1

fi(t), (6.1)

and the sample covariance function, which is the bivariate function parametrized

by the two arc-length values s and t,

v(s, t) =
1

N − 1

N∑
i=1

(fi(s)− f̄i(s))(fi(t)− f̄i(t))
T
. (6.2)

The diagonal of the function, v(t, t), is the pointwise variance of the population of

functions.

In this framework, the sample functions for statistics will be vector-valued func-

tions resulting from the procedure described in the previous section. To be concrete,

statistics are computed on the space of functions f(t) that map an arc length value t

to a 2-element vector containing the FA and FRO. Similarly, the covariance function

v(s, t) returns a 2x2 covariance matrix for every pair of parameters (s, t).

Hypothesis testing and discriminant analysis in the space of continuous functions

has an inherent high-dimension, low-sample-size problem because of the infinite-

dimensional space of continuous functions. Regularization methods are, therefore,

essential in the computation of functional statistics. To enforce regularity, B-spline

fitting and functional principal component analysis (PCA) are used for data-driven

smoothing, where the number of B-spline coefficients and retained PCA modes acts

as a smoothing parameter.

In order to approximate the space of smooth functions, basis functions are fit to

the sampled diffusion curves. B-splines were selected as basis functions due to the

nonperiodic nature of the data, the compact support of the B-spline basis, and the

ability to enforce derivative continuity. A large number of B-spline bases are first fit

to the sampled functions using a least squares approach. Typically, the number of

B-spline coefficients is chosen to be between 60% to 80% of the number of original

samples. The number of basis functions is chosen empirically to maintain local
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features while providing some smoothing. The mean function is computed by the

sample mean of the B-spline coefficients. Computation of the variance-covariance

function is more complex and requires accounting for the mapping between basis

coefficients and function values. Let fi(t) be the B-spline function fit to the samples

from subject i. Following the notation of Ramsay and Silverman [84], in matrix

form, we express all functions fi(t) as a matrix of coefficients C times the basis

functions φ, so that

f(t) = Cφ(t). (6.3)

Assuming the functions are centered about the sample mean, the variance-covariance

function of f(t) is

v(s, t) =
1

N − 1
φ(s)TCTCφ(t). (6.4)

Note that the vector-valued function f(t) gives a column vector for each value t,

therefore computing the variance-covariance with respect to the arc length param-

eters s, t in (6.4) is transposed from the usual notation.

PCA of the functions fi(t) decomposes v(s, t) into the orthogonal unit eigen-

functions ξ(t) that satisfy ∫
v(s, t)ξi(t)dt = λi ξi(s). (6.5)

Equation (6.5) can be solved numerically by rewriting in terms of the basis functions

φ with coefficients b,

φ(s)TCTCφ(t)φ(t)Tb = λφ(s)Tb. (6.6)

Let W be a matrix of basis function inner products with entries

Wij =

∫
φi(t)φj(t), (6.7)

then equation (6.6) can be simplified in the matrix form,

1

N − 1
CTCWb = λb. (6.8)
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The B-spline basis is not orthonormal, resulting in a nonsymmetric eigenvalue

problem to solve (6.8). This system can be solved by the symmetric eigenvalue

problem for the basis coefficients b, with the change of variable W−1/2u = b:

1

N − 1
W1/2CTCW1/2u = λu. (6.9)

Remember that this framework computes statistics of several diffusion measures

jointly. Consider analysis of the vector-valued function, f(t) with basis coefficients

C1 and C2 representing the FA and FRO values, respectively. The joint PCA is

computed from the eigenanalysis of Σ, where

Σij = W1/2CT
i CjW

1/2, and

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

(6.10)

In practice, C1 and C2 are the same size because the same samples are used for

both FA and FRO. Each vector-valued function f(t) is represented as a vector b

containing the B-spline coefficients. b is organized with the parameters representing

FA as the first half of the vector and the coefficients for FRO contained in the second

half of the vector.

Hypothesis testing and discriminant analysis is performed on the projection of

the data onto the first K PCA modes, where K serves as a smoothing parameter.

The PCA projection accounts for the different scalings of the FA and FRO values

enabling a joint analysis despite the differences in scale of the two values. An

example of the PCA modes for the genu tracts from 1- and 2-year-old subjects is

shown in Fig. 6.3. In this work, K is chosen to maintain 90% of the variability

of the variance-covariance matrix. Let xi and yi be the projection of the curves

from two populations of functions onto the PCA space. In this space, the basis

mapping has already been incorporated and standard multivariate analysis can be

applied. The normal parametric hypothesis test for mean differences between two

multivariate normal populations is the Hotelling T 2 statistic,

T 2 =
nxny
nx + ny

(x̄− ȳ)S−1(x̄− ȳ)T (6.11)
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Figure 6.3. Visualization of the PCA modes for the joint analysis of FA and FRO
in the genu of the corpus callosum for the 1- and 2-year-old populations. The (a)
mean functions for the combined population are shown with (b) the 1st and (c) 2nd

PCA modes. The 1st PCA mode accounts for a large percentage of the variability
and shows constant changes of FA with an anticorrelated change in FRO.
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where S is the pooled covariance matrix given by,

S =

∑nx

i=1 (xi − x̄)(xi − x̄)T +
∑ny

i=1 (yi − ȳ)(yi − ȳ)T

nx + ny − 2
[73]. (6.12)

In order to relax the normality assumptions associated with the parametric

test, we apply a random permutation test based on the T 2 statistic to compute p-

values [74]. The permutation test is run on the multivariate T 2 statistic and does not

require multiple comparison correction. A large number of random permutations

are applied to the true group labels and the T 2 statistic is recomputed under the

permutation. In experiments here, 100,000 random permutations were used. This

generates a distribution that is compared to the original T 2 computed from the

true labels. The random permutation test p-value is given by the percentage of

permuted statistics that exceed the true statistic.

The T 2 statistic is proportional to the difference between group means projected

onto the subspace given by the Fisher linear discriminant (FLD),

ω = S−1(x̄− ȳ)T . (6.13)

The linear discriminant, therefore, provides a direction for interpreting the detected

group differences of the hypothesis test. The coefficients of the discriminant can

be expanded into the original function basis so that FLD(t) = φ(t)ω is a function

whose inner product with the original data provides maximal separation between

the groups. This function, FLD(t), describes changes of tensor parameters between

the two groups as a function of arc length.

6.4 Example Results

The methodology presented in this chapter was tested on a study of pediatric

DTI images. A brief sample of results are presented here with more detailed analysis

available in section 7.2.2. A population of 22 1-year-old subjects and 30 2-year-

old subjects were chosen from a database of pediatric DTI. In this example, a

large group difference was expected, and the purpose of this study is to illustrate

the methodology rather than to identify significant differences. Each image was

acquired with 2× 2× 2 mm3 isotropic voxels, 10 repetitions of the Basser gradient
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sequence, and a b-value of 1000. The genu of the corpus callosum and the left

motor tract are presented as representative fiber bundles. An atlas was computed

from the combined set of 52 images, and tractography was performed to extract

the two tracts.

Sampled functions of FA and FRO were parametrized by atlas-normalized arc

length in the genu and left motor tracts. For the genu curves, a B-spline basis with

60 basis functions was used to provide preliminary smoothing and smooth curve

estimation. For the motor tract, 80 basis functions were used. Functional joint

PCA of FA and FRO was then estimated for the whole population. The number

of PCA modes was selected to retain 90% of the total variance. For this study, 7

and 11 PCA modes were retained for the genu and motor tracts, respectively. The

mean function plus the first two principal modes for the genu tract are shown in

Fig. 6.3.

The Hotelling T 2 statistic was then computed in the projected PCA space.

The genu tract test was extremely significant with a T 2 statistic of 133.1 and

parametric p-value of 3.3e-8. The motor tract was also extremely significant with

T 2 statistic of 93.8 and a parametric p-value of 2.7e-6. In this case, there was

such a large difference between groups that the permutation test did not result

in any permutations with a statistic greater than the original. The p-values are

uncommonly low because of the strong differences in the test data and the rela-

tively large sample size. Visualization of the discriminant direction provides an

interpretation of the detected differences and is shown in Fig. 6.4 and Fig. 6.5. The

discrimination direction for the genu tract shows that the difference between the

groups is primarily caused by an overall increase in FA and correlated decrease in

FRO. Furthermore, the increased value of FA in the center of the tract indicates

that the central region of the tract provides more discriminative power between the

2 groups. These results are similar to differences that have been found between

neonates and 1-year-old subjects in the same tract [41]. The results in the motor

tract indicate a similar constant increase in FA across the whole tract. The FRO

increases towards the inferior region of the tract, and decreases at a specific location
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(a) Genu discriminant functions

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Projection on discimination direction

G
ro

up
 fr

eq
ue

nc
y

 

 

1 year
2 year

(b) Data functions projected on FLD

Figure 6.4. Discriminant for genu tract. (a) Linear discriminant between groups
for the genu tract expanded into original functional basis with (b) projection of
data on discriminant. In the genu tract the FA values increase between the groups,
and the FRO values decrease. For the motor tract, the results are similar for FA,
but the norm increases at the base of the tract and decreases towards the top.
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(a) Motor tract discriminant functions
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(b) Data functions projection on FLD

Figure 6.5. Discriminant for left motor tract. (a) Linear discriminant between
groups for the left motor tract expanded into original functional basis with (b)
projection of data on discriminant. In the left motor tract the FA values increase
between the groups, and the FRO values decrease. For the motor tract, the results
are similar for FA, but the norm increases at the base of the tract and decreases
towards the top.
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in the superior region of the tract. This decrease could be due to increased fiber

crossing associated with development of the corpus callosum.

6.5 Conclusion

Computing fiber tract statistics as a function of arc length provides an intu-

itive mechanism for detecting and understanding changes in fiber tract properties

between populations. This framework avoids the problems of multiple comparison

correction by providing a single nonparametric hypothesis test for each fiber bundle.

Furthermore, the discrimination information contained within the hypothesis test

can be visualized to provide a clinically relevant interpretation of the group differ-

ences. The application of this method to different clinical problems is described in

the following chapter.



CHAPTER 7

CLINICAL APPLICATIONS

7.1 Introduction

This chapter will cover the application of methods developed in the previous

chapters to two clinical studies. The first study looks at the development of the

brain in children from birth to 2 years, and the second study is focused on the study

of schizophrenia in adults. Further background information on the two application

areas was provided in section 1.3. A brief mention of additional applications not

performed by the author are mentioned in section 8.3.

7.2 Study of Brain Development

Within the pediatric population, several different experiments have been ex-

plored within the framework of the analysis tools of this thesis. First, the atlas

building procedure was applied to different age groups to estimate the develop-

ment of diffusion measures with age. Although this experiment is not a rigorous

quantification of changes, it provides a visualization of the difference in tensor

measures with age. In addition, the tract specific methodology of Chapter 6

was applied to a group of 1- and 2-year-old subjects to measure tract specific

development. Last, neonates within the database diagnosed with isolated prenatal

mild ventriculomegaly (MVM) were compared to controls.

Pediatric data were obtained with institutional review board (IRB) approval

from the University of North Carolina and Duke University Medical Center. Neonate

subjects were scanned unsedated while sleeping. Subjects were imaged on a Siemens

3T Allegra scanner using a DTI protocol with 10 repetitions of a nondiffusion

weighted image plus 6 diffusion weighted gradient directions using a b-value of

1000s/mm2 and a voxel size of 2 × 2 mm3. Other imaging parameters are TR =
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5200 ms and TE = 73 ms. After image acquisition, each repetition of the sequence

was corrected for head motion by registration to the nondiffusion weighted images

using the DTIchecker software1.

7.2.1 Cross-Sectional Atlases of Development

Atlases were constructed for neonate, 1 year, 2 year, and adult populations

to give an overall impression of the development of white matter structures with

age. This test was not intended as a quantitative analysis. Instead, this serves

primarily as a visualization of the existence of major fiber structures at birth and

their maturation as reflected in changes of diffusion values.

For each age group, the data was processed using the methods described in

Chapter 4. To bring the separate atlases into register, the RView software was

used with an affine initialization followed by a B-spline registration [98, 86, 89].

In this experiment, the FA image of the atlas template for each age group was

registered to the atlas for the 1 year group. The registration employed is insufficient

for quantitative analysis but gives a reasonable visualization of the corresponding

structures between the atlases. Axial slices from each of the registered atlases is

shown in Fig. 7.1. Many of the major fiber structures such as the corpus callosum,

internal capsule, and fornix can be seen in all of the age groups. Fibers in central

tracts such as the internal capsule and corpus callosum have increased FA with age,

indicating development of the white matter structure.

7.2.2 Normal Development From One to Two Years

The methodology presented in Chapter 6 was evaluated on a cross-sectional

study of normal development, including subjects at one and two years of age.

This study was chosen as a test case because of the expected large differences in

diffusion properties due to development. In this case, the p-value of the hypothesis

testing framework of Chapter 6 is less relevant as large changes are expected, but

the discriminant direction provides localized information about major changes in

1http://www.ia.unc.edu/dev/download/dtichecker/index.htm
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(a) Neonate (b) 1 yr

(c) 2 yr (d) Adult

Figure 7.1. Axial slices of atlases at neonate, 1 year, 2 year, and adult.
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diffusion properties between the two age groups.

The atlas building procedure of Chapter 4 was applied to a database of 49

healthy controls including 22 1-year-old subjects and 27 2-year-old subjects. The

transformations were initialized to a template T2 atlas appropriate for pediatric

images. The feature image for atlas building was computed with a Gaussian kernel

width of σ = 2.0mm. Atlas building was performed in a multiresolution framework

using two levels of downsampling. After registration, deformed tensor images were

averaged to produce an atlas tensor image suitable for fiber tractography.

After registration and averaging, the atlas tensor image was used to identify four

tracts of interest: genu, splenium, left cortico-spinal tract, and right cortico-spinal

tract. Figure 7.2 shows axial slices of all the images deformed into atlas space. A

streamlime tractography algorithm using Runge-Kutta integration of the principal

eigenvector field was used to extract the fiber tracts. Fibers were tracked from

manually drawn seed regions in the atlas image and constrained to pass through

a manually drawn target region. The atlas image provides improved SNR that

allows lower FA thresholds than typically used for processing of single images.

Figure 7.3 shows a comparison of the genu tract for one subject mapped from the

atlas and the corresponding tract generated by tractography in the native space. In

the entire population, the mapped tracts and individually computed tracts for the

genu were mapped to binary voxel images. Dice coefficients were computed for each

individual. The median dice coefficient for the cohort was .69, which is a reasonable

overlap given the instability of streamline tractography methods. Previous work

on comparing histology to fiber tractography has shown the difficulty in using dice

coefficients and their dependence on the various parameters for tractography [25].

After generation of the atlas template tracts, data from the individual subject

images were mapped to these tracts using the transformations created during atlas

building. Tract oriented functions were computed for each subject using an origin

defined in the atlas. Thirty B-spline control points evenly spaced in the arc-length

parameter t were used to fit each function, and the resulting functions for the genu,

splenium, and the left and right cortico-spinal tracts are shown in Fig. 7.4, Fig. 7.5,
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Figure 7.2. Axial slices of all subjects after nonlinear registration
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(a) Tract mapped from atlas (b) Tractography in individual

(c) Pointwise distance between tracts

Figure 7.3. Comparison of atlas and individual tractography. The genu tract
(a) mapped from atlas is compared with (b) the tract produced by tractography
in the individual. (c) Comparison of pointwise distances between the two fiber
tracts reveals a maximum difference of 4.5mm between the two tracts. The average
distance in the main body of the tract is less than 1.5mm.
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Figure 7.4. Tract and arc length functions for genu. (a) Genu tracts extracted
from the tensor atlas shaded by mean FA value. The diffusion values are sampled
along the atlas-normalized arc length for each individual in the study for FA and
Frobenius norm values. The sampled FA and Frobenius norm functions for the
two groups are shown in (b), (c). The 1-year-old subjects are the dashed lines
and the 2-year-old subjects are the solid lines. The spikes in the center of the
Frobenius norm functions for the genu are due to partial voluming with fluid in the
longitudinal fissure.
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(a) Splenium
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(b) FA curves
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(c) Norm curves

Figure 7.5. Tract and arc length functions for splenium. (a) Splenium tracts
extracted from the tensor atlas shaded by mean FA value. The diffusion values are
sampled along the atlas-normalized arc length for each individual in the study for
FA and Frobenius norm values. The sampled FA and Frobenius norm functions for
the 2 groups are shown in (b), (c). The 1-year-old subjects are the dashed lines
and the 2-year-old subjects are the solid lines.
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Fig. 7.6, and Fig. 7.7. After evaluation of the variance-covariance matrix for each

tract, the number of PCA modes for the tract was selected to maintain 90% of

the variance resulting in between 6–10 PCA modes per tract. Permutation testing

over the Hotelling T 2 statistics was run for each tract with 100, 000 permutations,

and the FLD associated with the null permutation was computed for visualization.

The resulting p-values as well as the maximum and average pointwise differences

of diffusion measures between groups along the tract are summarized in Tbl. 7.1.

All the tracts indicate a general trend of increase in FA and a correlated decrease

in Frobenius norm from 1- to 2-year-old groups. Figure 7.8 shows a visualization

of the discriminant function for the genu tract that indicates an increase in FA

and a correlated decrease in Frobenius norm from the 1- to 2-year-old groups with

the effect focused in the center of the tract and trailing off as the tract enters

the grey matter regions of the cortex. In the cortico-spinal tracts, there is some

evidence of localized changes. Figure 7.9 shows the mean functions for the two

groups and the discriminant direction. The discriminant indicates that FA increases

from one to two years in regions of the tract inferior of the callosal fibers, whereas

the FA decreases in regions at the callosal fibers and above. This localized change

could indicate a possible increase in orientation complexity or crossing fibers during

development.

7.2.3 Hypothesis Testing Between
Controls and MVMs in Neonates

Prenatal MVM is a condition characterized by enlargement of the lateral ven-

tricles diagnosed by ultrasound and has been associated with increased risk of

neuropsychatric disorders [42]. Previous investigation of DTI quantities in MVM

have found a significant decrease in FA from controls in manually identified regions

of splenium as well as significant increase in MD in regions of the genu, splenium,

and cortico-spinal tracts [41].

The atlas building method described in Chapter 4 was applied to a database

of 114 images including 85 controls, 13 MVMs, 12 offsprings of schizophrenics,

and 4 offsprings of bipolar. Future work will study the different groups within
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(b) FA curves
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(c) Norm curves

Figure 7.6. Tract and arc length functions for left cortico-spinal tract. (a) Left
cortico-spinal tracts, cropped in the internal capsule, in the 1- and 2-year-old
population. The tracts are sampled from inferior to superior along the tract to
produce the sampled functions in (b) and (c).
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(a) Right cortico-spinal
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(b) FA curves
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(c) Norm curves

Figure 7.7. Tract and arc length functions for right cortico-spinal tract. (a)
right cortico-spinal tract, cropped in the internal capsule, in the 1- and 2-year-old
population. The tracts are sampled from inferior to superior along the tract to
produce the sampled functions in (b) and (c).
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Table 7.1. Tract differences from one to two years
Tract p-value FA Frobenius norm

max avg max avg
Genu <.0001 .060 .020 -2.9×10−4 -1.8×10−4

Splenium .0024 .053 .022 -2.6×10−4 -1.4×10−4

Left cortico-spinal .0004 .036 .014 -1.9×10−4 -0.9×10−4

Right cortico-spinal .0002 .049 .023 -1.3×10−4 -0.7×10−4

The table provides p-values for the hypothesis test of differences between 1- and 2-
year-old subjects. Columns 3–4 and 5–6 show the maximum and average pointwise
differences between the mean functions of the two groups.
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(a) Genu mean functions
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Figure 7.8. Discriminant function for the genu tract. (a) The mean functions for
the genu tract 1- and 2-year-old groups along with (b) the linear discriminant that
describes the function that maximizes separation between the groups. Here, the
FA values increase from 1 to 2 years, and the Frobenius norm values decrease in a
correlated manner. The FA changes are localized towards the center of the tract
and are less informative at both the left and right ends of the tract.
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(a) Left cortico-spinal mean functions
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(b) Left cortico-spinal discriminant

Figure 7.9. Discrimination function left cortico-spinal tract. (a) The mean
functions of the left cortico-spinal tract for the 1- and 2-year-old groups along with
(b) the linear discriminant which describes the function that maximizes separation
between the groups. Here, FA increases in regions inferior of the callosal fibers
and decreases as the tract passes near the corpus callosum. This could indicate
increased interaction and crossing between fibers in this region.

this database, but this study focuses on the comparison of MVMs to controls.

Transformations were initialized to a neonate specific template with T2 weighting.

The feature image was computed at σ = 1.5mm for each subject, and the atlas

building procedure was applied in a multiresolution framework. After diffeomorphic

registration of each tensor image, an atlas tensor image was created by averaging

the deformed images. In the atlas tensor image, tracts were computed for the genu,

splenium, and left and right cortico-spinal tract, as shown in Fig. 7.10.

Analysis of tracts was performed on the left and right cortico-spinal tracts,

genu, and splenium. Statistically significant differences were found in the splenium

tract but not the genu or cortico-spinal tracts. Figure 7.11 shows the discriminant

direction for the splenium tract and indicates a decrease in FA and a correlated

increase in Frobenius norm from control subjects to those with MVM. Results for

all analyzed tracts are summarized in Tbl. 7.2.



88

Figure 7.10. Template fiber tracts in atlas of neonate subjects overlaid on the FA
image of the neonate atlas.
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Figure 7.11. Discriminant for splenium from control to MVM groups. (a) The
mean functions for the splenium tract in control and MVM neonates are shown
along with the (b) Fisher linear discriminant. The discriminant indicates that the
significant differences in tract properties are attributed to a decrease in FA and an
increase in Frobenius norm in MVMs.
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Table 7.2. Tract differences from neonate controls to MVMs
Tract p-value FA Frobenius norm

max avg max avg
Genu .99 .0086 .0020 1.1×10−4 0.32×10−4

Splenium .0001 .039 -.019 5.7×10−4 2.1×10−4

Left cortico-spinal .24 .016 .00015 1.5×10−4 -0.6×10−4

Right cortico-spinal .80 .022 .0034 8.8×10−5 -2.6×10−5

The table provides p-values for the hypothesis test of differences between controls
and MVMs. Columns 3–4 and 5–6 show the maximum and average pointwise
differences between the mean functions of the two groups.

7.3 Schizophrenia

The tract analysis method was applied to a study of schizophrenia in adults

to test for possible tract differences. Data for this study were provided by Marek

Kubicki at Brigham and Womens Hospital. An atlas was built from images of 37

subjects in a study of schizophrenia in adults. Each subject was imaged using a

protocol with 8 nondiffusion weighted images and 51 diffusion weighted gradients

at a voxel resolution of 1.6667×1.6667×1.7 mm3. A b-value of 900 was used for the

diffusion weighted images. After atlas building, the fornix, left and right uncinate,

and left and right cingulum were extracted. Visualization of the fiber tracts is

shown in Fig. 7.12. Permutation tests for each of the tracts revealed no significant

differences at the α = .05 significance level. Visualisation of the individual tracts

as well as the discriminant function are shown in Fig. 7.13, Fig. 7.14, Fig. 7.15,

Fig. 7.16, and Fig. 7.17.

7.4 Conclusion

The methods presented in this thesis have been applied to several different

clinical studies, including a study of neurodevelopment and schizophrenia in adults.

The use of the methodology in a variety of studies at different institution demon-

strates that the framework of this thesis is a generic tool for investigating white

matter changes in neuroscience studies. The results of the development studies

confirmed previous findings of changes due to age and may provide a tool for

investigating these changes in more detail. The results of the schizophrenia study
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Figure 7.12. Fiber bundles for analysis of schizophrenia data.
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(d) Discriminant

Figure 7.13. Functions and discriminant for fornix. (a) and (b) show the FA and
FRO functions for both populations. (c) shows the mean of each population, and
(d) shows the discriminant function.
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Figure 7.14. Functions and discriminant for left uncinate. (a) and (b) show the FA
and FRO functions for both populations. (c) shows the mean of each population,
and (d) shows the discriminant function.
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Figure 7.15. Functions and discriminant for right uncinate. (a) and (b) show the
FA and FRO functions for both populations. (c) shows the mean of each population,
and (d) shows the discriminant function.
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Figure 7.16. Functions and discriminant for left cingulum. (a) and (b) show the
FA and FRO functions for both populations. (c) shows the mean of each population,
and (d) shows the discriminant function.
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Figure 7.17. Functions and discriminant for right cingulum. (a) and (b) show the
FA and FRO functions for both populations. (c) shows the mean of each population,
and (d) shows the discriminant function.
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are inconclusive with no differences found in this study. Future development of

the statistical analysis to perform regression and account for covariates may be

necessary to investigate this study in more detail.



CHAPTER 8

DISCUSSION

8.1 Summary of Contributions

This section summarizes the contributions listed in section 1.4 and developed

throughout the chapters of this thesis.

1. An analysis of diffusion tensor estimation under different acquisition schemes

illustrates the bias introduced by gradient sampling schemes with repeated

directions.

Chapter 3 reviewed the source and distribution of noise in MRI. Simulation of

the noise and its effect on various measures of the estimated tensors showed

deficiencies in gradient sampling schemes relying on averaging of repeated

directions and suggests the use of nonrepeated sampling of gradient direc-

tions. A method to improve retrospective analysis with ML estimation is

also presented. A novel experiment on repeated acquisition of real images

supports the results of the simulation.

2. An analysis of diffusion tensor estimation methods shows a preferences to-

wards weighted least squares tensor estimation to achieve efficient computa-

tion with reduced bias and variability of derived tensor measures.

A review of published methods for diffusion tensor estimation was presented in

Chapter 3. A comparison of the different methods was performed using several

different gradient acquisition schemes. This result extended the previous

contribution by showing that weighted least squares or maximum likelihood

estimation are needed to take full advantage of the recommended gradient

sampling schemes.

3. A method for spatial normalization of tensor images based on unbiased atlas

building allows populations of tensor images to be analyzed in a common
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coordinate frame.

Chapter 4 extended a previous atlas building method by developing a scalar

feature image sensitive to the medial structure of brain white matter. Exper-

iments on populations, especially as presented in section 7.2.1, demonstrated

ability of this method to produce atlas images representative of the popula-

tion. Fiber tracts extracted from this atlas are used in the analysis method

of Chapter 6. A user manual for the atlas building procedure is listed in

Appendix A. This method has also been used for other studies not covered

in this thesis. A sample of these other applications is presented in section 8.3

of this chapter.

4. Measures for evaluating geometric and functional differences in tractography

are introduced and evaluated with specific application to validation of the

spatial normalization.

Chapter 5 presents a set of methods for measuring the similarity of fiber

bundles computed with streamline tractography. The measures evaluate both

geometric similarity and similarity of the diffusion properties sampled by the

fiber bundle. These methods may be used for quality control, evaluation

of new tractography algorithms, and evaluation of atlas-based tractography.

Binary overlap measures were shown to be problematic in the setting of

tractography because of the thin shapes of the tracts. A closest point measure

was created that provided an upper confidence limit on the distance between

two tracts at a specific quantile. An evaluation of the atlas building method

of Chapter 4 showed close geometric agreement for most tracts and differences

of around 10% for FA and 4% for MD between tracts computed in the atlas

and individual space.

5. A novel method for computing tract oriented statistics enables population

comparison to account for multivariate tensor shape measures and along tract

correlation.

To evaluate differences in the diffusion properties sampled by fiber bundles,

Chapter 6 presents a statistical framework for comparing tract oriented mea-
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sures of diffusion. The atlas building framework of Chapter 4 is used to create

a template tensor image for all images in a study. The fiber tracts defined

by this atlas are mapped to each subject to sample the diffusion properties

at the corresponding anatomical location. The geometry of the atlas tract is

then used to reduce each tract to a function of arc length for several diffusion

parameters of interest such as FA and FRO. A multivariate hypothesis test is

then used to test for differences between the populations of smooth functions,

and the discrimination function embedded in the hypothesis test provides a

representation of the most descriptive differences between two populations.

B-spline fitting and PCA are used to regularize the solution.

6. The atlas building method is applied to cross-sectional data of normal devel-

opment to understand the maturation of diffusion properties over time.

Section 7.2.1 presents the application of the atlas building method to data

from a study of normal development. In this analysis, only cross-sectional

analysis of the data is considered. Atlases built at several age points show

that many major fiber bundles exists already at birth but continue to develop

into adulthood as evidenced by changes in FA and tensor norm. Section 8.4.4

of this chapter discusses future work in longitudinal analysis and regression.

Tract based analysis in section 7.2.2 further quantifies these changes in specific

tracts from age 1 to 2 years.

7. The tract oriented statistical method is applied to group analysis of pediatric

and adult schizophrenia data.

Several applications of the atlas building and tract statistics methods are

presented in Chapter 7. An increase in FA and correlated decrease in FRO

are shown from 1 to 2 years. Significant differences were found in the splenium

tract between neonates diagnosed with MVM and healthy controls. Analy-

sis of several tracts in schizophrenia showed no significant differences but

illustrated the use of the methodology. Future developments in controlling

for other clinical factors such as age and drug treatment are discussed in

section 8.4.5 of this thesis.
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8. The framework developed in this thesis is made available as an open source

toolkit for the benefit of the scientific community.

The methods presented in this thesis are made available as open source

software for use by the scientific community. The tensor estimation routines of

Chapter 3 as well as the tensor resampling techniques discussed in Chapter 4

are made available in the DWIProcess library. Appendix A describes how to

use the software for tensor estimation, atlas building, and fiber tractography.

In summary, this thesis presents a framework that can be used for the analysis of

diffusion image populations. The application of the framework to different clinical

problems shows how neuroscience investigations can be improved by these image

analysis techniques.

Thesis: Populations of diffusion tensor images provide valuable insight

into white matter tissue structure. Measurement error and image pre-

processing steps must be controlled to minimize error in statistics. Com-

putation of an anatomically relevant coordinate system through atlas

building and fiber tract modeling provides an intuitive shape-based frame-

work for understanding differences in white matter microstructure. The

combination of preprocessing, atlas building, and tract analysis provides

a robust framework for making inferences about white matter differences

in populations.

8.2 Limitations

There are several key assumptions in the proposed methodology that present

limitations for the scope of this work. Some of these deficiencies can be addressed

with future research.

8.2.1 Atlas Building

The atlas building methodology of Chapter 4 assumes that the overall appear-

ance of DTI images is sufficiently similar between two groups that registration

to a single coordinate system is feasible. This is a common assumption made in

brain mapping approaches including popular software framework such as SPM and
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FSL. In studies where subjects present with severe geometric distortions such as

tumors, the approach presented in this thesis is likely not feasible. Tracts that are

small or inconsistent even among the same group will be challenging to identify in

the atlas. For this reason, I have focused on large major fiber bundles where

consistency is expected. Smaller structures such as the short u-shaped fibers

connecting neighboring gyri are not likely to reliably identified using the atlas

building method.

Misregistration in the atlas building procedure can confound the results of tract

oriented statistics. Furthermore, the statistical analysis relies on tensor shape

measures to make inference about potential changes in tissue structure at specific

locations. However, there are several other effects that could have an impact

on the tensor shape besides changes in tissue properties. For example, varying

degrees of partial voluming effects can cause differences in total diffusivity that do

not necessarily reflect changes in axon density or myelination. This can happen

especially in fiber tracts adjacent to the ventricles. Part of the underlying change

found in the splenium of the MVM population may be due to partial voluming with

the lateral ventricles. Further studies are necessary to investigate the underlying

biological cause of detected differences in DTI measures.

8.2.2 HARDI

The assumption of a single Gaussian diffusion profile per-voxel is a limitation

for the analysis of brain regions that contain fiber crossings. This section addresses

potential future work in extending the atlas building approach to HARDI data.

Specifically, this section addresses potential approaches for resampling HARDI after

deformation.

In the case of rigid transformations consisting only of translation plus an or-

thonormal rotation matrix, the problem of transforming HARDI is well-posed as a

transformation of the coordinate system in which the measurements were obtained.

In this case, a tensor D transformed by the rotation R can be represented as

D′ = RDRT . (8.1)
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Alternatively, we could update the gradient directions to reflect the new measure-

ment frame replacing direction g with

g′ = Rg. (8.2)

In the context of image resampling, there may be some advantages to transforming

the diffusion weighted images and updating the gradients based on resampling

issues. When least-squares tensor estimation is used, the methods are equivalent,

but for more advanced tensor estimation approaches, the transformation of diffusion

weighted images may have resampling advantages. Furthermore, if DW images are

transformed, then any model of interest (Q-Ball, DSI, CHARMED, two-tensor,

etc.) can be estimated from the resampled data.

The finite strain model for tensor reorientation applies immediately to higher

order diffusion models such as Gaussian mixtures, DSI, q-Ball, etc. In this case,

for a diffusion model Q(g) written as a radial function of the unit direction g, we

can compute the rotated diffusion by Q(RTg). The PPD approach would need

to be adapted based on specific modeling assumptions to account for the features

of a higher-order diffusion model that needed to be preserved. For example, in a

mixture of Gaussian model, the preservation of the two different principal diffusion

directions could be balanced by weighting them according the volume fraction.

I propose two alternative methods for nonrigid transforms based on transforma-

tion and resampling of the DWI. The first method I will call gradient finite strain

(GFS) and the second method I will call normalized gradient (NG).

The gradient finite strain approach is a straightforward extension of the finite

strain model to reflect changes to the gradient directions instead of changes to

the tensor. In this model, the transformation can be thought of as finding the

closest rigid matrix to the transformation at a given point and applying that to the

gradient directions. As mentioned before, for the case of tensors estimated using

linear-least squares these methods are equivalent, but for other tensor estimation

or higher order models, more information is retained in the GFS model. Similar

to the FS approach, this method also has no impact on the shape of the diffusion

model, because the transformation is projected to a pure rotation.
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The normalized gradient approach is similar to that proposed by Tao and

Miller [100]. In this method, the local transformation is applied to the gradient

directions, which are then renormalized to be of unit length.

g′ =
Ag

‖Ag‖
(8.3)

The motivation for this method is an analysis of the units of Stejskal-Tanner

equation. Units of space appear only in the orientation of the gradient directions

gi.

8.3 Additional Projects

The atlas building procedure has successfully been applied to projects by other

researchers, indicating that the framework of this thesis can be applied to generic

neuroimaging problems investigating white matter changes.

Collaborators at the University of Utah and University of North Carolina at

Chapel Hill have performed study of aging in adults using the atlas building method

presented in this thesis. A database of healthy adults from age 20 to 76 has been

collected by Elizabeth Bullitt at University of North Carolina at Chapel Hill. After

quality control, 86 images were selected from this database and the atlas building

method of Chapter 4 was applied. A depiction of the constructed atlas and fiber

tracts is shown in Fig. 8.1. Fiber tracts in the atlas are processed in a manner

similar to that described in Chapter 6. Additional research is being performed to

constrain the tract PCA to account for the age of the subject to apply regression

analysis to the data.

Zhexing Liu, Hongtu Zhu, Bonita L. Marks, Laurence M. Katz, Guido Gerig,

and Martin Styner have used the atlas building method to register a set of data

from a study of the effect of fitness level on brain structure. Instead of the tract-

based analysis described in this thesis, a bootstrap and permutation test analysis

procedure was performed voxelwise on the registered images [116]. Preliminary

evidence indicates there may be differences in diffusion measures due to physical

activity.
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Figure 8.1. FA image and fiber tracts from atlas of adults.

Other studies include a singleton-twin neonate DTI analysis with 270 subjects,

a function connectivity (fcMRI) and DTI study of early development with atlases

for neonates, 1- and 2-year-old subjects (25 each), and analysis of 25 subjects with

repeated scans at birth, 1year and 2years with focus on longitudinal data analysis

of diffusion. The atlas building method has also been applied to nonhuman primate

data by March Niethammer and UNC Chapel Hill.

8.4 Future Work

The methodology presented in this thesis can be extended in several ways to

improve both reliability and accuracy as well as to extend the statistical analysis

to several new areas of analysis.

8.4.1 Improvement of Atlas Building

Several key issues in the atlas building framework remain to be addressed

in future work. Specifically, further developments in image match metrics and

methods for tensor reorientation under deformations can improve future studies.

Two major considerations should be made in the development of new image

match metrics. First, the image match metric may need to be reformulated to better

optimize the orientation of fiber bundles. The current image metric serves primarily

to align regions of high anisotropy. However, the alignment of principal eigenvectors
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eventually used for tractography are not explicitly optimized. As a result, averages

of the deformed images used for fiber tracking may have lower anisotropy than the

original images. A second possible area of investigation is the more general problem

of estimating transformations between images where quantitative intensity changes

are to be evaluated. The process of registration is likely to confound the eventual

analysis by aligning voxels with the same intensity resulting in minimal changes

for statistical testing. There may be information theoretic arguments that need

to be addressed regarding complementary data and the smoothness of the allowed

registration.

In addition to improvements in metrics for diffusion image registration, addi-

tional improvements could be made in the methods for resampling diffusion images.

In this thesis, the methods of Alexander et al. have been implemented for tensor

reorientation [2]. Future improvements could focus on resampling DWI instead of

DTI . This provides advantages both in terms of the ability to estimate higher order

diffusion models as well as potential to better handle partial voluming effects. An

initial prototype has been implemented incorporating the image resampling into

the tensor estimation routine.

8.4.2 Physical Meaning of Diffusion Measures

One of the most important challenges in generating new scientific knowledge

from DTI studies is identifying the underlying biological causes for changes in

diffusion parameters. Daniel Alexander has recently published a new experimental

design for directly measuring tissue properties such as axon radius [3]. Sharon

Peled recently proposed that incorporation of a term for free isotropic diffusion can

improve the biological meaning of anisotropy measures [79]. Significant work also

remains in the validation of fiber tractography. Some initial work using histology

of a macaque brain has attempted to validate DTI tractography [25]. Further

development of similar work is necessary to be able to generate practical knowledge

about biology from DTI .
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8.4.3 Tract Oriented Analysis

Several limitations in the tract oriented analysis presented in Chapter 6 could

be addressed by future research. The current strategy for identifying corresponding

points along a tract relies on the arc length along each streamline from a user defined

origin. This has several drawback when tracts have high curvature as streamlines

closer to the interior of the bend will be shorter than streamlines along the edge,

much like runners along track. Other researchers have developed methods for

identifying along bundles correspondence by using distance maps [64] and optimal

point match based on the Hungarian algorithm [76]. Additional improvements to

the correspondence algorithm could explicitly account for the local curvature of the

streamlines.

As pointed out by Yushkevich et al., not all tracts are well-approximated by

a 1-dimensional representation [112]. Although there is some advantage to the

greater flexibility of geometric description of the medial model, the high dimension

low sample size problem addressed in applying global statistics, as in Chapter 6,

becomes significantly more complicated.

Assuming that perfect correspondence can be found to assign points to a one

parameter, there are still additional statistical challenges in modeling this as a single

function. The distribution of many statistics such as FA are highly non-Gaussian.

In this thesis, the FA of homologous points is averaged to produce a function

of an arc length parameter t. However, for heavy tailed distributions, common

for distributions of low FA, the mean is a not an informative summary statistic.

Furthermore, the mean is sensitive to outliers due to partial voluming from residual

misalignment of images. Statistics appropriate to the underlying distribution will

have to developed: for example, a fit of the FA distribution by a beta distribution.

8.4.4 Longitudinal Tract Oriented Statistics

Chapter 6 presents a statistical method for hypothesis testing of tract statistics.

The method uses multivariate tests in the space of PCA coefficients. The general

linear model in statistics provides a mechanism for linking regression with hypoth-

esis testing. Future work can investigate multilinear regression of tract parameters
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with respect to a continuously varying parameter such as age. However, the problem

of performing regression in multiple dimensions and especially on manifolds remains

an active area of research [26, 111].

8.4.5 Incorporating Covariates

In addition to expanding tract oriented analysis to other statistical tools such

as regression, future clinical studies will need to incorporate clinical covariates into

statistical analysis. The methods of this thesis assume the only important clinical

variable is the group to which the subjects are assigned. However, controlling for

other clinical variables such as age, drug treatment, developmental scores, gender,

etc. are likely to be important in finding clinically significant results.
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APPENDIX A

SOFTWARE USER GUIDE

This section provides an overview of the software environment required to run

the atlas building procedure described in this thesis. The reader is assumed to have

a basic understanding of using CMake to build programs from source code. The

following instruction guide also assumes the use of a linux or UNIX environment.

The purpose of this procedure is to bring a population of tensor images into

spatial correspondence. Spatial normalization of the population of images provides

a reference coordinate system for the statistical analysis of diffusion parameters.

The goal of this method is to enable comparison of diffusion properties and is not

intended to evaluate shape differences of white matter structures.

A.1 Basic Software Environment

The tools described in this section require the following foundational software.

A basic script to setup the software environment is available from http://www.

sci.utah.edu/~gcasey/research/code/setupenviron.sh.

ITK The options ITK USE REVIEW and ITK USE TRANSFORM IO FACTORIES must be

enabled. Version 3.8 or newer is recommended. http://www.itk.org

VTK Version 5.2 or greater is recommended. http://www.vtk.org.

Qt Version 3 is required. http://www.trolltech.com/products

SOViewer Available only through CVS at :pserver:anoncvs:@public.kitware.

com:/cvsroot/SOViewer

TEEM Compiling with zlib support is recommended to enable compression of

images. http://teem.sourceforge.net

NeuroLib CVS checkout available from demeter.ia.unc.edu:/cvsroot. Instruc-

tion for compiling the software are available from http://www.ia.unc.edu/



111

dev/tutorials/Developer/neurolib-linux.htm. Enable the programs Fib-

erTracking, FiberViewer, convertITKformats, DTIprocess and MriWatcher.

A.2 Preprocessing

Images obtained from a typical clinical DTI scan are obtained from the scanner

in DICOM format. The first step in processing of these images is convert them into a

3-dimensional format. NRRD is the NA-MIC standard image format for processing

diffusion weighted and diffusion tensor images. Conversion of DICOM to NRRD is

possible using the DicomToNrrdConverter tool in Slicer 3. Users of the NeuroLib

library can use the DicomConvert tool to create a volume image from DICOM and

then create the appropriate header with gradient information manually. Further

documentation on the NRRD format for encoding DTI information is available at

http://wiki.na-mic.org/Wiki/index.php/NAMIC_Wiki:DTI:Nrrd_format.

Before computation of diffusion tensors, several types of correction may need

to be performed depending on image quality and the imaging pulse sequence.

Rigid registration between images with different diffusion weighting may need to

be performed to correct for subject motion during the acquisition. Eddy current

distortions may need to be corrected to account for the varying gradient directions

in DTI sequences. A common technique to correct for both of these issues is to

use a single affine transformation per diffusion weighted image to account for both

patient motion and eddy current distortion.

A.2.1 Tensor Estimation

After correction for image transformations, dtiestim estimates a tensor image

from the set of diffusion weighted images. The main options for the dtiestim

program are described below. This program is included in the DTIProcess project

in NeuroLib.
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dtiestim - dtiestim dwi-image tensor-image [options]

-H,--help Obtains help on the use of dtiestim
-M,--brain-mask A binary image that enables tensor estimation in voxels

only where the mask is greater than zero.
-t,--threshold <threshold> Threshold on the nondiffusion weighted im-

ages to estimate tensors. If this is not specificed we attempt to detect the
threshold by the OTSU algorithm on the nondiffusion weighted image.

-m,--method <method> Options are
lls Linear least squares. Standard estimation technique that recovers

the tensor paramters by multiplying the log of the normalized signal
intensities by the pseudo-inverse of the gradient matrix. Default
option.

wls Weighted least squares. This method is similar to the linear least
squares method except that the gradient matrix is weighted by the
original lls estimate. See [87] for more information on this method.
This method is recommended for most applications. It is
not currently the default due to occasional matrix singularities.

nls Nonlinear least squares. This method does not take the log of the
signal and requires an optimiation based on Levenberg-Marquadt
to optimize the parameters of the signal. The lls estimate is used
as an initialization.

ml Maximum likelihood estimation. This method is experimental and
is not currently recommended.

For example, to estimate tensors from the diffusion weighted image dwi.nhdr

the following command line could be used.

$ dtiestim dwi.nhdr tensors.nrrd -t 200 -m wls

The output tensor image is represented as a double precision, six channel image

representing the tensor elements {Dxx, Dxy, Dxz, Dyy, Dyz, Dzz}. Note that this is

different than the teem representation that uses an additional channel as a mask.

The Slicer 3 default representation uses 9 channels to represent each element of the

diffusion tensor {Dxx, Dxy, Dxz, Dyx, Dyy, Dyz, Dzx, Dzy, Dzz}.

After tensor estimation, dtiprocess, found in the DTIProcess project of Neu-

roLib, can be used to compute scalar maps for various tensor measures. The

dtiprocess has two major use cases. The first is the production of scalar invariant

images from a tensor field. The usage for this is described below. The second major

use case is resampling tensor fields, which is described later in section A.3.4.
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dtiprocess - dtiprocess tensor-image [options]

-f,--fa-output <faimage> Produces the FA image from a tensor field. The
FA for locations with no tensors is set to zero. The FA is written to
an unsigned short image by default with the FA multiplied by 10,000
to fit within the integer range. If floating point is preferred see the
--scalar-float option.

-m,--md-output <mdimage> Produces the MD image from a tensor field.
The MD for locations with no tensors is set to zero. The MD is written to
an unsigned short image by default with the MD multiplied by 100,000
to fit within the integer range. If floating point is preferred see the
--scalar-float option.

--lambda1-output <lambdaimage> Produces the image of largest eigenval-
ues (λ1) of each tensor. The eigenvalue is multiplied by 100,000 and
written as an unsigned short by default. See --scalar-float for
floating point precision.

--lambda2-output <lambdaimage> Produces the image of middle eigenval-
ues (λ2) of each tensor. The eigenvalue is multiplied by 100,000 and
written as an unsigned short by default. See --scalar-float for
floating point precision.

--lambda3-output <lambdaimage> Produces the image of smallest eigen-
values (λ3) of each tensor. The eigenvalue is multiplied by 100,000
and written as an unsigned short by default. See --scalar-float for
floating point precision.

--scalar-float If this option is specified then tensor invariants are written
in unscaled floating point format instead of scaled to fit in the integer
range.

-c,--color-fa-output <cfaimage> Produces the colored FA image from a
tensor field. This is equivalent to assigning an RGB intensity to each
voxel where the principal eigenvector expressed in left posterior superior
(LPS) coordinates maps to directly to an RGB vector scaled by the FA
value.

The following command computes the FA and MD images.

$ dtiprocess tensors.nrrd -f fa.nrrd -m md.nrrd

A.2.2 Data Requirements and Quality Control

Quality control of the set of diffusion should be performed to ensure that images

are free from artifacts. The first major concern is that all images must be of the

exact same dimension and should contain the same anatomy. The easiest solution

to populations that contain images of different sizes is to pad those smaller images
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with zeros in the diffusion weighted images. However, if the images are smaller due

to slices of anatomy that have been omitted, for example the top of the head, there

is a higher risk of registration failure. The unu tool is the recommended tool for

padding images in NRRD format. For example, if the difference between images is

the number of axial slices, images can be padded using the following command for

diffusion weighted images with the third axis representing the axial direction.

$ unu pad -i dwi.nrrd -o paddeddwi.nrrd -min 0 0 0 0

-max M M M <max # slices> M -b pad -v 0

Alternatively individual images can be padded using the following command.

$ unu pad -i dwi0000.nrrd -o paddeddwi0000.nrrd -min 0 0 0

-max M M M <max # slices> -b pad -v 0

Further documentation on the options for unu are available in the command line

documentation or at http://teem.sourceforge.net.

MriWatcher is a useful tool for checking for image artifacts in a population of

images. Images should be checked prior to registration for consistency of quality.

Images with slice dropouts or substantial artifacts should be excluded from the

atlas building procedure. Visual inspection of both the FA and MD images is

recommended.

A.3 Atlas Building

The atlas building consists of two stages. First, affine alignment is used to

initalize the transformation for a second stage of nonrigid registration. However,

prior to registration, quality control of the images is essential to obtain reliable

results

A.3.1 Affine Alignment

The recommended method to initialize the transformations for each image is

to use a template T2 weighted MR image that is aligned in a desired coordinate

system such as AC-PC space. The baseline image of the diffusion weighted sequence
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should be used as the moving image and the template as the fixed image. For a

DWI sequence encoded in a 4D NRRD file. The baseline image can be extracted

as follow

$ unu slice -i dwi.nrrd -o b0.nrrd -a 3 -p <index of b0 image>

If there are multiple baseline images, they can be averaged to produce a single

image using

$ unu crop -i dwi.nrrd -min 0 0 0 0 -max M M M <# baseliens> |

unu proj -a 3 -m mean -o b0.nrrd

An alternative method is to use one image in the sequence as a template. In this

case, affine transformations based on mutual information of the baseline images is

also recommended.

Currently, the RView software is used to compute the affine alignment of the

images. Binaries for the RView software are available from http://www.doc.ic.

ac.uk/~dr/software/index.html.

$ areg <targetimage> <sourceimage> -dofout <doffile> -p15

-parameter params.txt

The params.txt specifies the parameters of the affine registration. A sample file

is given below:
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#

# Target image parameters

#

Target blurring (in mm) = 1.0

Target resolution (in mm) = 2.0

#

# Source image parameters

#

Source blurring (in mm) = 1.0

Source resolution (in mm) = 2.0

#

# Registration parameters

#

No. of resolution levels = 3

No. of bins = 48

No. of iterations = 20

No. of steps = 5

Length of steps = 2.0

Similarity measure = NMI

Lambda = 0

A.3.2 Feature Image

As described by Goodlett et al., a feature image based on the Hessian of the FA

image is used as the basis for registration [43]. The program used to compute the

feature image is maxcurvature. The program is used as follows:

$ maxcurvature <inputimage> -o <outputimage> -s <sigma>

For most adult images, a sigma of 2.0 is recommended. For neonate or primate

images, a smaller sigma of 1.0− 1.5 is more appropriate. If the data is particularly

noisy, a larger sigma of 2.5− 4 may be necessary.



117

A.3.3 Nonrigid Alignment

There are two methods available for nonrigid registration. The fluid atlas

building approach as implemented in AtlasWerks has been used extensively. This

software is not available as open source.

A.3.3.1 AtlasWerks

The fluid registration procedure is implemented in the AtlasWerks program. A

sample set of parameters for AtlasWerks suitable for DTI images is shown below.

$ AtlasWerks \

--scaleLevel=4 --numberOfIterations=50 \

--alpha=0.1 \

--beta=0.1 \

--gamma=0.01 \

--maxPerturbation=0.4 \

--scaleLevel=2 --numberOfIterations=50 \

--alpha=0.1 \

--beta=0.1 \

--gamma=0.01 \

--maxPerturbation=0.4 \

--scaleLevel=1 --numberOfIterations=100 \

--alpha=0.01 \

--beta=0.01 \

--gamma=0.001 \

--maxPerturbation=0.4

-o=atlaswerks/avgimage_ \

-f=atlaswerks/f \

-p=atlaswerks/i \

<Image0> <Image1> <...> \

<InitTrans0> <InitTrans1> <...>
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A.3.3.2 MultiImageRegistration

Recently, Polina Golland and Serdar Balci at MIT released a B-spline unbiased

atlas building technique http://hdl.handle.net/1926/568. This can be down-

loaded from the NA-MIC sandbox at http://svn.na-mic.org/NAMICSandbox/

trunk/MultiImageRegistration.

The parameters for B-spline atlas building are specified in two files. The first

file is a text file listing the input files. There are 3 required inputs in this file: the

input folder, the output folder, and the list of files. These files should be the result

of the feature images computer as described in Sec A.3.2. A sample filenames.txt

is given below:

#

# The path of the input folder for images.

# All images are assumed to be in the same folder.

# (don’t forget to have backslash as the last character)

#

# If images are in different folders ignore

# this parameter and supply the full pathname

# as filename.

#

-i /usr/sci/projects/neuro/PNL-new/mirlinks/

#

# The path of the output folder.

# All outputs are saved to this folder

#

#

-o /usr/sci/projects/neuro/PNL-new/mirreg/
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# names of the input files

# if inputFolder is specified, the pathname is relative to that

# folder. Otherwise supply the full pathname

#

-f image-001-curv.nrrd

-f image-002-curv.nrrd

-f image-003-curv.nrrd

-f image-004-curv.nrrd

The second file required contains the list of parameters for the algorithm. For

the method described in this paper, the variance metric is the most appropriate.

The useBspline option should be enabled. The useBslineHigh option should

be disabled initially. This option controls whether the B-spline control points are

refined after the intial B-spline registration. Users can experiment with this option,

but it does not always run reliably. The three numberOfSpatialSamples options

control the percentage of the image used in computing the image match term.

Increasing this value improves the stability of the optimization but requires more

computation time. If the objective function does not decrease consistently, try

increasing this term. The useNormalizeFilter should be disabled because the

intensities of the images are standardized prior to running this algorithm.

If users wish to use an affine alignment for each image from previous regis-

tration to a template, they should create in the output directory the directory

tree Affine/TransformFiles. In this directory, there should be a file for each

input image specified in the filenames.txt file. The file should end in a .txt

extension and should contain an itk AffineTransform in double precision. These

transformation files can be created from RView .dof files using the tio executable

from DTIProcess.

#

# PARAMETERS OF BINARY FILE
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#

#

# metricType specifies which objective function to use

# possible options:

#

# entropy: congealing with entropy

# variance: registering to the mean template image using

# sum of square differences

-metricType variance

#

# If useBpline is set off, only affine registration is done,

# if it is on and useBspline high is off, bspline registration

# is done with specified grid region. If useBsplineHigh is on

# bspline registration with mesh refinement is performed

#

# Options to use:

# useBspline on/off

# useBsplineHigh on/off

#

-useBspline on

-useBsplineHigh off

#



121

# defines the initial bspline grid size along each dimension

#

-bsplineInitialGridSize 8

#

# When using Bspline grid refinement, this options defines

# how many number of refinements to use. After each level

# number B-spline control points are doubled (8->16->32)

#

-numberOfBsplineLevel 2

#

# All objective functions make use of stochastic subsampline

# following options define the number of spatial samples as

# percentage of the total number of voxels in the image (Try

# to increase the number of samples if the registration

# accuracy is poor)

#

-numberOfSpatialSamplesAffinePercentage 0.050

-numberOfSpatialSamplesBsplinePercentage 0.1

-numberOfSpatialSamplesBsplineHighPercentage 0.2

#

# following options define number of multiresolution levels

# used in optimization if set to one no multiresolution

# optimization is performed. Affine/Bspline/BsplineHigh

# define number of multiresolution levels used for each
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# registration stage

#

# (For high resolution anatomical images at 256x256x128 voxels

# we used 3 levels, decrease the number of levels if the

# resolution of the input image is low )

-multiLevelAffine 2

-multiLevelBspline 2

-multiLevelBsplineHigh 2

#

# Following options define the number iterations to be

# performed Optimization is terminated after a fixed number

# of iterations no other termination options are used

#

-optAffineNumberOfIterations 50

-optBsplineNumberOfIterations 40

-optBsplineHighNumberOfIterations 40

#

# Following options define the learning rate of the

# optimizers for each stage of the registration

#

# (decrease the learning rate if you get

# "all samples mapped outside" error

#
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-optAffineLearningRate 1e-10

-optBsplineLearningRate 1e-6

-optBsplineHighLearningrate 1e-7

#

# Currently there are three optimizer types. "gradient" is

# a fixed step gradient descent search. "lineSearch" is

# gradient descent search where step size is determined

# using line search.

#

# optimizerType gradient/lineSearch/SPSA

#

-optimizerType lineSearch

#

# Specifies the percentage increase in the sampling rate

# after each multiresolution level

#

-affineMultiScaleSamplePercentageIncrease 4.0

-bsplineMultiScaleSamplePercentageIncrease 4.0



124

#

# Specifies increase in the number of iterations

# after each resolution level

#

-affineMultiScaleMaximumIterationIncrease 2.0

-bsplineMultiScaleMaximumIterationIncrease 2.0

#

# Specifies optimizer step length increase after each

# multiresolution level

#

-affineMultiScaleStepLengthIncrease 4.0

-bsplineMultiScaleStepLengthIncrease 4.0

#

# the width of the parzen window to compute the entropy

# used by all metric types computing entropy

#

-parzenWindowStandardDeviation 10.0

#

# Use normalize filter to normalize input images

# to have mean zero and standard deviation 1.

#

-useNormalizeFilter off

#

# Write 3D images to file.
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# turn off to save disk space

#

-write3DImages on

############################################

#

# ADVANCED OPTIONS

#

############################################

#

# the level of registration to be started

# Use this option if you want to start the registration

# using the results of a previous registration

#

# 0 (default): no initialization, all registrations are

# performed

# 1 : Affine parameters are read from the file

# 2 : Bspline parameters are read from file (initial size should

# match the transform from file )

#

-StartLevel 1
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#

# Uses a mask on the images. Only pixels inside the mask are

# considered during the registration possible options mask

# none/single/all none: do not use mask single: only use

# mask for the first image all: use mask for all images

#

-mask all

#

# specifies the mask type

# possible options:

# maskype connectedThreshold/neighborhoodConnected

#

# connectedThreshold: adds all pixels

# to the mask if its value is smaller

# than threshold1 than add connected

# pixels whose value is smaller than

# threshold2

# neighborhoodConnected: same as connectedThreshold but a

# pixel is added only if it is all

# connected within a radius of one

#

-maskType connectedThreshold

-threshold1 0

-threshold2 1

#

# specifies the translation scale coefficients with respect
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# to the affine coefficients smaller values mean larger step

# size along translation directions 1/scale is used!

-translationScaleCoeffs 1e-4

#

# Maximum number of iterations performed for a line search

# if the optimizer is lineSearch

#

-maximumLineIteration 6

-BSplineRegularizationFlag on

-gaussianFilterKernelWidth 5

Once the parameters are determined, the registration is run using the command:

$ MultiImageRegistration filenames.txt parameters.txt

After completion of this routine, the B-spline deformation parameters have been

computed. To resample the feature images using the transformations, use the

command:

$ ComputeOutputs filenames.txt parameters.txt

To apply the deformations to the tensor field, the B-spline parameters must be

converted into deformation fields using the command:

$ ComputeDeformations filenames.txt parameters.txt

This will create deformation fields for each level of transformation. For exam-

ple, the B-spline registration run at a grid spacing of 8 will be in the directory
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OUTPUT DIRECTORY/Bspline Grid 8/DeformationImage. The deformation field is

expressed in world coordinates.

A.3.4 Tensor Resampling and Averaging

Resampling of tensor fields using a transformation is implemented in the exe-

cutable dtiprocess . To deform images using the deformation fields produced in

the previous steps the --deformation-output and --forward options should be

used.

dtiprocess - dtiprocess tensor-image [options]

-r,--rot-output Output name for the resampled tensor field given com-
puted from an affine transformation. This option requires the transfor-
mation to be specified using the --dof-file option.

-d,--dof-file Filename of an ITK affine transformation. This option re-
quires the output image to be specified using the --rot-output option.

-w,--deformation-output Output name for the resampled tensor field given
computed from a deformation field. This option requires the deforma-
tion field to be specified using the --foward option.

-F,--forward Filename of a deformation field to resample a tensor field.
This option requires the output filename to be specified using
--deformation-output.

--h-field If this option is used the --forward transformation repre-
sents an h-field rather than a deformation field. This option should
be used in conjunction with the output from AtlasWerks but not
MultiImageRegistration.

For example, a tensor field may be resampled with a deformation field by the

command:

$ dtiprocess tensors.nrrd -w resampled-tensors.nrrd\

-F transform.nrrd

If the transfomation is an h-field, then the --h-field option must be specified. To

transform using an affine transformation, the command is

$ dtiprocess tensors.nrrd -r resampled-tensors.nrrd\

-d transform.txt

The dtiaverage executable is used to average tensor fields using the command:
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$ dtiaverage atlas.nrrd image1.nrrd image2.nrrd ...

A.3.5 Tractography

The application for performing fiber tractography is fibertrack. This pro-

gram implements a simple streamline tractography method based on the principal

eigenvector of the tensor field. A fourth order Runge-Kutta integration rule used

to advance the streamlines.

fibertrack - fibertrack [options]

-i,--input-tensor-file <tensorfile> The filename of the tensor field to
use for tractography.

-r,--input-roi-file <labelfile> The filename of the image which con-
tains the labels used for seeding and constraining the algorithm.

-o,--output-fiber-file <fiberfile> The filename for the fiber file pro-
duced by the algorithm. This file must end in a .fib, .vtk, or
.vtp extension for ITK spatial object, legacy vtkPolyData, and XML
vtkPolyData formats, respectively. Slicer3 currently uses the XML
vtkPolyData format .vtp.

-s,--source-label <sourcelabel=2> The label of voxels in the
<labelfile> to use for seeding tractography. One tract is seeded from
the center of each voxel with this label.

-t,--target-label <sourcelabel=1> The label of voxels in the
<labelfile> used to constrain tractography. Tracts that do not
pass through a voxel with this label are rejected. Set this keep all
tracts.

--min-fa The minimum FA threshold to continue tractography.
--whole-brain If this option is enabled, all voxels in the image are used to

seed tractography. When this option is enabled, both source and target
labels function as target labels.

An example using both a seed and target region is

$ fibertrack -i tensors.nrrd -r roi.nrrd -o output.fib -s 2\

-t 1 --min-fa 0.2
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GRADIENT DIRECTION SCHEMES

Table B.1: 6 direction gradient list.

0.70711 0 0.70711
-0.70711 0 0.70711
0 0.70711 0.70711
0 0.70711 -0.70711
0.70711 0.70711 0
-0.70711 0.70711 0

Table B.2: 21 direction gradient list.

-0.99823 -0.036499 0.047033
0.037648 0.85056 0.52452
-0.85783 0.49589 0.13495
0.25729 -0.025629 0.96599
-0.59516 -0.43791 0.67381
-0.54816 0.49097 0.67711
-0.82631 0.04477 0.56144
0.48971 0.84011 0.23324
-0.82302 -0.53713 0.18476
0.77956 -0.037959 0.62517
-0.45054 0.84917 0.27554
-0.3338 -0.024468 0.94233
-0.044461 0.45427 0.88975
0.25947 -0.87224 0.41457
-0.33418 -0.85152 0.40402
-0.063334 -0.54422 0.83655
0.47387 -0.48088 0.7377
0.84672 0.43078 0.31224
0.48855 0.47013 0.73505
0.78015 -0.55755 0.28372
0.99647 -0.046849 0.0696
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Table B.3: 60 direction gradient list.

-0.225320 0.055654 0.981680
-0.509270 0.152240 0.854970
0.365440 0.508180 -0.791900
0.021612 0.966370 -0.302640
-0.403870 0.408240 0.826600
0.284580 0.786030 0.584630
-0.629650 0.819730 -0.024646
-0.883010 0.083680 0.476810
-0.181710 0.620060 0.773770
-0.322260 0.859670 -0.452790
0.226280 0.978710 -0.002019
-0.319160 0.924110 0.242330
0.102410 0.024489 -1.024000
0.368650 0.214140 -0.943050
-0.759420 0.326850 -0.580390
-0.507860 0.329140 -0.822490
-0.339180 0.951390 -0.112360
-0.834270 0.481130 -0.310410
0.236480 0.797350 -0.590180
0.540960 0.845280 0.025840
0.747820 0.234010 0.628630
0.948520 0.121280 0.325580
0.505680 0.383160 0.778810
0.004191 0.924110 0.397120
0.652440 0.309380 -0.723390
-0.765730 0.325120 0.578560
0.327430 0.906330 0.283500
-0.563340 0.586620 -0.594410
-0.864100 0.552980 -0.021943
0.986890 0.067139 -0.300100
-0.262280 0.543680 -0.806280
-0.729290 0.045479 -0.707170
-0.972560 0.251390 0.186710
0.979030 0.325320 0.016802
-0.264230 0.152910 -0.972750
0.244590 0.376850 0.899190
-0.091015 0.331460 0.949350
0.073455 0.572770 -0.829230
0.785590 0.631900 0.073338
0.204960 0.063818 0.988980
0.826550 0.546660 -0.226320
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Table B.3: Continued

0.533020 0.063079 0.849640
0.616840 0.749590 -0.310270
0.874730 0.339830 -0.395190
-0.551450 0.771510 0.331530
-0.595060 0.775770 -0.325180
-0.264520 0.801000 0.544430
0.125040 0.642030 0.764910
0.581470 0.606830 0.603480
0.015824 0.295740 -0.977300
0.614060 0.597040 -0.587000
-0.972950 0.236110 -0.079699
-0.785120 0.559300 0.297070
-0.058150 0.793590 -0.643820
0.850160 0.424510 0.363930
-0.947880 0.094560 -0.330890
0.580350 0.756110 0.350100
-0.569340 0.565710 0.605840
0.333620 0.899950 -0.318550
-0.036549 1.005900 0.028565
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