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These notes cover the basics of Riemannian geometry, Lie groups, and
symmetric spaces. This is just a listing of the basic definitions and theorems
with no in-depth discussion or proofs. Some exercises are included at the
end of each section to give you something to think about. See the references
cited within for more complete coverage of these topics.

Many geometric entities are representable as Lie groups or symmetric
spaces. Transformations of Euclidean spaces such as translations, rotations,
scalings, and affine transformations all arise as elements of Lie groups. Ge-
ometric primitives such as unit vectors, oriented planes, and symmetric,
positive-definite matrices can be seen as points in symmetric spaces. This
chapter is a review of the basic mathematical theory of Lie groups and sym-
metric spaces.

The various spaces that are described throughout these notes are all gen-
eralizations, in one way or the other, of Euclidean space, Rn. Euclidean space
is a topological space, a Riemannian manifold, a Lie group, and a symmetric
space. Therefore, each section will use Rn as a motivating example. Also,
since the study of geometric transformations is stressed, the reader is en-
couraged to keep in mind that Rn can also be thought of as a transformation
space, that is, as the set of translations on Rn itself.

1 Topology

The study of a topological spaces arose from the desire to generalize the
notion of continuity on Euclidean spaces to more general spaces. Topology
is a fundamental building block for the theory of manifolds and function
spaces. This section is a review of the basic concepts needed for the study
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of differentiable manifolds. For a more thorough introduction see [14]. For
several examples of topological spaces, along with a concise reference for
definitions, see [21].

1.1 Basics

Remember that continuity of a function on the real line is phrased in terms of
open intervals, i.e., the usual ε-δ definition. A topology defines which subsets
of a set X are “open”, much in the same way an interval is open. As will be
seen at the end of this subsection, open sets in Rn are made up of unions of
open balls of the form B(x, r) = {y ∈ Rn : ‖x− y‖ < r}. For a general set X
this concept of open sets can be formalized by the following set of axioms.

Definition 1.1. A topology on a set X is a collection T of subsets of X
such that

(1) ∅ and X are in T .
(2) The union of an arbitrary collection of elements of T is in T .
(3) The intersection of a finite collection of elements of T is in T .

The pair (X, T ) is called a topological space. However, it is a stan-
dard abuse of notation to leave out the topology T and simply refer to the
topological space X. Elements of T are called open sets. A set C ⊂ X is
a closed set if it’s complement, X − C, is open. Unlike doors, a set can be
both open and closed, and there can be sets that are neither open nor closed.
Notice that the sets ∅ and X are both open and closed.

Example 1.1. Any set X can be given a topology consisting of only ∅ and
X being open sets. This topology is called the trivial topology on X.
Another simple topology is the discrete topology on X, where any subset
of X is an open set.

Definition 1.2. A basis for a topology on a set X is a collection B of subsets
of X such that

(1) For each x ∈ X there exists a B ∈ B containing x.
(2) If B1, B2 ∈ B and x ∈ B1 ∩ B2, then there exists a B3 ⊂ B1 ∩ B2 such

that x ∈ B3.

The basis B generates a topology T by defining a set U ⊂ X to be open
if for each x ∈ U there exists a basis element B ∈ B with x ∈ B ⊂ O. The
reader can check that this does indeed define a topology. Also, the reader
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should check that the generated topology T consists of all unions of elements
of B.

Example 1.2. The motivating example of a topological space is Euclidean
space Rn. It is typically given the standard topological structure generated by
the basis of open balls B(x, r) = {y ∈ Rn : ‖x−y‖ < r} for all x ∈ Rn, r ∈ R.
Therefore, a set in Rn is open if and only if it is the union of a collection
of open balls. Examples of closed sets in Rn include sets of discrete points,
vector subspaces, and closed balls, i.e., sets of the form B̄(x, r) = {y ∈ Rn :
‖x− y‖ ≤ r}.

1.2 Subspace and Product Topologies

Here are two simple methods for constructing new topologies from existing
ones. These constructions arise often in the study of manifolds. It is left as
an exercise check that these two definitions lead to valid topologies.

Definition 1.3. Let X be a set with topology T and Y ⊂ X. Then Y can
be given the subspace topology T ′, in which the open sets are given by
U ∩ Y ∈ T ′ for all U ∈ T .

Definition 1.4. LetX and Y be topological spaces. The product topology
on the product set X × Y is generated by the basis elements U × V , for all
open sets U ∈ X and V ∈ Y .

1.3 Metric spaces

Notice that the topology on Rn is defined entirely by the Euclidean distance
between points. This method for defining a topology can be generalized to
any space where a distance is defined.

Definition 1.5. A metric space is a set X with a function d : X ×X → R
that satisfies

(1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x).
(3) d(x, y) + d(y, z) ≥ d(x, z).

The function d above is called a metric or distance function. Using
the distance function of a metric space, a basis for a topology on X can be
defined as the collection of open balls B(x, r) = {y ∈ X : d(x, y) < r} for all
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x ∈ X, r ∈ R. From now on when a metric space is discussed, it is assumed
that it is given this topology.

One special property of metric spaces will be important in the review of
manifold theory.

Definition 1.6. A metric d on a set X is called complete if every Cauchy
sequence converges in X. A Cauchy sequence is a sequence x1, x2, . . . ∈ X
such that for any ε > 0 there exists an integer N such that d(xi, xj) < ε for
all i, j > N .

1.4 Continuity

As was mentioned at the beginning of this section, topology developed from
the desire to generalize the notion of continuity of mappings of Euclidean
spaces. That generalization is phrased as follows:

Definition 1.7. Let X and Y be topological spaces. A mapping f : X → Y
is continuous if for each open set U ⊂ Y , the set f−1(U) is open in X.

It is easy to check that for a function f : R → R the above definition is
equivalent to the standard ε-δ definition.

Definition 1.8. Again let X and Y be topological spaces. A mapping f :
X → Y is a homeomorphism if it is bijective and both f and f−1 are
continuous. In this case X and Y are said to be homeomorphic.

When X and Y are homeomorphic, there is a bijective correspondence
between both the points and the open sets of X and Y . Therefore, as topo-
logical spaces, X and Y are indistinguishable. This means that any property
or theorem that holds for the space X that is based only on the topology of
X also holds for Y .

1.5 Various Topological Properties

This section is a discussion of some special properties that a topological space
may possess. The particular properties that are of interest are the ones that
are important for the study of manifolds.

Definition 1.9. A topological space X is said to be Hausdorff if for any
two distinct points x, y ∈ X there exist disjoint open sets U and V with
x ∈ U and y ∈ V .
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Notice that any metric space is a Hausdorff space. Given any two distinct
points x, y in a metric space X, we have d(x, y) > 0. Then the two open balls
B(x, r) and B(y, r), where r = 1

2
d(x, y), are disjoint open sets containing x

and y, respectively. However, not all topological spaces are Hausdorff. For
example, take any set X with more than one point and give it the trivial
topology, i.e., ∅ and X as the only open sets.

Definition 1.10. Let X be a topological space. A collection O of open
subsets of X is said to be an open cover if X =

⋃
U∈O U . A topological

space X is said to be compact if for any open cover O of X there exists a
finite subcollection of sets from O that covers X.

The Heine-Borel theorem (see [15], Theorem 2.41) gives intuitive criteria
for a subset of Rn to be compact. It states that the compact subsets of Rn

are exactly the closed and bounded subsets. Thus, for example, a closed ball
B̄(x, r) is compact, as is the unit sphere Sn−1 = {x ∈ Rn : ‖x‖ = 1}. The
sphere, like Euclidean space, will be an important example throughout these
notes.

Definition 1.11. A separation of a topological space X is a pair of disjoint
open sets U, V such that X = U ∪ V . If no separation of X exists, it is said
to be connected.

Exercises

1. Give an example of a topology on the three point setX = {a, b, c} where
there exists a set that is neither open nor closed. Give an example of
a topology in which a set other than ∅ or X is both open and closed.

2. Let Y be a subspace of a topological space X, with basis B. Show that
the sets {B ∩ Y : B ∈ B} form a basis for the subspace topology of Y .

3. Let X and Y be topological spaces. Show that an equivalent definition
for continuity of a mapping f : X → Y is that for any closed set C ⊂ Y ,
f−1(C) is closed in X.

4. Let X and Y be topological spaces and f : X → Y be a continuous
mapping. Show that if X is compact, then its image, f(X), is also
compact.
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2 Differentiable Manifolds

Differentiable manifolds are spaces that locally behave like Euclidean space.
Much in the same way that topological spaces are natural for talking about
continuity, differentiable manifolds are a natural setting for calculus. Notions
such as differentiation, integration, vector fields, and differential equations
make sense on differentiable manifolds. This section gives a review of the
basic construction and properties of differentiable manifolds. A good intro-
duction to the subject may be found in [2]. For a comprehensive overview
of differential geometry see [16, 17, 18, 19, 20]. Other good references in-
clude [1, 13,6].

2.1 Topological Manifolds

A manifold is a topological space that is locally equivalent to Euclidean space.
More precisely,

Definition 2.1. A manifold is a Hausdorff space M with a countable basis
such that for each point p ∈ M there is a neighborhood U of p that is
homeomorphic to Rn for some integer n.

At each point p ∈ M the dimension n of the Rn in Definition 2.1 turns
out to be unique (Exercise 1). If the integer n is the same for every point in
M , then M is called a n-dimensional manifold. The simplest example of
a manifold is Rn, since it is trivially homeomorphic to itself. Likewise, any
open set of Rn is also a manifold.

2.2 Differentiable Structures on Manifolds

The next step in the development of the theory of manifolds is to define a
notion of differentiation of manifold mappings. Differentiation of mappings
in Euclidean space is defined as a local property. Although a manifold is
locally homeomorphic to Euclidean space, more structure is required to make
differentiation possible. First, recall that a function on Euclidean space f :
Rn → R is smooth or C∞ if all of its partial derivatives exist. A mapping of
Euclidean spaces f : Rm → Rn can be thought of as a n-tuple of real-valued
functions on Rm, f = (f 1, . . . , fn), and f is smooth if each f i is smooth.

Given two neighborhoods U, V in a manifold M , two homeomorphisms
x : U → Rn and y : V → Rn are said to be C∞-related if the mappings
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Figure 1: A local coordinate system (x, U) on a manifold M .

x◦y−1 : y(U∩V )→ x(U∩V ) and y◦x−1 : x(U∩V )→ y(U∩V ) are C∞. The
pair (x, U) is called a chart or coordinate system, and can be thought of
as assigning a set of coordinates to points in the neighborhood U (see Figure
1). That is, any point p ∈ U is assigned the coordinates x1(p), . . . , xn(p). As
will become apparent later, coordinate charts are important for writing local
expressions for derivatives, tangent vectors, and Riemannian metrics on a
manifold. A collection of charts whose domains cover M is called an atlas.
Two atlases A and A′ on M are said to be compatible if any pair of charts
(x, U) ∈ A and (y, V ) ∈ A′ are C∞-related.

Definition 2.2. An atlas A on a manifold M is said to be maximal if for
any compatible atlas A′ on M any coordinate chart (x, U) ∈ A′ is also a
member of A.

Definition 2.3. A smooth structure on a manifold M is a maximal atlas
A on M . The manifold M along with such an atlas is termed a smooth
manifold.

The next theorem demonstrates that it is not necessary to define every
coordinate chart in a maximal atlas, but rather, one can define enough com-
patible coordinate charts to cover the manifold.
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Theorem 2.1. Given a manifold M with an atlas A, there is a unique
maximal atlas A′ such that A ⊂ A′.

Proof. It is easy to check that the unique maximal atlas A′ is given by the
set of all charts that are C∞-related to all charts in A.

Example 2.1. The easiest example of a differentiable manifold is Euclidean
space, in which the differentiable structure can be defined by the global chart
given by the identity map on Rn.

Example 2.2. Another simple example of a smooth manifold can be con-
structed as the graph of a smooth function f : Rn → R. Recall that the graph
of f is the set M = {(x, f(x)) : x ∈ Rn}, which is a subset of Rn+1. Now we
can see M is a smooth n-dimensional manifold by considering the global chart
given by the projection mapping π : M → Rn, defined as π(x, f(x)) = x.

Example 2.3. Consider the sphere S2 as a subset of R3. The upper hemi-
sphere U = {(x, y, z) ∈ S2 : z > 0} is an open neighborhood in S2. Now
consider the homeomorphism φ : S2 → R2 given by

φ : (x, y, z) 7→ (x, y).

This gives a coordinate chart (φ, U). Similar charts can be produced for
the lower hemisphere, and for hemispheres in the x and y dimensions. The
reader may check that these charts are C∞-related and cover S2. Therefore,
these charts make up an atlas on S2 and by Theorem 2.1 there is a unique
maximal atlas containing these charts that makes S2 a smooth manifold. A
similar argument can be used to show that the n-dimensional sphere, Sn, for
any n ≥ 1 is also a smooth manifold.

2.3 Smooth Functions and Mappings

Now consider a function f : M → R on the smooth manifold M . This
function is said to be a smooth function if for every coordinate chart (x, U)
on M the function f ◦ x−1 : U → R is smooth. More generally, a mapping
f : M → N of smooth manifolds is said to be a smooth mapping if for
each coordinate chart (x, U) on M and each coordinate chart (y, V ) on N
the mapping y ◦f ◦x−1 : x(U)→ y(V ) is a smooth mapping. Notice that the
mapping of manifolds was converted locally to a mapping of Euclidean spaces,
where differentiability is easily defined. We’ll denote the space of all smooth
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functions on a smooth manifold M as C∞(M). This space forms an algebra
under pointwise addition and multiplication of functions and multiplication
by real constants.

As in the case of topological spaces, there is a desire to know when two
smooth manifolds are equivalent. This should mean that they are home-
omorphic as topological spaces and also that they have equivalent smooth
structures. This notion of equivalence is given by

Definition 2.4. Given two smooth manifolds M,N , a bijective mapping
f : M → N is called a diffeomorphism if both f and f−1 are smooth
mappings.

Example 2.4. Two manifolds may be diffeomorphic even though they have
two unique differentiable structures, i.e., atlases that are not compatible with
each other. For example, consider the manifold R̂, topologically equivalent
to the real line, but with differentiable structure given by the global chart
φ : R̂ → R, defined as φ(x) = x3. This chart is a homeomorphism and
smooth, but it’s inverse is not smooth at x = 0. Therefore, φ is not C∞-
related to the identity map, and the resulting atlas is not compatible with
the standard differentiable structure on R. However, R̂ is diffeomorphic to R
by the mapping φ itself. So, R̂ is in this sense equivalent to R with its usual
manifold structure, and we say that R̂ and R have the same differentiable
structure up to diffeomorphism.

Interestingly, R has only one differentiable structure up to diffeomor-
phism. However, R4 has several unique differentiable structures that are
not diffeomorphic to each other (in fact, an entire continuum of differen-
tiable structures!). This is the only example of a Euclidean space with “non-
standard” differentiable structure; in all other dimensions there is only the
familar differentiable structure on Rn.

2.4 Tangent Spaces

Given a manifold M ⊂ Rd, it is possible to associate a linear subspace of
Rd to each point p ∈ M called the tangent space at p. This space is
denoted TpM and is intuitively thought of as the linear subspace that best
approximates M in a neighborhood of the point p. Vectors in this space are
called tangent vectors at p.

Tangent vectors can be thought of as directional derivatives. Consider
a smooth curve γ : (−ε, ε) → M with γ(0) = p. Then given any smooth
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function1 f : M → R, the composition f ◦ γ is a smooth function, and the
following derivative exists:

d

dt
(f ◦ γ)(0).

This leads to an equivalence relation ∼ between smooth curves passing
through p. Namely, if γ1 and γ2 are two smooth curves passing through
the point p at t = 0, then γ1 ∼ γ2 if

d

dt
(f ◦ γ1)(0) =

d

dt
(f ◦ γ2)(0),

for any smooth function f : M → R. A tangent vector is now defined as one
of these equivalence classes of curves. It can be shown (see [1]) that these
equivalence classes form a vector space, i.e., the tangent space TpM , which
has the same dimension as M . Given a local coordinate system (x, U) con-
taining p, a basis for the tangent space TpM is given by the partial derivative
operators ∂/∂xi|p, which are the tangent vectors associated with the coor-
dinate curves of x. We can write an arbitrary vector v ∈ TpM using these
standard coordinate vectors as a basis:

v =
n∑
i=1

vi
∂

∂xi

∣∣∣
p
, where vi ∈ R.

Example 2.5. Again, consider the sphere S2 as a subset of R3. The tangent
space at a point p ∈ S2 is the set of all vectors in R3 perpendicular to p, i.e.,
TpS

2 = {v ∈ R3 : 〈v, p〉 = 0}. This is of course a two-dimensional vector
space, and it is the space of all tangent vectors at the point p for smooth
curves lying on the sphere and passing through the point p.

A vector field on a manifold M is a function that smoothly assigns to
each point p ∈ M a tangent vector Xp ∈ TpM . This mapping is smooth
in the sense that the components of the vectors may be written as smooth
functions in any local coordinate system. A vector field may be seen as an
operator X : C∞(M) → C∞(M) that maps a smooth function f ∈ C∞(M)
to the smooth function Xf : p 7→ Xpf . In other words, the directional
derivative is applied at each point on M . Given a coordinate system (x, U),

1Strictly speaking, the tangent vectors at p are defined as directional derivatives of
smooth germs of functions at p, which are equivalence classes of functions that agree in
some neighborhood of p.
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the partial derivatives ∂/∂xi are a vector field, and an arbitrary vector field
X can be written

X =
n∑
i=1

Xi
∂

∂xi
, where Xi ∈ C∞(M).

For two manifolds M and N a smooth mapping φ : M → N induces a
linear mapping of the tangent spaces φ∗ : TpM → Tφ(p)N called the differ-
ential of φ. It is given by φ∗(Xp)f = Xp(f ◦φ) for any vector Xp ∈ TpM and
any smooth function f ∈ C∞(M). A smooth mapping of manifolds does not
always induce a mapping of vector fields (for instance, when the mapping is
not onto). However, a related concept is given in the following definition.

Definition 2.5. Given a mapping of smooth manifolds φ : M → N , a
vector field X on M and a vector field Y on N are said to be φ-related if
φ∗(X(p)) = Y (q) holds for each q ∈ N and each p ∈ φ−1(q).

Exercises

1. Prove that in Definition 2.1 the n for a fixed x ∈M must be unique.

2. Show that the charts in the atlas A′ in Theorem 2.1 are C∞-related.

3. Prove that a differentiable manifold can always be specified with a
countable number of charts. Give an example of a manifold that cannot
be specified with only a finite number of charts.

4. The general linear group on Rn is the space of all nonsingular n×n
matrices, denoted GL(n) = {A ∈ Rn×n | det(A) 6= 0}. Prove that
GL(n) is a differentiable manifold. (Hint: Use the fact that it is a
subspace of Euclidean space and that det is a continuous function.)

5. Given two smooth mappings φ : M → N and ψ : N → P , with M,N,P
all smooth manifolds, show that the composition ψ ◦ φ : M → P is a
smooth mapping.

3 Riemannian Geometry

As mentioned at the beginning of this chapter, the idea of distances on a
manifold will be important in the definition of manifold statistics. The no-
tion of distances on a manifold falls into the realm of Riemannian geometry.
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This section briefly reviews the concepts needed. A good crash course in
Riemannian geometry can be found in [12]. Also, see the books [2, 16,17,9].

Recall the definition of length for a smooth curve in Euclidean space. Let
γ : [a, b]→ Rd be a smooth curve segment. Then at any point t0 ∈ [a, b] the
derivative of the curve γ′(t0) gives the velocity of the curve at time t0. The
length of the curve segment γ is given by integrating the speed of the curve,
i.e.,

L(γ) =

∫ b

a

‖γ′(t)‖dt.

The definition of the length functional thus requires the ability to take the
norm of tangent vectors. On manifolds this is handled by the definition of a
Riemannian metric.

3.1 Riemannian Metrics

Definition 3.1. A Riemannian metric on a manifold M is a function that
smoothly assigns to each point p ∈M an inner product 〈·, ·〉 on the tangent
space TpM . A Riemannian manifold is a smooth manifold equipped with
such a Riemannian metric.

Now the norm of a tangent vector v ∈ TpM is defined as ‖v‖ = 〈v, v〉 12 .
Given local coordinates x1, . . . , xn in a neighborhood of p, the coordinate
vectors vi = ∂/∂xi at p form a basis for the tangent space TpM . The Rie-
mannian metric may be expressed in this basis as an n× n matrix g, called
the metric tensor, with entries given by

gij = 〈vi, vj〉.

The gij are smooth functions of the coordinates x1, . . . , xn.
Given a smooth curve segment γ : [a, b] → M , the length of γ can be

defined just as in the Euclidean case as

L(γ) =

∫ b

a

‖γ′(t)‖dt, (1)

where now the tangent vector γ′(t) is a vector in Tγ(t)M , and the norm is
given by the Riemannian metric at γ(t).

Given a manifolds M and a manifold N with Riemannian metric 〈·, ·〉, a
mapping φ : M → N induces a metric φ∗〈·, ·〉 on M defined as

φ∗〈Xp, Yp〉 = 〈φ∗(Xp), φ∗(Yp)〉.
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This metric is called the pull-back metric induced by φ, as it maps the
metric in the opposite direction of the mapping φ.

3.2 Geodesics

In Euclidean space the shortest path between two points is a straight line,
and the distance between the points is measured as the length of that straight
line segment. This notion of shortest paths can be extended to Riemannian
manifolds by considering the problem of finding the shortest smooth curve
segment between two points on the manifold. If γ : [a, b] → M is a smooth
curve on a Riemannian manifold M with endpoints γ(a) = x and γ(b) = y,
a variation of γ keeping endpoints fixed is a family α of smooth curves:

α : (−ε, ε)× [a, b]→M,

such that
1. α(0, t) = γ(t),
2. α̃(s0) : t 7→ α(s0, t) is a smooth curve segment for fixed s0 ∈ (−ε, ε),
3. α(s, a) = x, and α(s, b) = y for all s ∈ (−ε, ε).

Now the shortest smooth path between the points x, y ∈ M can be seen as
finding a critical point for the length functional (1), where the length of α̃ is
considered as a function of s. The path γ = α̃(0) is a critical path for L if

dL(α̃(s))

ds

∣∣∣
s=0

= 0.

It turns out to be easier to work with the critical paths of the energy func-
tional, which is given by

E(γ) =

∫ b

a

‖γ′(t)‖2dt.

It can be shown (see [16]) that a critical path for E is also a critical path for
L. Conversely, a critical path for L, once reparameterized proportional to
arclength, is a critical path for E. Thus, assuming curves are parameterized
proportional to arclength, there is no distinction between curves with mini-
mal length and those with minimal energy. A critical path of the functional
E is called a geodesic.
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Given a chart (x, U) a geodesic curve γ ⊂ U can be written in local
coordinates as γ(t) = (γ1(t), . . . , γn(t)). Using any such coordinate system,
γ satisfies the following differential equation (see [16] for details):

d2γk

dt2
= −

n∑
i,j=1

Γkij(γ(t))
dγi

dt

dγj

dt
. (2)

The symbols Γkij are called the Christoffel symbols and are defined as

Γkij =
1

2

n∑
l=1

gkl
(
∂gjl
∂xi

+
∂gil
∂xj
− ∂gij
∂xl

)
,

where gij denotes the entries of the inverse matrix g−1 of the Riemannian
metric.

Example 3.1. In Euclidean space Rn the Riemannian metric is given by
the identity matrix at each point p ∈ Rn. Since the metric is constant, the
Christoffel symbols are zero. Therefore, the geodesic equation (2) reduces to

d2γk

dt2
= 0.

The only solutions to this equation are straight lines, so geodesics in Rn must
be straight lines.

Given two points on a Riemannian manifold, there is no guarantee that a
geodesic exists between them. There may also be multiple geodesics connect-
ing the two points, i.e., geodesics are not guaranteed to be unique. Moreover,
a geodesic does not have to be a global minimum of the length functional, i.e.,
there may exist geodesics of different lengths between the same two points.
The next two examples demonstrate these issues.

Example 3.2. Consider the plane with the origin removed, R2 − {0}, with
the same metric as R2. Geodesics are still given by straight lines. There does
not exist a geodesic between the two points (1, 0) and (−1, 0).

Example 3.3. Geodesics on the sphere S2 are given by great circles, i.e.,
circles on the sphere with maximal diameter. This fact will be shown later
in the section on symmetric spaces. There are an infinite number of equal-
length geodesics between the north and south poles, i.e., the meridians. Also,
given any two points on S2 that are not antipodal, there is a unique great
circle between them. This great circle is separated into two geodesic segments
between the two points. One geodesic segment is longer than the other.
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The idea of a global minimum of length leads to a definition of a distance
metric d : M ×M → R (not to be confused with the Riemannian metric). It
is defined as

d(p, q) = inf{L(γ) : γ a smooth curve between p and q}.

If there is a geodesic γ between the points p and q that realizes this dis-
tance, i.e., if L(γ) = d(p, q), then γ is called a minimal geodesic. Minimal
geodesics are guaranteed to exist under certain conditions, as described by
the following definition and the Hopf-Rinow Theorem below.

Definition 3.2. A Riemannian manifold M is said to be complete if every
geodesic segment γ : [a, b]→M can be extended to a geodesic from all of R
to M .

The reason such manifolds are called “complete” is revealed in the next
theorem.

Theorem 1 (Hopf-Rinow). If M is a complete, connected Riemannian man-
ifold, then the distance metric d(·, ·) induced on M is complete. Furthermore,
between any two points on M there exists a minimal geodesic.

Example 3.4. Both Euclidean space Rn and the sphere S2 are complete.
A straight line in Rn can extend in both directions indefinitely. Also, a
great circle in S2 extends indefinitely in both directions (even though it
wraps around itself). As guaranteed by the Hopf-Rinow Theorem, there is
a minimal geodesic between any two points in Rn, i.e., the unique straight
line segment between the points. Also, between any two points on the sphere
there is a minimal geodesic, i.e., the shorter of the two great circle segments
between the two points. Of course, for antipodal points on S2 the minimal
geodesic is not unique.

Given initial conditions γ(0) = p and γ′(0) = v, the theory of second-order
partial differential equations guarantees the existence of a unique solution
to the defining equation for γ (2) at least locally. Thus, there is a unique
geodesic γ with γ(0) = p and γ′(0) = v defined in some interval (−ε, ε). When
the geodesic γ exists in the interval [0, 1], the Riemannian exponential
map at the point p (see Figure 2), denoted Expp : TpM →M , is defined as

Expp(v) = γ(1).

If M is a complete manifold, the exponential map is defined for all vectors
v ∈ TpM .

15



p
T MpExp  (X)p

X

M

Figure 2: The Riemannian exponential map.

Theorem 2. Given a Riemannian manifold M and a point p ∈M , the map-
ping Expp is a diffeomorphism in some neighborhood U ⊂ TpM containing
0.

This theorem implies that the Expp has an inverse defined at least in
the neighborhood Expp(U) of p, where U is the same as in Theorem 2. Not
surprisingly, this inverse is called the Riemannian log map and denoted
by Logp : Expp(U)→ TpM .

Definition 3.3. An isometry is a diffeomorphism φ : M → N of Rieman-
nian manifolds that preserves the Riemannian metric. That is, if 〈·, ·〉M and
〈·, ·〉N are the metrics for M and N , respectively, then φ∗〈·, ·〉N = 〈·, ·〉M .

It follows from the definitions that an isometry preserves the length of
curves. That is, if c is a smooth curve on M , then the curve φ ◦ c is a curve
of the same length on N . Also, the image of a geodesic under an isometry is
again a geodesic.
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4 Lie Groups

The set of all possible translations of Euclidean space Rn is again the space
Rn. A point p ∈ Rn is transformed by the vector v ∈ Rn by vector addition,
p + v. This transformation has a unique inverse transformation, namely,
translation by the negated vector, −v. The operation of translation is a
smooth mapping of the space Rn. Composing two translations (i.e., addition
in Rn) and inverting a translation (i.e., negation in Rn) are also smooth
mappings. A set of transformations with these properties, i.e., a smooth
manifold with smooth group operations, is known as a Lie group. Many
other interesting transformations of Euclidean space are Lie groups, including
rotations, reflections, and magnifications. However, Lie groups also arise
more generally as smooth transformations of manifolds. This section is a
brief introduction to Lie groups. More detailed treatments may be found
in [2, 4, 5, 6, 8, 16].

It is assumed that the reader knows the basics of group theory (see [7] for
an introduction), but the definition of a group is listed here for reference.

Definition 4.1. A group is a set G with a binary operation, denoted here
by concatenation, such that

1. (xy)z = x(yz), for all x, y, z ∈ G,
2. there is an identity, e ∈ G, satisfying xe = ex = x, for all x ∈ G,
3. each x ∈ G has an inverse, x−1 ∈ G, satisfying xx−1 = x−1x = e.

As stated at the beginning of this section, a Lie group adds a smooth
manifold structure to a group.

Definition 4.2. A Lie group G is a smooth manifold that also forms a
group, where the two group operations,

(x, y) 7→ xy : G×G→ G Multiplication

x 7→ x−1 : G→ G Inverse

are smooth mappings of manifolds.

Example 4.1. The space of all n×n non-singular matrices forms a Lie group
called the general linear group, denoted GL(n). The group operation is
matrix multiplication, and GL(n) can be given a smooth manifold structure
as an open subset of Rn2

. The equations for matrix multiplication and inverse
are smooth operations in the entries of the matrices. Thus, GL(n) satisfies
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the requirements of a Lie group in Definition 4.2. A matrix group is any
closed subgroup of GL(n). Matrix groups inherit the smooth structure of
GL(n) as a subset of Rn2

and are thus also Lie groups. The books [3,5] focus
on the theory of matrix groups.

Example 4.2. The n× n rotation matrices are a closed matrix subgroup of
GL(n) and thus form a Lie group. This group is called the special orthogo-
nal group and is defined as SO(n) = {R ∈ GL(n) : RTR = I and det(R) =
1}. This space is a closed and bounded subset of Rn2

, so it is compact by
the Heine-Borel theorem.

Given a point y in a Lie group G, it is possible to define the following
two diffeomorphisms:

Ly : x 7→ yx (Left multiplication)

Ry : x 7→ xy (Right multiplication)

A vector field X on a Lie group G is called left-invariant if it is invariant
under left multiplication, i.e., Ly∗X = X for every y ∈ G. Right-invariant
vector fields are defined similarly. A left-invariant (or right-invariant) vector
field is uniquely defined by its value on the tangent space at the identity,
TeG.

Recall that vector fields on G can be seen as operators on the space of
smooth functions, C∞(G). Thus two vector fields X and Y can be composed
to form another operator XY on C∞(G). However, the operator XY is not
necessarily vector field. Surprisingly, however, the operator XY − Y X is a
vector field on G. This leads to a definition of the Lie bracket of vector
fields X, Y on G, defined as

[X, Y ] = XY − Y X. (3)

Definition 4.3. A Lie algebra is a vector space V equipped with a bilinear
product [·, ·] : V × V → V , called a Lie bracket, that satisfies

(1) [X, Y ] = −[Y,X],
(2) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0,

for all X, Y, Z ∈ V.

The tangent space of a Lie group G, typically denoted g (a German
Fraktur font), forms a Lie algebra. The Lie bracket on g is induced by the
Lie bracket on the corresponding left-invariant vector fields. If X, Y are two

18



vectors in g, then let X̃, Ỹ be the corresponding unique left-invariant vector
fields on G. Then the Lie bracket on g is given by

[X, Y ] = [X̃, Ỹ ](e).

The Lie bracket provides a test for whether the Lie group G is commuta-
tive. A Lie group G is commutative if and only if the Lie bracket on the
corresponding Lie algebra g is zero, i.e., [X, Y ] = 0 for all X, Y ∈ g.

Example 4.3. The Lie algebra for Euclidean space Rn is again Rn. The Lie
bracket is zero, i.e., [X, Y ] = 0 for all X, Y ∈ Rn. In fact, the Lie bracket for
the Lie algebra of any commutative Lie group is always zero.

Example 4.4. The Lie algebra for GL(n) is gl(n), the space of all real n×n
matrices. The Lie bracket operation for X, Y ∈ gl(n) is given by

[X, Y ] = XY − Y X.

Here the product XY denotes actual matrix multiplication, which turns out
to be the same as composition of the vector field operators (compare to (3)).
All Lie algebras corresponding to matrix groups are subalgebras of gl(n).

Example 4.5. The Lie algebra for the rotation group SO(n) is so(n), the
space of skew-symmetric matrices. A matrix A is skew-symmetric if A =
−AT .

The following theorem will be important later.

Theorem 3. A direct product G1×· · ·×Gn of Lie groups is also a Lie group.

4.1 Lie Group Exponential and Log Maps

Definition 4.4. A mapping of Lie groups φ : G1 → G2 is called a Lie group
homomorphism if it is a smooth mapping and a homomorphism of groups,
i.e., φ(e1) = e2, where e1, e2 are the respective identity elements of G1, G2,
and φ(gh) = φ(g)φ(h) for all g, h ∈ G1.

The image of a Lie group homomorphism h : R → G is called a one-
parameter subgroup. A one-parameter subgroup is both a smooth curve
and a subgroup of G. This does not mean, however, that any one-parameter
subgroup is a Lie subgroup of G (it can fail to be an imbedded submanifold
of G, which is required to be a Lie subgroup of G). As the next theorem
shows, there is a bijective correspondence between the Lie algebra and the
one-parameter subgroups.
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Theorem 4. Let g be the Lie algebra of a Lie group G. Given any vector
X ∈ g there is a unique Lie group homomorphism hX : R → G such that
h′X(0) = X.

The Lie group exponential map, exp : g → G, not to be confused
with the Riemannian exponential map, is defined by

exp(X) = hX(1).

Example 4.6. For the Lie group Rn the unique Lie group homomorphism
hX : R→ Rn in Theorem 4 is given by hX(t) = tX. Therefore, one-parameter
subgroups are given by straight lines at the origin. The Lie group exponential
map is the identity. In this case the Lie group exponential map is the same
as the Riemannian exponential map at the origin. This is not always the
case, however, as will be shown later.

For matrix groups the Lie group exponential map of a matrix X ∈ gl(n)
is computed by the formula

exp(X) =
∞∑
k=0

1

k!
Xk. (4)

This series converges absolutely for all X ∈ gl(n).

Example 4.7. For the Lie group of 3D rotations, SO(3), the matrix ex-
ponential map takes a simpler form. For a matrix X ∈ so(3) the following
identity holds:

X3 = −θX, where θ =

√
1

2
tr(XTX).

Substituting this identity into the infinite series (4), the exponential map for
so(3) can now be reduced to

exp(X) =

I, θ = 0,

I +
sin θ

θ
X +

1− cos θ

θ2
X2, θ ∈ (0, π).

The Lie group log map for a rotation matrix R ∈ SO(3) is given by

log(R) =

I, θ = 0,
θ

2 sin θ
(R−RT ), |θ| ∈ (0, π),
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where tr(R) = 2 cos θ + 1.
The exponential map for 3D rotations has an intuitive meaning. Any

vector X ∈ so(3), i.e., a skew-symmetric matrix, may be written in the form

X =

 0 −z y
z 0 −x
−y x 0

 .

If v = (x, y, z) ∈ R3, then the rotation matrix given by the exponential map
exp(X) is a 3D rotation by angle θ = ‖v‖ about the unit axis v/‖v‖.
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