Introduction to Shape Analysis

CS 7640: Advanced Image Processing

January 12, 2017

Shape Statistics: Averages

Shape Statistics: Variability

Shape priors in segmentation

Shape Statistics: Classification

$$
\begin{aligned}
& \text { - M1 1 1 1 1 } \\
& \text {-1 WHWMFrof }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Incolvidn ds }
\end{aligned}
$$

$$
\begin{aligned}
& \text { http://sites.google.com/site/xiangbai/animaldataset }
\end{aligned}
$$

Shape Statistics: Hypothesis Testing

Testing group differences

Cates, et al. IPMI 2007 and ISBI 2008

Shape Application: Bird Identification

Glaucous Gull

http://notendur.hi.is/yannk/specialities.htm

Shape Application: Bird Identification

American Crow
Common Raven

Shape Application: Box Turtles

http://www.bio.davidson.edu/people/midorcas/research/Contribute/boxturtle/boxinfo.htm

Shape Statistics: Regression

What is Shape?

Shape is the geometry of an object modulo position, orientation, and size.

Geometry Representations

- Landmarks (key identifiable points)
- Boundary models (points, curves, surfaces, level sets)
- Interior models (medial, solid mesh)
- Transformation models (splines, diffeomorphisms)

Landmarks

From Dryden \& Mardia

- A landmark is an identifiable point on an object that corresponds to matching points on similar objects.
- This may be chosen based on the application (e.g., by anatomy) or mathematically (e.g., by curvature).

Landmark Correspondence

More Geometry Representations

Dense Boundary
Points

Continuous Boundary
(Fourier, splines)

Medial Axis (solid interior)

Transformation Models

From D'Arcy Thompson, On Growth and Form, 1917.

Shape Spaces

A shape is a point in a high-dimensional, nonlinear manifold, called a shape space.

Shape Spaces

A shape is a point in a high-dimensional, nonlinear manifold, called a shape space.

Shape Spaces

A shape is a point in a high-dimensional, nonlinear manifold, called a shape space.

Shape Spaces

A shape is a point in a high-dimensional, nonlinear manifold, called a shape space.

Shape Spaces

A metric space structure provides a comparison between two shapes.

Recommended Reading about Manifolds

- W. H. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry

Recommended Reading about Manifolds

- W. H. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry
- M. do Carmo, Riemannian Geometry

Recommended Reading about Manifolds

- W. H. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry
- M. do Carmo, Riemannian Geometry
- J. M. Lee, manifold book series:
- Introduction to Topological Manifolds
- Introduction to Smooth Manifolds
- Riemannian Manifolds: An Introduction to Curvature

Manifolds

A manifold is a smooth topological space that "looks" locally like Euclidean space, via coordinate charts.

Examples

- Euclidean Space: \mathbb{R}^{d}
$\mathrm{id}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a global coordinate chart
- The Sphere: S^{d}
- Local coordinate chart for S^{2} :

$$
\begin{gathered}
(-\pi, \pi) \times(0,2 \pi) \rightarrow S^{2} \\
(\theta, \phi) \mapsto(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta))
\end{gathered}
$$

Examples: Matrix Groups

- General Linear Group: GL(n)
- Space of nonsingular $n \times n$ matrices
- Open set of $\mathbb{R}^{n \times n}$

Examples: Matrix Groups

- General Linear Group: GL(n)
- Space of nonsingular $n \times n$ matrices
- Open set of $\mathbb{R}^{n \times n}$
- Special Linear Group: $\operatorname{SO}(n)$
- Rotations of \mathbb{R}^{n}
- All matrices $R \in \mathrm{GL}(n)$ such that $R R^{T}=I$ and $\operatorname{det}(R)=1$

Examples: Positive-Definite Tensors

$$
\begin{aligned}
& A \in \mathrm{PD}(2) \text { is of the form } \\
& \qquad A=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right), \\
& a c-b^{2}>0, \quad a>0 .
\end{aligned}
$$

Similar situation for $\mathrm{PD}(3)$ (6-dimensional).

Examples: Shape Spaces

Kendall's Shape Space

Space of
Diffeomorphisms

Tangent Spaces

Infinitesimal change in shape:

A tangent vector is the velocity of a curve on M.

Riemannian Metrics

A Riemannian metric is a smoothly varying inner product on the tangent spaces, denoted $\langle v, w\rangle_{p}$ for $v, w \in T_{p} M$.

This metric now gives us the norm of a tangent vector:

$$
\|v\|_{p}=\sqrt{\langle v, v\rangle_{p}}
$$

Geodesics

A geodesic is a curve $\gamma \in M$ that locally minimizes

$$
E(\gamma)=\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\|^{2} d t
$$

Turns out it also locally minimizes arc-length,

$$
L(\gamma)=\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\| d t
$$

The Exponential Map

Notation: $\operatorname{Exp}_{p}(X)$

- p : starting point on M
- X: initial velocity at p
- Output: endpoint of geodesic segment, starting at p, with velocity X, with same length as $\|X\|$

The Log Map

Notation: $\log _{p}(q)$

- Inverse of Exp
- p, q : two points in M
- Output: tangent vector at p, such that $\operatorname{Exp}_{p}\left(\log _{p}(q)\right)=q$
- Gives distance between points: $d(p, q)=\left\|\log _{p}(q)\right\|$.

Shape Equivalences

Two geometry representations, x_{1}, x_{2}, are equivalent if they are just a translation, rotation, scaling of each other:

$$
x_{2}=\lambda R \cdot x_{1}+v
$$

where λ is a scaling, R is a rotation, and v is a translation.

In notation: $x_{1} \sim x_{2}$

Equivalence Classes

The relationship $x_{1} \sim x_{2}$ is an equivalence relationship:

- Reflexive: $x_{1} \sim x_{1}$
- Symmetric: $x_{1} \sim x_{2}$ implies $x_{2} \sim x_{1}$
- Transitive: $x_{1} \sim x_{2}$ and $x_{2} \sim x_{3}$ imply $x_{1} \sim x_{3}$

We call the set of all equivalent geometries to x the equivalence class of x :

$$
[x]=\{y: y \sim x\}
$$

he set of all equivalence classes is our shape space.

Kendall's Shape Space

- Define object with k points.
- Represent as a vector in $\mathbb{R}^{2 k}$.
- Remove translation, rotation, and scale.
- End up with complex projective space, $\mathbb{C P}^{k-2}$.

Quotient Spaces

What do we get when we "remove" scaling from \mathbb{R}^{2} ?

Notation: $[x] \in \mathbb{R}^{2} / \mathbb{R}^{+}$

Quotient Spaces

What do we get when we "remove" scaling from \mathbb{R}^{2} ?

Notation: $[x] \in \mathbb{R}^{2} / \mathbb{R}^{+}$

Quotient Spaces

What do we get when we "remove" scaling from \mathbb{R}^{2} ?

Notation: $[x] \in \mathbb{R}^{2} / \mathbb{R}^{+}$

Quotient Spaces

What do we get when we "remove" scaling from \mathbb{R}^{2} ?

Notation: $[x] \in \mathbb{R}^{2} / \mathbb{R}^{+}$

Constructing Kendall's Shape Space

- Consider planar landmarks to be points in the complex plane.

Constructing Kendall's Shape Space

- Consider planar landmarks to be points in the complex plane.
- An object is then a point $\left(z_{1}, z_{2}, \ldots, z_{k}\right) \in \mathbb{C}^{k}$.

Constructing Kendall's Shape Space

- Consider planar landmarks to be points in the complex plane.
- An object is then a point $\left(z_{1}, z_{2}, \ldots, z_{k}\right) \in \mathbb{C}^{k}$.
- Removing translation leaves us with \mathbb{C}^{k-1}.

Constructing Kendall's Shape Space

- Consider planar landmarks to be points in the complex plane.
- An object is then a point $\left(z_{1}, z_{2}, \ldots, z_{k}\right) \in \mathbb{C}^{k}$.
- Removing translation leaves us with \mathbb{C}^{k-1}.
- How to remove scaling and rotation?

Scaling and Rotation in the Complex Plane

Recall a complex number can be written as $z=r e^{i \phi}$, with modulus r and argument ϕ.

Complex Multiplication:

$$
s e^{i \theta} * r e^{i \phi}=(s r) e^{i(\theta+\phi)}
$$

Multiplication by a complex number $s e^{i \theta}$ is equivalent to scaling by s and rotation by θ.

Removing Scale and Rotation

Multiplying a centered point set, $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{k-1}\right)$, by a constant $w \in \mathbb{C}$, just rotates and scales it.

Thus the shape of \mathbf{z} is an equivalence class:

$$
[\mathbf{z}]=\left\{\left(w z_{1}, w z_{2}, \ldots, w z_{k-1}\right): \forall w \in \mathbb{C}\right\}
$$

This gives complex projective space $\mathbb{C} \mathbb{P}^{k-2}$ - much like the sphere comes from equivalence classes of scalar multiplication in \mathbb{R}^{n}.

Alternative: Shape Matrices

Represent an object as a real $d \times k$ matrix.
Preshape process:

- Remove translation: subtract the row means from each row (i.e., translate shape centroid to 0).
- Remove scale: divide by the Frobenius norm.

Orthogonal Procrustes Analysis

Problem:

Find the rotation R^{*} that minimizes distance between two $d \times k$ matrices A, B :

$$
R^{*}=\arg \min _{R \in \operatorname{SO}(d)}\|R A-B\|^{2}
$$

Solution:

Let $U \Sigma V^{T}$ be the SVD of $B A^{T}$, then

$$
R^{*}=U V^{T}
$$

Intrinsic Means (Fréchet)

The intrinsic mean of a collection of points x_{1}, \ldots, x_{N} in a metric space M is

$$
\mu=\arg \min _{x \in M} \sum_{i=1}^{N} d\left(x, x_{i}\right)^{2}
$$

where $d(\cdot, \cdot)$ denotes distance in M.

Gradient of the Geodesic Distance

The gradient of the Riemannian distance function is

$$
\operatorname{grad}_{x} d(x, y)^{2}=-2 \log _{x}(y)
$$

So, the gradient of the sum-of-squared distance function is

$$
\operatorname{grad}_{x} \sum_{i=1}^{N} d\left(x, x_{i}\right)^{2}=-2 \sum_{i=1}^{N} \log _{x}\left(x_{i}\right)
$$

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Computing Means

Gradient Descent Algorithm:

Input: $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \in M$
$\mu_{0}=\mathbf{x}_{1}$
Repeat:

$$
\begin{aligned}
& \delta \mu=\frac{1}{N} \sum_{i=1}^{N} \log _{\mu_{k}}\left(\mathbf{x}_{i}\right) \\
& \mu_{k+1}=\operatorname{Exp}_{\mu_{k}}(\delta \mu)
\end{aligned}
$$

Example of Mean on Kendall Shape Space

Hand data from Tim Cootes

Example of Mean on Kendall Shape Space

Where to Learn More

Books

- Dryden and Mardia, Statistical Shape Analysis, Wiley, 1998.
- Small, The Statistical Theory of Shape, Springer-Verlag, 1996.
- Kendall, Barden and Carne, Shape and Shape Theory, Wiley, 1999.
- Krim and Yezzi, Statistics and Analysis of Shapes, Birkhauser, 2006.

