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Abstract. We present a new framework for multidimensional shape
analysis. The proposed framework represents solid objects as points on
an infinite-dimensional Riemannian manifold and distances between ob-
jects as minimal length geodesic paths. Intershape distance forms the
foundation for shape-based statistical analysis. The proposed method
incorporates a metric that naturally prevents self-intersections of ob-
ject boundaries and thus produces a well-defined interior and exterior
along every geodesic path. This paper presents an implementation of
the geodesic computations for 2D shapes and gives examples of geodesic
paths that demonstrate the advantages of enforcing well-defined bound-
aries. This compares favorably with equivalent paths under a linear L2

metric, which do not prevent self-intersection of the boundary, and thus
do not produce valid solid objects.

1 Introduction

Shape analysis plays an important role in the understanding of anatomical vari-
ability from medical images. Statistics of shape is vital to applications ranging
from disease diagnosis, treatment planning, and quantification of the effects of
disease. While anatomy consists entirely of solid objects, many shape represen-
tations, such as landmarks, boundary curves, or harmonics, do not account for
the solid nature of objects. In this paper we present a new shape metric that is
well-suited to quantify shape changes in solid objects. We also show that rep-
resenting shapes as solids results in a shape space that conforms qualitatively
with some of our most natural intuitions about shape variabilities.

Quantitative study of shape begins with the formulation of a shape space,
in which each shape is represented as a point. A distance metric on this shape
space gives a measure of shape similarity between any two objects. When the
shape space has the structure of a Riemannian manifold, this distance is given
by minimal geodesics, or shortest length curve segments, between two shapes.
The ability to compute distances between shapes is the foundation for statisti-
cal analysis. The first formulations of shape spaces, and the use of metrics to
define shape statistics, were developed in the seminal works of Kendall [1] and
Bookstein [2]. In their work a 2D object is represented as a discrete set of land-
mark points. By removing the effects of translations, rotations, and scalings of
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these landmarks, the shape space is given the structure of a curved Riemannian
manifold. The structure of this space can then be used to define probability dis-
tributions as in Mardia and Dryden [3]. The theory of landmark-based shape
spaces is reviewed in several books [4], [5].

A typical strategy in shape analysis applications is to apply a linear metric
on the parameters of the shape representation. The Active Shape Model (ASM)
of Cootes and Taylor [6] represents objects as a dense sampling of their bound-
aries. They align objects using a Procrustes algorithm and perform principal
components analysis (PCA) to capture the shape variability. Kelemen et al. [7]
represent 3D objects by spherical harmonic (SPHARM) decompositions of their
boundaries and quantify shape variation using PCA with a linear metric on the
SPHARM coefficients. Shape variations under these metrics are characterized
by straight line paths of object boundaries. Such deformations do not respect
the solid properties of objects, and can create intersecting boundaries. Fletcher
et al. [8] introduce a generalization of PCA to nonlinear manifolds and use it
to compute shape statistics based on medial representations of objects. While
nonlinear variations of shape provide a richer set of deformations, there is still
no guarantee that shape boundaries will not intersect.

Recent work has focused on representing shape variations of continuous pla-
nar curves, where the shape spaces are infinite-dimensional manifolds. Klassen
et al. [9] develop elastic curves based on an angle function of the tangent vec-
tor. Sharon and Mumford [10] design a metric based on conformal mappings
between 2D objects. Michor and Mumford [11] investigate metrics on the space
of smooth curves modulo reparameterizations. While this work lays a rigorous
mathematical framework for comparing smooth curves, again there is no con-
straint that the curves not intersect. One method of shape analysis that does
indeed constrain solid objects to be free of self-intersections is the diffeomorphic
approach, first proposed by Grenander [12]. In this framework shape variations
are represented as the actions of diffeomorphisms on a template. Miller and
Younes [13] take this approach and define metrics on spaces of diffeomorphism
groups, which are infinite-dimensional. While the diffeomorphism approach does
preserve solid shapes, the metric is not defined directly on the shapes themselves.
Rather, the metric is defined on the diffeomorphism group, which is combined
with a matching term to deform one object into another.

In this paper we present a new shape representation which directly models
solid objects. The shape space is an infinite-dimensional Riemannian manifold,
with a metric designed to preserve non-intersecting boundaries of solid objects.
Our framework is valid for objects in both 2D and 3D. The rest of this paper
is organized as follows. In Section 2 we formulate the space of solid objects. We
develop a Riemannian metric on this space in Section 3 and give a procedure to
compute geodesics in Section 4. We present examples of these geodesics for 2D
objects in Section 5 and demonstrate that they preserve non-intersecting object
boundaries. We compare these geodesics to the equivalent minimal paths under
a linear metric, which result in intersecting boundaries.



Riemannian Metrics on the Space of Solid Shapes 3

f

∂Ω (∂Ω)f

v

∂Ω (∂Ω)v

Fig. 1. A pictorial representation of the infinite-dimensional space of solid objects,
E(∂Ω, Rn) (top left). A point f in this space is an embedding representing a solid
object (top right). A path c(t) in this space is a smooth deformation of shapes (bottom
left). A tangent vector v at the point f is a vector field on the image f(∂Ω) that
represents an infinitesimal deformation of f (bottom right).

2 The Space of Solid Objects

The proposed formulation of the space of solid objects relies on a fixed template
object, which is a compact region Ω ⊂ Rn. We require that Ω be a smooth
n-dimensional manifold with boundary. The boundary of Ω will be denoted ∂Ω.
The compactness of Ω means that it is a closed and bounded set of Rn. The fact
that Ω is a manifold with boundary ensures that ∂Ω is a smooth, non-intersecting
manifold that separates Rn into a distinct interior and exterior. These properties
are designed to capture the essence of what it means for an object to be solid.
As an example, Ω could be the closed unit ball Bn = {x ∈ Rn | ‖x‖ ≤ 1}. The
boundary of the Bn is the unit sphere, i.e., ∂Bn = Sn−1 = {x ∈ Rn | ‖x‖ = 1}.

We define a solid object to be an embedding of ∂Ω into Rn (Fig. 1). Recall
that a mapping f : ∂Ω → Rn is an embedding if it is a diffeomorphism of ∂Ω onto
its image f(∂Ω). The space of all such embeddings forms an infinite-dimensional
manifold, which is denoted E(∂Ω, Rn). Since each object f is defined to be an
embedding of ∂Ω, the image f(∂Ω) is also a smooth, non-intersecting compact
manifold that separate Rn into a distinct interior and exterior. In other words,
f preserves our notion of what it means to be solid. Notice that the choice of Ω
will determine a fixed topology for the possible objects in the space. However,
if Ω and Ω′ are two diffeomorphic template objects, then the resulting object
spaces E(∂Ω, Rn) and E(∂Ω′, Rn) are equivalent. In other words, the definition
of our object space is independent of the template object up to diffeomorphism.

A path in E(∂Ω, Rn) is a one-parameter family of embeddings, c : (a, b) ×
∂Ω → Rn (Fig. 1). For each real number t ∈ (a, b), the point c(t) ∈ E(∂Ω, Rn)
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Fig. 2. The possible forms of self-intersections of an object’s boundary: local singularity
(left), global interior crossing (middle), and global exterior crossing (right).

is an object, and the path c is a smooth deformation of objects parameterized
by t. For each x ∈ ∂Ω the path c generates a curve in Rn: t 7→ c(t)(x). The t
derivative of this curve, ct(t)(x), is a vector in Tc(t)(x)Rn, the tangent space of
Rn at the point c(t)(x). Thus, the tangent vector ct(t) is a mapping that assigns
to each x ∈ ∂Ω the vector ct(t)(x) ∈ Tc(t)(x)Rn (Fig. 1). Intuitively, the tangent
vector ct(t) can be thought of as an infinitesimal deformation of the object c(t).
The space of all tangent vectors to an object f ∈ E(∂Ω, Rn) forms the vector
space TfE(∂Ω, Rn) = C∞(∂Ω, f∗TΩf ), where f∗ denotes the pull-back via f ,
and Ωf = f(Ω) is the current shape.

Notice that the parameterization of the object boundary is included in our
definition of a solid shape. This is in contrast to recent work on planar curves,
e.g., [9], [10], [11], where shape is defined modulo reparameterizations. Glaunes
et al. [14] and Michor and Mumford [15] also show that metrics on the diffeo-
morphism group can be used to induce metrics on the space of unparameterized
shapes, which they define as the quotient space Diff (Rn)/Diff (Rn, Sn−1), where
Diff (Rn) is the space of diffeomorphisms on Rn and Diff (Rn, Sn−1) are the dif-
feomorphisms that map the sphere Sn−1 to itself. By including the parameteriza-
tion of the boundary, our framework allows correspondences to be made between
the boundaries of different objects. This is desirable in medical image applica-
tions, where it is typically necessary that corresponding anatomical features be
compared across subjects.

3 Riemannian Metrics on E(∂Ω, Rn)

We now define a new class of Riemannian metrics on the space of solid objects,
E(∂Ω, Rn), that are particularly well-suited for solid shape analysis as they pre-
vent self-intersections of shapes. A Riemannian metric on E(∂Ω, Rn) assigns a
smoothly-varying inner product on each tangent space TfE(∂Ω, Rn). We denote
the inner product of two tangent vectors v, w ∈ TfE(∂Ω, Rn) by 〈v, w〉f . The
length of a tangent vector v is given by ‖v‖f =

√
〈v, v〉f . A geodesic is a path γ

that minimizes the energy E(γ) =
∫ b

a
‖γt(t)‖2

γ(t) dt.

3.1 Preventing Boundary Intersections

Intersections of the boundary result when the object mapping f : ∂Ω → Rn

fails to be an embedding, that is, it falls outside of the space E(∂Ω, Rn). There
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Fig. 3. Projection from the space of full embeddings to the space of boundary embed-
dings (left). Projection of a tangent vector (right).

are essentially three types of self-intersections of the object boundary that can
occur (Fig. 2): local singularities, global interior crossings, and global exterior
crossings. Local singularities happen when the derivatives of the object mapping
become singular. Global interior crossings occur when the interior of the object
collapses and the boundary touches itself. Global exterior crossings occur when
the object boundary penetrates itself from the outside. Notice that the local
singularities can be detected using only local information of the boundary, i.e.,
derivatives. However, the boundary of an object with a global intersection may
still be smooth, and there is no way to detect these crossings with local infor-
mation. In the next section we define a Riemannian metric on E(∂Ω, Rn) that is
capable of preventing local singularities and global interior crossings by involving
the interior of the object. The exterior global crossings, which are not prevented
in our framework, present a unique difficulty in that they involve events that
happen external to the object.

3.2 Metrics via Projection

If we are to keep objects from collapsing, it is only natural that velocities of
interior points in the object should play a role in the metric. The challenge is
to accomplish this while defining a metric that is determined uniquely by the
boundary velocities. We do this by defining a metric on the space E(Ω, Rn) of
embeddings of Ω in such a way that a vector field on the boundary of the object
can be extended to a vector field on the interior with minimal norm. This will
allow us to compute geodesics in E(Ω, Rn) that take into account the interior of
the object, and then project them back down to geodesics on the solid object
space E(∂Ω, Rn).

There is a natural projection π : E(Ω, Rn) → E(∂Ω, Rn) given by the restric-
tion to ∂Ω. That is, for an embedding f ∈ E(Ω, Rn), we have π(f) = f |∂Ω . The
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derivative map of this projection, Dπ : TE(Ω, Rn) → E(∂Ω, Rn), is also given
by a restriction. Given a tangent vector v ∈ TfE(Ω, Rn), we have Dπ(v) = v|∂Ω .
These projections are illustrated in Fig. 3. We define a metric on E(Ω, Rn) such
that the projection π induces a unique metric on the space E(∂Ω, Rn).

If f ∈ E(Ω, Rn) is an embedding, then at each point x ∈ Ω the Jacobian
matrix Df(x) has positive determinant. Thus, Df(x) is an element of GL+(n, R),
the Lie group of all positive-determinant matrices. We now define the metric on
E(Ω, Rn) at the point f as

〈v, w〉f =
∫

Ω

〈Dv, Dw〉Df dx, (1)

where the inner product inside the integral is a right-invariant Lie group metric
on GL+(n, R). There are several possible right-invariant metrics on GL+(n, R),
which lead to an entire class of metrics on E(Ω, Rn) of the form (1). In this paper
we use the metric

〈Dv, Dw〉Df = tr
(
DvDf−1

(
DwDf−1

)T
)

. (2)

Notice that the value of (2) approaches infinity if Df approaches a zero deter-
minant matrix. This property of the metric means that geodesic paths generate
shape mappings with positive Jacobians, and thus do not generate local singu-
larities or interior self-intersections.

We now use the metric (1) on E(Ω, Rn) and the projection mapping π to
induce a metric on the solid object space E(∂Ω, Rn). Given a tangent vector
v ∈ TfE(∂Ω, Rn), we define an extension of v to the interior of Ω. An extension
of v is a tangent vector ṽ ∈ Tf̃E(Ω, Rn) such that π(f̃) = f and Dπ(ṽ) = v. The
vector ṽ is chosen as the extension of v with minimal length in the metric (1),
that is, ṽ is an extremal of the norm

‖ṽ‖f̃ =
∫

Ω

tr
(
DṽADṽT

)
dx, A = Df̃−1Df̃−1T . (3)

This is a variational problem that leads to the Euler-Lagrange equation

div(A∇ṽ) = 0. (4)

This equation is an elliptic PDE since the matrix A is symmetric, positive-
definite. The constraint that ṽ|∂Ω = v provides the boundary conditions. Since
it is an elliptic PDE with smooth boundary conditions, it has a unique solution.
In other words, the vector v lifts to a unique vector ṽ with minimal norm.
Therefore, we can define the metric on E(∂Ω, Rn) to be 〈v, w〉f = 〈ṽ, w̃〉f̃ .

The metric defined in (1) is dependent on the choice of the template object
Ω and the mapping f from that template to the current shape. This dependence
can be removed by including the Jacobian of f in the integral to give the metric

〈v, w〉 =
∫

Ω

〈Dv, Dw〉Df |Df |dx,
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where |Df | denotes the absolute value of the determinant of Df . This metric is
right-invariant, meaning that it is left unchanged by a diffeomorphism of Ω. In
other words, the metric is independent of the choice of the mapping f or of the
choice of Ω, up to a diffeomorphism. Another possibility is to keep the metric
(1), but restrict to only volume-preserving maps, i.e., |Df | = 1. A right-invariant
metric also has the desirable property that the projection mapping π becomes
a Riemannian submersion [16]. This has the consequence that any geodesic γ in
the space E(Ω, Rn) has projection π(γ) that is also a geodesic in E(∂Ω, Rn). In
this paper we focus on the metric given in (1), while the preferred right-invariant
metrics are a current area of research.

4 Computing Geodesics

In this section we describe how to compute geodesics in E(∂Ω, Rn) equipped
with the metric induced by (1). We lift the geodesic computations to the space
E(Ω, Rn) and then project these geodesics back to E(∂Ω, Rn) via the mapping
π. A geodesic path γ on E(Ω, Rn) is an extremal of the energy functional E(γ) =∫ b

a

∫
Ω
‖Dγt‖2

Dγ dx dt, where the metric is defined as in (1), and we are given
initial conditions γ(0)|∂Ω = f0 and γt(0)|∂Ω = v0. The first step is to lift these
initial conditions to extensions f̃0 and ṽ0 defined on all of Ω. Any extension of
f0 may be chosen, and the extension of v0 is computed via (4).

4.1 Geodesics of Matrix Fields

Rather than solve the above variational problem directly for γ, we instead solve
for the Jacobian matrix Dγ. Then, at each time point t, we integrate Dγ(t) with
respect to the spatial variable x to arrive at the final geodesic γ. Consider a time-
varying matrix field, M : (a, b)×Ω → GL(n, R), which represents the Jacobian
field for the geodesic γ, i.e., M = Dγ. The energy functional now becomes

E(M) =
∫ b

a

∫
Ω

‖Mt‖2
M dx dt, (5)

with initial conditions M(0) = Df0 and Mt(0) = Dv0. However, solving for
extremals M of the energy (5) is not equivalent to solving for extremals Dγ of
the energy E(γ). To make them equivalent, M must be constrained to be the
Jacobian field of a mapping, that is, M must be kept integrable. The integrability
condition is curl(M) = 0, where we define the curl of a matrix field as the
component-wise curl of each of its row vectors.1

If we first consider the unconstrained variational problem in (5), the ex-
tremals are given by pointwise geodesics on GL+(n, R), that is, for each x ∈ Ω
the curve t 7→ M(t)(x) is a geodesic on GL+(n, R) under the right-invariant

1 For our purposes the curl of a 2D vector field v is the scalar field curl(v) = ∂v2/∂x−
∂v1/∂y. The curl of a 3D vector field v is the vector field curl(v) = ∇× v.
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metric. These geodesics can be computed as the following system of first-order
ODEs (see [17] and also [18] p. 277)

Mt = XM, (6)

Xt = XXT −XT X, (7)

where the initial conditions are given in the form M(0) = M0 and X(0) = X0.
Actually, there is a closed-form solution to these equations. It is given by

M(t) = exp(t(X0 + XT
0 )) exp(−tXT

0 )M0. (8)

Notice that if M is constant in x, that is, if the shape deformation is an affine
transformation, then the integrability constraint is satisfied automatically. This
results in an important property of this metric: affine transformations of objects
can be computed as closed form geodesics using (8).

4.2 Projection

We now describe the projection step used to solve the integrability constraint .
We only consider the 2D case here, although the 3D case is similar. We are given
a matrix field Mt, and we want to project it onto the space of integrable matrix
fields on Ω, denoted I(Ω). Again, a matrix field X is in I(Ω) if curl(X) = 0.
The projection needs to be orthogonal under the metric (1). The orthogonal
subspace to I(Ω) under this metric, denoted I⊥(Ω), consists of all matrix fields

of the form DwJA−1, where w is a smooth vector field, J =
(

0 −1
1 0

)
, and A is

given in (3). This is similar to the Helmholtz decomposition of a vector field into
curl-free and divergence-free components. The difference is that the Helmholtz
decomposition is orthogonal under the L2 metric.

We now formulate the projection as a variational problem. Given a matrix
field X that we want to project to I(Ω), we find the nearest matrix field in
I⊥(Ω) and subtract it from X. This is given by the matrix field DwJA−1,
where w minimizes the energy E(w) =

∫
Ω
‖DwJA−1 −X‖2

Df dx. An extremal
for this energy satisfies the Euler-Lagrange equation

div
(
JA−1JT DwT

)
= div

(
JXT

)
. (9)

This is a second-order elliptic PDE, and the orthogonality dictates that Dirichlet
boundary conditions should be used. We solve this equation using a successive
over-relaxation (SOR) method [19].

5 Results

In this section we give examples of the geodesic paths in the space of 2D solid
objects, using the framework developed in this paper. To illustrate the power of
our approach to prevent self-intersections, we compare our results to minimal
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Fig. 4. Minimal paths of the pinching deformation for both the solid metric (top right)
and the L2 metric (bottom right). The initial velocity for both is shown on the left.

paths under a linear metric, i.e., the L2 metric. The starting object for each
example was an ellipse defined as c(θ) = ((1/6) cos θ, sin θ). This object was
embedded in a uniformly-spaced 50 × 300 grid. The geodesic equations (6)-(7)
were solved on a fixed grid using a second-order Runge-Kutta method [19].In
each example we give an initial velocity vector on the boundary of the ellipse as
the initial condition to the geodesic problem.

We first give an example of an affine transformation for which the solid
shape geodesics can be computed in closed form using (8). The deformation
is a stretching along the y-axis. The initial velocity vector (u, v) is given by
u(x, y) = −x, v(x, y) = y. The geodesic for the solid object metric is given by
a path of embeddings γ(t)(x) = M(t)x, where M is the diagonal matrix with
diagonal entries {e−t, et}. It is clear that the matrix M has positive determinant
for all t, and thus produces only valid, non-intersecting objects. In contrast, the
minimal path under the L2 metric for the same initial conditions is given by
c(t)(θ) = ((1− t)(1/6) cos θ, (1 + t) sin θ). This results in the ellipse collapsing to
a vertical line at t = 1.

The second example is a pinch deformation (Fig. 4). The initial velocity
vector (u, v) is given by u(x, y) = −x3 + 3xy2 − x, v(x, y) = −3x2y + y3. The
geodesic from the solid object metric nicely prevents the interior of the object
from collapsing. Much like in the stretching example, the boundary slows down
the closer it gets to itself. Under the L2 metric the pinch eventually collapses
into an interior global crossing.

The final example is a bending deformation (Fig. 5). The initial velocity
vector (u, v) is given by u(x, y) = (5/4)(x2 − y2) − x, v(x, y) = (5/4)xy − y.
The resulting geodesic under the solid object metric produces qualitatively what
we expect from a bending deformation. The minimal path under the L2 metric
starts out like a bending, but eventually begins to cross itself. This example
shows how nonlinear deformations such as bending are not readily captured by
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Fig. 5. Minimal paths of the bending deformation for both the solid metric (top right)
and the L2 metric (bottom right). The initial velocity for both is shown on the left.

linear metrics. The geodesics developed in this paper, on the other hand, are
able to naturally model such nonlinear deformations.

6 Conclusion

We presented a new framework for shape analysis that directly models solid
objects. Our method is based on representing the space of solid objects as an
infinite-dimensional Riemannian manifold. We showed that the formulated met-
ric possesses several desirable properties, including that it is valid for repre-
senting both 2D and 3D objects and that it can prevent certain types of self-
intersections of object boundaries. We intend to pursue the use of this shape
metric as a basis for statistical analysis of shape in computer vision and medical
image analysis applications.
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