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Abstract

The tensors produced by diffusion tensor magnetic resonance imaging (DT-
MRI) represent the covariance in a Brownian motion model of water diffusion.
Under this physical interpretation, diffusion tensors are required to be symmetric,
positive-definite. However, current approaches to statistical analysis of diffusion
tensor data, which treat the tensors as linear entities, do not take this positive-
definite constraint into account. This difficulty is due to the fact that the space of
diffusion tensors does not form a vector space. In this paper we show that the space
of diffusion tensors is a type of curved manifold known as a Riemannian symmet-
ric space. We then develop methods for producing statistics, namely averages and
modes of variation, in this space. We show that these statistics preserve natural
geometric properties of the tensors, including the constraint that their eigenvalues
be positive. The symmetric space formulation also leads to a natural definition for
interpolation of diffusion tensors and a new measure of anisotropy. We expect that
these methods will be useful in the registration of diffusion tensor images, the pro-
duction of statistical atlases from diffusion tensor data, and the quantification of
the anatomical variability caused by disease. The framework presented in this pa-
per should also be useful in other applications where symmetric, positive-definite
tensors arise, such as mechanics and computer vision.
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1 Introduction
The clinical signifigance of diffusion tensor magnetic resonance imaging (DT-MRI) [2]
derives from its ability to image in vivo the structure of white matter fibers in the brain.
To fully harness the power of this relatively new modality, statistical tools for handling
diffusion tensor data types are needed. A 3D diffusion tensor models the covariance
of the Brownian motion of water at a voxel, and as such is required to be a 3 × 3,
symmetric, positive-definite matrix. The aim of this paper is to provide new methods
for the statistical analysis of diffusion tensors that take into account the requirement
that the tensors be positive-definite.

Diffusion tensor imaging has shown promise in clinical studies of brain patholo-
gies, such as multiple sclerosis and stroke, and in the study of brain connectivity [5].
Several authors have addressed the problem of estimation and smoothing within a DT
image [8, 10, 23]. Further insights might be had from the use of diffusion tensor imag-
ing in intersubject studies. Statistical brain atlases have been used in the case of scalar
images to quantify anatomical variability across patients. However, relatively little
work has been done towards constructing statistical brain atlases from diffusion ten-
sor images. Alexander et al. [1] describe a method for the registration of multiple
DT images into a common coordinate frame, however, they do not include a statistical
analysis of the diffusion tensor data. Previous attempts [3, 20] at statistical analysis of
diffusion tensors within a DT image use a Gaussian model of the linear tensor coeffi-
cients.

In this paper we demonstrate that the space of diffusion tensors is more naturally
described as a Riemannian symmetric space, rather than a linear space. In our previous
work [14] we introduced principal geodesic analysis (PGA) as an analog of principal
component analysis for studying the statistical variability of Lie group data. Extending
these ideas to symmetric spaces, we develop new methods for computing averages and
describing the variability of diffusion tensor data. We show that these statistics preserve
natural properties of the diffusion tensors, most importantly the positive-definiteness,
that are not preserved by linear statistics. We also develop a natural method for 3D
interpolation of diffusion tensor images based on the symmetric space formulation.
Also, the Riemannian geometry of diffusion tensors leads to a natural definition of
anisotropy, called geodesic anisotropy, which is based on the geodesic distance to the
nearest isotropic tensor. The framework presented in this paper provides the statistical
methods needed for constructing statistical atlases of diffusion tensor images.

This work is an expanded version of the material found in [12] and the first author’s
thesis work [11]. Many of the ideas appearing in this paper have been independently
developed by Batchelor et al. [4]. In their work they describe the same symmet-
ric space geometry for averaging an arbitrary number of tensors, geodesic anisotropy,
and interpolation between two diffusion tensors. Our work has gone somewhat fur-
ther, being the first to describe second order statistics, namely covariance and modes
of variation, in the symmetric space framework. Also, our interpolation scheme han-
dles an arbitrary number of tensors, rather than only two. Thus we are able to define
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full 3D interpolation of diffusion tensor images. More recently, the symmetric space
framework for averaging and covariance have also been independently developed in
[19, 22], with tensor interpolation also being developed in [22]. In this paper and in
[11] the theoretical properties of the Riemannian interpolation are described in more
detail. The statistical methods and interpolation presented in this paper have recently
been applied to the quantification of white matter diffusion along fiber tracts in [9].

The rest of the paper is organized as follows. Section 2 demonstrates the motivation
for using a curved geometry for diffusion tensors, rather than a linear one. Section 3
develops the necessary theory of diffusion tensors as a Riemannian symmetric space.
Section 4 develops the mean and PGA statistics of diffusion tensors. Section 6 de-
scribes the new interpolation method for 3D diffusion tensor images based on symmet-
ric space geometry. We introduce a new anisotroy measure, called geodesic anisotropy,
in Section 7.

2 The Space of Diffusion Tensors
Recall that a real n × n matrix A is symmetric if A = AT and positive-definite if
xT Ax > 0 for all nonzero x ∈ Rn. We denote the space of all n × n symmetric,
positive-definite matrices as PD(n). The tensors in DT-MRI are thus elements of
PD(3). The space PD(n) forms a convex subset of Rn2

. One can define a linear
average of N positive-definite, symmetric matrices A1, . . . , AN as µ = 1

N

∑N
i=1 Ai.

This definition minimizes the Euclidean metric on Rn2
. Since PD(n) is convex, µ

lies within PD(n). However, linear averages do not interpolate natural properties.
The linear average of matrices of the same determinant can result in a matrix with a
larger determinant. Second order statistics are even more problematic. The standard
principal component analysis is invalid because the straight lines defined by the modes
of variation do not stay within the space PD(n). In other words, linear PCA does not
preserve the positive-definiteness of diffusion tensors. The reason for such difficulties
is that space PD(n), although a subset of a vector space, is not a vector space; for
example, the negation of a positive-definite matrix is not positive-definite.

In this paper we derive a more natural metric on the space of diffusion tensors,
PD(n), by viewing it not simply as a subset of Rn2

, but rather as a Riemannian sym-
metric space. Following Fréchet [15], we define the average as the minimum mean
squared error estimator under this metric. We develop the method of principal geodesic
analysis to describe the variability of diffusion tensor data. Principal geodesic analysis
is the generalization of principal component analysis to manifolds. In this framework
the modes of variation are represented as flows along geodesic curves, i.e., shortest
paths under the Riemannian metric. These geodesic curves, unlike the straight lines
of Rn2

, are completely contained within PD(n), that is, they preserve the positive-
definiteness. Principal component analysis generates lower-dimensional subspaces
that maximize the projected variance of the data. Thus the development of principal
geodesic analysis requires that we generalize the concepts of variance and projection
onto lower-dimensional subspaces for data in symmetric spaces.

To illustrate these issues, consider the space PD(2), the 2×2 symmetric, positive-
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Figure 1: The space PD(2), showing the geodesic γ and the straight line l between the
two points p0 and p1.

definite matrices. A matrix A ∈ PD(2) is of the form

A =
(

a b
b c

)
, ac− b2 > 0, a > 0.

If we consider the matrix A as a point (a, b, c) ∈ R3, then the above conditions describe
the interior of a cone as shown in Fig. 1. The two labeled points are p0 = (1, 0, 7), p1 =
(7, 0, 1). The straight line l between the two points, i.e., the geodesic in Rn2

, does not
remain contained within the space PD(2). The curve γ is the geodesic between the
two points when PD(2) is considered as a Riemannian symmetric space. This geodesic
lies completely within PD(2). We chose PD(2) as an example since it can be easily
visualized, but the same phenomenon occurs for general PD(n), i.e., n > 2.

3 The Geometry of PD(n)

In this section we show that the space of diffusion tensors, PD(n), can be formulated
as a Riemannian symmetric space. This leads to equations for computing geodesics
that will be essential in defining the statistical methods for diffusion tensors. The dif-
ferential geometry of diffusion tensors has also been used in [8], where the diffusion
tensor smoothing was constrained along geodesic curves. A more thorough treatment
of symmetric spaces can be found in [6, 17].

A symmetric space is a connected Riemannian manifold M such that for each x ∈
M there is an isometry σx which (1) is involutive, i.e., σ2

x = id, and (2) has x as
an isolated fixed point, that is, there is a neighborhood U of x where σx leaves only
x fixed. It can be shown that σx is the map that reverses all geodesics through the
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point x. Riemannian symmetric spaces, and the methods for computing geodesics and
distances on them, arise naturally from Lie group actions on manifolds.

3.1 Lie Group Actions
A Lie group is an algebraic group G that also forms a differentiable manifold, where
the two group operations, multiplication and inversion, are smooth mappings. Many
common geometric transformations of Euclidean space form Lie groups. For example,
rotations, translations, and affine transformations of Rn all form Lie groups. More
generally, Lie groups can be used to describe transformations of smooth manifolds.

Given a manifold M and a Lie group G, a smooth group action of G on M , or
smooth G-action on M , is a smooth mapping φ : G × M → M such that for all
g, h ∈ G, and all x ∈ M we have φ(e, x) = x, and φ(g, φ(h, x)) = φ(gh, x), where
e is the identity element of G. Consider the Lie group of all n × n real matrices with
positive determinant, denoted GL+(n). This group acts on PD(n) via

φ : GL+(n)× PD(n) → PD(n)

φ(g, p) = gpgT . (1)

The orbit under φ of a point x ∈ M is defined as G(x) = {φ(g, x) : g ∈ G}.
In the case that M consists of a single orbit, we call M a homogeneous space and
say that the G-action is transitive. The space PD(n) is a homogeneous space, as
is easy to derive from the fact that any matrix p ∈ PD(n) can be decomposed as
p = ggT = φ(g, In), where g ∈ GL+(n) and In is the n × n identity matrix. The
isotropy subgroup of x is defined as Gx = {g ∈ G : φ(g, x) = x}, i.e., Gx is the
subgroup of G that leaves the point x fixed. For PD(n) the isotropy subgroup of In is
SO(n) = {g ∈ GL+(n) : ggT = In}, i.e., the space of n× n rotation matrices.

Let H be a closed Lie subgroup of the Lie group G. Then the left coset of an el-
ement g ∈ G is defined as gH = {gh : h ∈ H}. The space of all such cosets is
denoted G/H and is a smooth manifold. There is a natural bijection G(x) ∼= G/Gx

given by the mapping g · x 7→ gGx. Therefore, we can consider the space of diffu-
sion tensors, PD(n), as the coset space GL+(n)/SO(n). An intuitive way to view
this is to think of the polar decomposition, which decomposes a matrix g ∈ GL+(n)
as g = pu, where p ∈ PD(n) and u ∈ SO(n). Thus, the diffusion tensor space
PD(n) ∼= GL+(n)/SO(n) comes from “dividing out” the rotational component in
the polar decomposition of GL+(n).

3.2 Invariant Metrics
A Riemannian metric on a manifold M smoothly assigns to each point x ∈ M an inner
product 〈·, ·〉x on TxM , the tangent space to M at x. If φ is a smooth G-action on M ,
a metric on M is called G-invariant if for each g ∈ G the map φg : x 7→ φ(g, x) is an
isometry, i.e., φg preserves distances on M . The space of diffusion tensors, PD(n),
has a metric that is invariant under the GL+(n) action, which follows from the fact that
the isotropy subgroup SO(n) is connected and compact (see [6], Theorem 9.1).
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The tangent space of PD(n) at the identity matrix can be identified with the space
of n×n symmetric matrices, Sym(n). Since the group action φg : s 7→ gsgT is linear,
its derivative map, denoted dφg , is given by dφg(X) = gXgT . If X ∈ Sym(n), it is
easy to see that dφg(X) is again a symmetric matrix. Thus the tangent space at any
point p ∈ PD(n) is also equivalent to Sym(n). If X, Y ∈ Sym(n) represent two
tangent vectors at p ∈ PD(n), where p = ggT , g ∈ GL+(n), then the Riemannian
metric at p is given by the inner product

〈X, Y 〉p = tr(g−1Xp−1Y (g−1)T ).

Finally, the mapping σIn(p) = p−1 is an isometry that reverses geodesics of PD(n) at
the identity, and this turns PD(n) into a symmetric space.

3.3 Computing Geodesics
Geodesics on a symmetric space are easily derived via the group action (see [17] for
details). Let p be a point on PD(n) and X a tangent vector at p. There is a unique
geodesic, γ, with initial point γ(0) = p and tangent vector γ′(0) = X . To derive an
equation for such a geodesic, we begin with the special case where the initial point p is
the n× n identity matrix, In, and the tangent vector X is diagonal. Then the geodesic
is given by γ(t) = exp(tX), where exp is the matrix exponential map given by the
infinite series

exp(X) =
∞∑

k=0

1
k!

Xk.

For the diagonal matrix X with entries xi, the matrix exponential is simply the diagonal
matrix with entries exi .

Now for the general case consider the geodesic γ starting at an arbitrary point
p ∈ PD(n) with arbitrary tangent vector X ∈ Sym(n). We will use the group action
to map this configuration into the special case described above, i.e., with initial point
at the identity and a diagonal tangent vector. Since the group action is an isometry,
geodesics and distances are preserved. Let p = ggT , where g ∈ GL+(n). Then the
action φg−1 maps p to In. The tangent vector is mapped via the corresponding tangent
map to Y = dφg−1(X) = g−1X(g−1)T . Now we may write Y = vΣvT , where v is
a rotation matrix and Σ is diagonal. The group action φv−1 diagonalizes the tangent
vector while leaving In fixed. We can now use the procedure above to compute the
geodesic γ̃ with initial point γ̃(0) = In and tangent vector γ̃′(0) = Σ. Finally, the
result is mapped back to the original configuration by the inverse group action, φgv .
That is,

γ(t) = φgv(γ̃(t)) = (gv) exp(tΣ)(gv)T .

If we flow to t = 1 along the geodesic γ we get the Riemannian exponential map
at p (denoted Expp, and not to be confused with the matrix exponential map), that is,
Expp(X) = γ(1). In summary we have

Algorithm 1: Riemannian Exponential Map
Input: Initial point p ∈ PD(n), tangent vector X ∈ Sym(n).
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Output: Expp(X)
Let p = uΛuT (u ∈ SO(n), Λ diagonal)
g = u

√
Λ

Y = g−1X(g−1)T

Let Y = vΣvT (v ∈ SO(n), Σ diagonal)
Expp(X) = (gv) exp(Σ)(gv)T

An important property of the geodesics in PD(n) under this metric is that they are
infinitely extendible, i.e., the geodesic γ(t) is defined for −∞ < t < ∞. A manifold
with this property is called complete. Again, Fig. 1 demonstrates that the symmetric
space geodesic γ remains within PD(2) for all t. In contrast the straight line l quickly
leaves the space PD(2).

The map Expp has an inverse, called the Riemannian log map and denoted Logp.
It maps a point x ∈ PD(n) to the unique tangent vector at p that is the initial velocity
of the unique geodesic γ with γ(0) = p and γ(1) = x. Using a similar diagonalization
procedure, the log map is computed by

Algorithm 2: Riemannian Log Map
Input: Initial point p ∈ PD(n), end point x ∈ PD(n).
Output: Logp(x)

Let p = uΛuT (u ∈ SO(n), Λ diagonal)
g = u

√
Λ

y = g−1x(g−1)T

Let y = vΣvT (v ∈ SO(n), Σ diagonal)
Logp(x) = (gv) log(Σ)(gv)T

Using the notation of Algorithm 2, geodesic distance between the diffusion tensors
p, x ∈ PD(n) is computed by d(p, x) = ‖Logp(x)‖p =

√
tr(log(Σ)2).

3.4 Computations on Noisy Data
Physical laws of diffusion require that the eigenvalues of a diffusion tensor be positive.
However, the eigenvalues of tensors in DT-MRI may be nonpositive due to imaging
noise and linear estimation of the tensor components from the diffusion weighted im-
ages. The computations in the Riemannian exponential and log maps (Algorithms 1
and 2) fail if the tensors involved have any nonpositive eigenvalues. To avoid these
problems, we project these invalid noisy tensors to the space of valid tensors by setting
their nonpositive eigenvalues to some small positive value. Another option is to simply
exclude invalid tensors from the analysis. A more rigorous approach would be to en-
force positive eigenvalues during tensor estimation as in the work of Wang et al. [23],
which also regularizes the tensor field during estimation.
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4 Statistics of Diffusion Tensors
Having formulated the geometry of diffusion tensors as a symmetric space, we now
develop methods for computing statistics in this nonlinear space.

4.1 Averages of Diffusion Tensors
To define an average of diffusion tensors we follow Fréchet [15], who defines the
mean of a random variable in an arbitrary metric space as the point that minimizes
the expected value of the sum-of-squared distance function. Consider a set of points
A = {x1, . . . , xN} on a Riemannian manifold M . Then we will be concerned with the
sum-of-squared distance function

ρA(x) =
1

2N

N∑
i=1

d(µ, xi)2,

where d is geodesic distance on M . The intrinsic mean of the points in A is defined as
a minimum of ρA, that is,

µ = arg min
x∈M

ρA(x). (2)

The properties of the intrinsic mean have been studied by Karcher [18], and Pennec
[21] describes a gradient descent algorithm to compute the mean. Since the mean is
given by the minimization problem (2), we must verify that such a minimum exists and
is unique. Karcher shows that for a manifold with non-positive sectional curvature the
mean is uniquely defined. In fact, the space PD(n) does have non-positive sectional
curvature, and, thus, the mean is uniquely defined. Also, the gradient of ρA is given by

∇ρA(x) = − 1
N

N∑
i=1

Logx(xi)

Thus the intrinsic mean of a collection of diffusion tensors is computed by the follow-
ing gradient descent algorithm:

Algorithm 3: Intrinsic Mean of Diffusion Tensors
Input: p1, . . . , pN ∈ PD(n)
Output: µ ∈ PD(n), the intrinsic mean

µ0 = p1

τ = 1, the initial step size
Do

Xi = 1
N

∑N
k=1 Logµi

(pk)
µi+1 = Expµi

(τXi)
If ‖Xi‖ > ‖Xi−1‖

τ = τ/2, Xi = Xi−1

While ‖Xi‖ > ε.
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The parameter τ determines the step size to take in the downhill gradient direction.
The gradient descent is guaranteed to converge for some value of τ (see [18] for details).
For typical data found in DT-MRI the algorithm converges with τ = 1. However, if the
tensors being averaged are widely dispersed, smaller step sizes are needed. Algorithm
3 ensures convergence by dynamically adjusting the step size τ if the gradient descent
ever starts to diverge.

4.2 Principal Geodesic Analysis
Principal component analysis (PCA) is a useful method for describing the variability of
Euclidean data. In our previous work [13] we introduced principal geodesic analysis
(PGA) as a generalization of PCA to study the variability of data in a Lie group. In
this section we review the method of principal geodesic analysis and apply it to the
symmetric space of diffusion tensors. We begin with a review of PCA in Euclidean
space. Consider a set of points x1, . . . , xN ∈ Rd with zero mean. Principal component
analysis seeks a sequence of linear subspaces that best represent the variability of the
data. To be more precise, the intent is to find a orthonormal basis {v1, . . . , vd} of Rd,
which satisfies the recursive relationship

v1 = arg max
‖v‖=1

N∑
i=1

〈v, xi〉2, (3)

vk = arg max
‖v‖=1

N∑
i=1

k−1∑
j=1

〈vj , xi〉2 + 〈v, xi〉2. (4)

In other words, the subspace Vk = span({v1, . . . , vk}) is the k-dimensional subspace
that maximizes the variance of the data projected to that subspace. The basis {vk} is
computed as the set of eigenvectors of the sample covariance matrix of the data.

Now turning to manifolds, consider a set of points p1, . . . , pN on a Riemannian
manifold M . Our goal is to describe the variability of the pi in a way that is analogous
to PCA. Thus we will project the data onto lower-dimensional subspaces that best rep-
resent the variability of the data. This requires first extending three important concepts
of PCA into the manifold setting:

• Variance. Following the work of Fréchet, we define the sample variance of the
data as the expected value of the squared Riemannian distance from the mean.

• Geodesic subspaces. The lower-dimensional subspaces in PCA are linear sub-
spaces. For manifolds we extend the concept of a linear subspace to that of a
geodesic submanifold.

• Projection. In PCA the data is projected onto linear subspaces. We define a pro-
jection operator for geodesic submanifolds, and show how it may be efficiently
approximated.
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We now develop each of these concepts in detail.

4.2.1 Variance

The variance σ2 of a real-valued random variable x with mean µ is given by the formula
σ2 = E [(x− µ)2], where E denotes expectation. It measures the expected localization
of the variable x about the mean. The definition of variance we use comes from Fréchet
[15], who defines the variance of a random variable in a metric space as the expected
value of the squared distance from the mean. That is, for a random variable x in a
metric space with intrinsic mean µ, the variance is given by σ2 = E [d(µ, x)2]. Thus
in the manifold case, given data points p1, . . . , pN ∈ M with mean µ, we define the
sample variance of the data as

σ2 =
N∑

i=1

d(µ, pi)2 =
N∑

i=1

‖Logµ(pi)‖2. (5)

Notice that if M is Rn, then the variance definition in (5) is given by the trace of
the sample covariance matrix, i.e., the sum of its eigenvalues. It is in this sense that this
definition captures the total variation of the data.

4.2.2 Geodesic Submanifolds

The next step in generalizing PCA to manifolds is to generalize the notion of a linear
subspace. A geodesic is a curve that is locally the shortest path between points. In
this way a geodesic is the generalization of a straight line. Thus it is natural to use a
geodesic curve as the one-dimensional subspace, i.e., the analog of the first principal
direction in PCA.

In general if N is a submanifold of a manifold M , geodesics of N are not nec-
essarily geodesics of M . For instance the sphere S2 is a submanifold of R3, but its
geodesics are great circles, while geodesics of R3 are straight lines. A submanifold H
of M is said to be geodesic at x ∈ H if all geodesics of H passing through x are also
geodesics of M . For example, a linear subspace of Rd is a submanifold geodesic at 0.
Submanifolds geodesic at x preserve distances to x. This is an essential property for
PGA because variance is defined by squared distance to the mean. Thus submanifolds
geodesic at the mean will be the generalization of the linear subspaces of PCA.

4.2.3 Projection

The projection of a point x ∈ M onto a geodesic submanifold H of M is defined as the
point on H that is nearest to x in Riemannian distance. Thus we define the projection
operator πH : M → H as πH(x) = arg miny∈H d(x, y)2. Since projection is defined
by a minimization, there is no guarantee that the projection of a point exists or that it is
unique. However, because PD(n) has non-positive curvature and no conjugate points,
projection onto geodesic submanifolds is unique in this case.

Projection onto a geodesic submanifold at µ can be approximated in the tangent
space to the mean, TµM . If v1, . . . , vk is an orthonormal basis for TµH , then the

10



projection operator can be approximated by the formula

Logµ (πH(x)) ≈
k∑

i=1

〈vi,Logµ(x)〉µ. (6)

As with any tangent-space approximation, the error in projection operator approxima-
tion gets larger the farther away you get from the mean.

4.3 Computing Principal Geodesic Analysis
We are now ready to define principal geodesic analysis for data p1, . . . , pN on a con-
nected Riemannian manifold M . Our goal, analogous to PCA, is to find a sequence of
nested geodesic submanifolds that maximize the projected variance of the data. These
submanifolds are called the principal geodesic submanifolds.

The principal geodesic submanifolds are defined by first constructing an orthonor-
mal basis of tangent vectors v1, . . . , vd that span the tangent space TµM . These vectors
are then used to form a sequence of nested subspaces Vk = span({v1, . . . , vk}). The
principal geodesic submanifolds are the images of the Vk under the exponential map:
Hk = Expµ(Vk). The first principal direction is chosen to maximize the projected
variance along the corresponding geodesic:

v1 = arg max
‖v‖=1

N∑
i=1

‖Logµ(πH(pi))‖2, (7)

where H = exp(span({v})).

The remaining principal directions are then defined recursively as

vk = arg max
‖v‖=1

N∑
i=1

‖Logµ(πH(pi))‖2, (8)

where H = exp(span({v1, . . . , vk−1, v})).

If we use (6) to approximate the projection operator πH in (7) and (8), we get

v1 ≈ arg max
‖v‖=1

N∑
i=1

〈v,Logµ(pi)〉2µ,

vk ≈ arg max
‖v‖=1

N∑
i=1

k−1∑
j=1

〈vj ,Logµ(pi)〉2µ + 〈v,Logµ(pi)〉2µ.

The above minimization problem is simply the standard principal component analysis
in TµM of the vectors Logµ(pi), which can be seen by comparing the approximations
above to the PCA equations, (3) and (4). Applying these ideas to PD(n), we have the
following algorithm for approximating the PGA of diffusion tensor data:
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Algorithm 4: PGA of Diffusion Tensors
Input: p1, . . . , pN ∈ PD(n)
Output: Principal directions, vk ∈ Sym(n), variances, λk ∈ R

µ = intrinsic mean of {pi} (Algorithm 3)
xi = Logµ(pi)
S = 1

N

∑N
i=1 xix

T
i (treating the xi as column vectors)

{vk, λk} = eigenvectors/eigenvalues of S.

A new diffusion tensor p can now be generated from the PGA by the formula p =
Expµ

(∑d
k=1 αkvk

)
, where the αk ∈ R are the coefficients of the modes of variation.

The use of the sample covariance matrix S in the tangent space to the mean leads to
an obvious definition for a “Gaussian” distribution in PD(n). This probability density
function for this distribution is given by

p(x) = exp
(
−1

2
Logµ(x)T Σ−1 Logµ(x)

)
,

where µ is an element of PD(n) and Σ is a covariance matrix in the tangent space
TµPD(n). This distribution may be used to describe diffusion tensor data, with µ be-
ing the intrinsic mean and Σ = S the sample covariance matrix as above. However,
care should be taken in using this distribution as it does not have many of the desirable
properties of Gaussian distributions in Rn, such as the Central Limit Theorem. Alter-
natively, Gaussian distributions may be defined on Lie groups and homogeneous spaces
as fundamental solutions to the heat equation, see [16] for details. These distributions
do generalize properties such as the Central Limit Theorem, but they are typically in
the form of infinite summations, and thus difficult to use in computations. Therefore,
the tangent space Gaussian given above may be a useful, more computationally fea-
sible, alternative. It should be noted that the definition of PGA is not dependent on
any underlying assumption of the data distribution. In other words, PGA is a valid
descriptive statistic for any sample of diffusion tensor data.

5 Properties of PGA on PD(n)

We now demonstrate that PGA on the symmetric space PD(n) preserves certain im-
portant properties of the diffusion tensor data, namely the properties of positive-definiteness,
determinant, and orientation1. This makes the symmetric space formulation an attrac-
tive approach for the statistical analysis of diffusion tensor images. We have already
mentioned that, in contrast to linear PCA, symmetric space PGA preserves positive-
definiteness. That is, the principal geodesics are completely contained within PD(n),
and any matrix generated by the principal geodesics will be positive-definite.

1The orientation of the tensor p ∈ PD(n) is given by the rotation matrix u in the singular-value decom-
position p = uΛuT , modulo rotations of 180 degrees about any axis. For 3D diffusion tensors this is the
orientation frame of the ellipsoid representation of p.
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Figure 2: The first two modes of variation of the simulated data: (left) using the sym-
metric space PGA, and (right) using linear PCA. Units are in standard deviations. The
boxes labelled “Not Valid” indicate that the tensor was not positive-definite, i.e., it had
negative eigenvalues.

The next two properties we consider are the determinant and orientation. Consider
a collection of diffusion tensors that all have the same determinant D. We wish to show
that the resulting average and any tensor generated by the principal geodesic analysis
will also have determinant D. To show this we first look at the subset of PD(n) of
matrices with determinant D, that is, the subset PD = {p ∈ PD(n) : det(p) = D}.
This subset is a totally geodesic submanifold, meaning that any geodesic within PD

is a geodesic of the full space PD(n). Notice the difference from the definition of a
submanifold geodesic at a point; totally geodesic submanifolds are geodesic at every
point. Now, the fact that PD is totally geodesic implies that the averaging process in
Algorithm 3 will remain in PD if all the data lies in PD. Also, the principal direc-
tions vk in the PGA will lie in the tangent subspace TµPD. Thus any diffusion tensor
generated by the principal geodesics will remain in the space PD.

The same argument may be applied to show that symmetric space averaging and
PGA preserve the orientation of diffusion tensors. In fact, the subset of all diffusion
tensors having the same orientation is also a totally geodesic submanifold, and the
same reasoning applies. Unlike the positive-definiteness and determinant, orientations
are also preserved by linear averaging and PCA.

To demonstrate these properties, we simulated random 3D diffusion tensors and
computed both their linear and symmetric space statistics. We first tested the deter-
minant preservation by generating 100 random 3D diffusion tensors with determinant
1. To do this we first generated 100 random 3 × 3 symmetric matrices, with entries
distributed according to a normal distribution, N(0, 1

2 ). Then, we took the matrix
exponential of these random symmetric matrices, thus making them positive-definite
diffusion tensors. Finally, we normalized the random diffusion tensors to have determi-
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γ(0) = p γ(0.25) γ(0.5) γ(0.75)0 γ(1) = p1

Figure 3: An example of geodesic interpolation of two diffusion tensors. The diffusion
tensors at times 0.25, 0.5, and 0.75 were generated along the unique geodesic segment
γ between two random tensors p0 and p1.

nant 1 by dividing each tensor by the cube root of its determinant. We then computed
the linear average and PCA and symmetric space average and PGA of the simulated
tensors. The results are shown in Fig. 2 as the diffusion tensors generated by the first
two modes of variation. The linear PCA generated invalid diffusion tensors, i.e., ten-
sors with negative eigenvalues, at +2 standard deviations in both the first and second
modes. All of the diffusion tensors generated by the symmetric space PGA have de-
terminant 1. The linear mean demonstrates the “swelling” effect of linear averaging. It
has determinant 2.70, and the linear PCA tensors within ±2 standard deviations have
determinants ranging from −2.80 to 2.82. The negative determinants came from the
tensors that were not positive-definite. Therefore, we see that the symmetric space
PGA has preserved the positive-definiteness and the determinant, while the linear PCA
has preserved neither.

Next we tested the orientation preservation by generating 100 random, axis-aligned,
3D diffusion tensors. This was done by generating 3 random eigenvalues for each ma-
trix, corresponding to the x, y, and z axes. The eigenvalues were chosen from a log-
normal distribution with log mean 0 and log standard deviation 0.5. Next we generated
a random orientation u ∈ SO(3) and applied it to all of the axis-aligned matrices by
the map p 7→ upuT . Thus each of the diffusion tensors in our test set had eigenvectors
equal to the columns of the rotation matrix u. We computed both the symmetric space
and linear statistics of the data. As was expected, both methods preserved the orienta-
tions. However, the linear PCA again generated tensors that were not positive-definite.

6 Diffusion Tensor Interpolation
The most basic method for resampling a warped image is a nearest neighbor approach.
Another possibility is to use trilinear interpolation of the linear tensor coefficients. The
tensor interpolation method that we propose is based on the symmetric space averaging
method developed in Section 4.1. First, consider the case of two diffusion tensors
p1, p2 ∈ PD(n). We would like an interpolation method given by a continuous curve
c : [0, 1] → PD(n) satisfying c(0) = p1 and c(1) = p2. Given the symmetric space
formulation for PD(n) presented above, an obvious choice for c is the unique geodesic
curve segment between p1 and p2. This geodesic interpolation is demonstrated between
two randomly chosen diffusion tensors in Fig. 3. Geodesic interpolation can be seen
as a direct generalization of linear interpolation for scalar or vector data.
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Now for 3D images of diffusion tensors an interpolation method can be thought of
as a smooth function in a cube, where the tensor values to be interpolated are given
at the corners of the cube. In other words, we want a smooth function f : [0, 1]3 →
PD(n), where the values f(i, j, k) : i, j, k ∈ {0, 1} are specified. It is tempting to
first create f using “tri-geodesic” interpolation, that is, by repeated geodesic interpola-
tion in the three coordinate directions. However, unlike linear interpolation, geodesic
interpolation of diffusion tensors does not commute. Therefore, a “tri-geodesic” inter-
polation would be dependent on the order in which the coordinate interpolations were
made. A better method for interpolating diffusion tensors in three dimensions is using
a weighted geodesic average.

Weighted averaging of data on an sphere Sn has been studied by Buss and Fillmore
[7]. We follow their approach, extending the definition of weighted averages to diffu-
sion tensors. Given a set of diffusion tensors p1, . . . , pN ∈ PD(n) and a set of weights
w1, . . . , wN ∈ R, consider the weighted sum-of-squared distances function

ρ(p; p1, . . . , pN ;w1, . . . , wN ) =
N∑

i=1

wid(p, pi)2.

Given a set of non-negative real weights w1, . . . , wN with sum equal to 1, the
weighted average of the pi with respect to the weights wi is defined as a minimum of
the weighted sum-of-squared distances function, i.e.,

Avg(p1, . . . , pN ;w1, . . . , wN ) = arg min
p∈PD(n)

ρ(p; p1, . . . , pN ;w1, . . . , wN ). (9)

The intrinsic mean definition given in Section 4.1 is equivalent to weighted average
definition with all weights set to wi = (1/N). For vector-valued data v1, . . . , vN ∈ Rn

the weighted average is given by the weighted sum Avg({vi}; {wi}) =
∑N

i=1 wivi.
For diffusion tensor data the weighted average can be computed using a generaliza-

tion of the intrinsic mean algorithm (Algorithm 3). The gradient of the sum-of-squared
distances function is given by ∇ρ(p; {pi}; {wi}) = −

∑N
i=1 wi Logp(pi). Therefore,

the gradient descent algorithm for finding the weighted average of a set of diffusion
tensors is given by

Algorithm 5: Weighted Average of Diffusion Tensors
Input: p1, . . . , pN ∈ PD(n) and weights w1, . . . , wN ∈ R
Output: µ ∈ PD(n), the weighted average

µ0 = I
τ = 1, the initial step size
Do

Xi =
∑N

k=1 wi Logµi
(pk)

µi+1 = Expτµi
(Xi)

If ‖Xi‖ > ‖Xi−1‖
τ = τ/2, Xi = Xi−1

While ‖Xi‖ > ε.
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Returning to the problem of finding an interpolating function for diffusion tensors
in a volume image, we want to define our interpolating function f : [0, 1]3 → PD(n),
where the values at the corners are given. Let A = {0, 1}3, and let α = (α1, α2, α3) ∈
A be a multi-index for the eight corners of the unit cube. Let pα ∈ PD(n) be a set of
diffusion tensors given at the corners of the unit cube. We define the geodesic weighted
interpolation of the pα as the function f : [0, 1]3 → PD(n) via a weighted average

f(x1, x2, x3) = Avg({pα}, {wα(x1, x2, x3)}) (10)

where the wα : [0, 1]3 → R are weight functions on the unit cube. For example, we
may choose the tri-linear weights wα(x1, x2, x3) =

∏3
i=1

(
1− αi + (−1)1−αixi

)
.

Higher-order weights, e.g., cubic polynomials, are also possible. As is the case with
scalar images, higher-order schemes would have higher-order smoothness across voxel
boundaries and would require larger areas of influence. Investigation of these higher-
order schemes is an area of future work.

The interpolation function f : [0, 1]3 → PD(n) given by (10) is a C∞ function.
The proof of this fact is a direct application of the Implicit Function Theorem and can
be found in [11]. The weighted geodesic interpolation function is well-defined for any
initial diffusion tensor values pα, and it does not depend on any arbitrary choice of
ordering as did the “tri-geodesic” method. Another important property of weighted
geodesic interpolation is that it preserves determinants and orientations of the initial
data. That is, if the pα all have the same determinant (respectively, orientation), then
any tensor interpolated by (10) will also have the same determinant (orientation). This
follows from the same argument given in the previous section to show that the intrinsic
mean preserves these properties. That is, if the data lie in the same totally geodesic sub-
manifold (the submanifold representing diffusion tensors with the same determinant or
the same orientation), the weighted average of the data will lie in the same subman-
ifold. Since the weighted geodesic interpolation is defined via weighted averages, it
follows that it also preserves determinants and orientations.

An example of the weighted geodesic interpolation is shown in Figure 4 in a region
of a coronal slice in a DTI image of the brain. It can be seen that the interpolated im-
age is smooth and does not suffer from swelling of the tensor determinants. Weighted
geodesic interpolation does take about 20 times as long as a simple trilinear interpola-
tion of the six tensor components. For applications such as registration for statistical
group comparisons this extra computational cost is not critical.

7 Geodesic Anisotropy Measure
We now develop a new anisotropy measure for diffusion tensors based on the geodesic
distance on the symmetric space PD(3). Anisotropy is intuitively a measure of how
far away a diffusion tensor is from being isotropic. Therefore, a natural measurement
of the anisotropy of a diffusion tensor p ∈ PD(3) is the geodesic distance between p
and the closest isotropic diffusion tensor. It turns out that the nearest isotropic diffusion
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Figure 4: An example of geodesic interpolation from a coronal DTI slice. On the left
is the original data, and on the right is the data up-sampled by two using geodesic
weighted interpolation.

GA(0) = 0 GA(0.25) = 0.43 GA(0.5) = 0.87 GA(0.75) = 1.30 GA(1) = 1.73
FA(0) = 0 FA(0.25) = 0.30 FA(0.5) = 0.56 FA(0.75) = 0.74 FA(1) = 0.85

Figure 5: Comparison of GA and FA values (as a function of t) for tensors with eigen-
values λ1 = exp(t), λ2 = λ3 = exp(−t).

tensor to p is the one with the same determinant as p, i.e., the matrix det(p)
1
3 · I3. Thus

we define the geodesic anisotropy as

GA(p) = d(det(p)
1
3 · I3, p) =

(
3∑

i=1

‖ log(λi)− log λ‖2

) 1
2

, (11)

where λi are the eigenvalues of p and log λ is the average of the log λi. This shows
that the geodesic anisotropy is equivalent to the standard deviation of the log of the
eigenvalues (times a scale factor). This is similar to how the fractional anisotropy
is defined via the standard deviation of the eigenvalues, which are treated as linear
entities. The GA is consistent with the thinking of PD(n) as a symmetric space, where
the eigenvalues are treated as multiplicative entities rather than linear ones.

Geodesic anisotropy, like FA, is invariant to scaling of a diffusion tensor. Unlike
FA, which is in the range [0, 1], the GA is unbounded and can take values in [0,∞).
Figure 5 shows a comparison of FA and GA values of the one-parameter family of
tensors with eigenvalues λ1 = exp(t), λ2 = λ3 = exp(−t), for t ∈ [0, 1]. Figure 6
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Figure 6: Comparison of a coronal image of FA values (left) with the corresponding
image of GA values (right).

compares the FA and GA images from a coronal slice of a DT-MRI. The majority of
the GA values fell in the range [0, 2], so the image was scaled by 1/2 for display in
comparison to FA, which is in the range [0, 1]. Notice that the GA image has higher
contrast, due to the nonlinear stretching of the image range compared to FA. It should
be noted that there is not a functional relationship between FA and GA, i.e., there is
no real-valued function f , such that f(FA(p)) = GA(p), for all tensors p ∈ PD(3).
In other words, FA and GA differ non-trivially as functions of the eigenvalues. It
would be expected then that group comparisons of DT-MRI data based on GA would
give different results than tests using FA. Further research is needed to evaluate the
differences between the two measures.

8 Conclusion
We have introduced a new geometric framework for computations and statistics of dif-
fusion tensor data. This framework is based on the treatment of the space of positive-
definite, symmetric tensors as a Riemannian symmetric space. The advantages of this
formulation are that it inherently preserves the positive-definiteness of the tensors and
also naturally handles properties such as the determinant and orientation. We developed
new methods for computing means and second-order statistics of diffusion tensors and
showed that these statistics preserve positive-definiteness that cannot be preserved us-
ing linear statistics. We used the Riemannian geometry to define 3D interpolation of
diffusion tensor images and to define a new measure called geodesic anisotropy.

Further research in this area may extend these ideas to other applications where
positive-definite, symmetric tensors arise. Examples include strain tensors of deforma-
tions in mechanics, and the structure tensor arising in optical flow and texture analysis
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in computer vision. In DT-MRI applications we plan to incorporate the Riemannian
statistics in building statistical atlases of diffusion tensor images. The interpolation
method presented in this paper should prove useful in registration of DT-MRI and in
fiber tracking applications. Also, we are investigating the use of geodesic anisotropy
as a measure in group comparisons of DT-MRI.
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