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Abstract. Rician noise introduces a bias into MRI measurements that
can have a significant impact on the shapes and orientations of ten-
sors in diffusion tensor magnetic resonance images. This is less of a
problem in structural MRI, because this bias is signal dependent and
it does not seriously impair tissue identification or clinical diagnoses.
However, diffusion imaging is used extensively for quantitative evalua-
tions, and the tensors used in those evaluations are biased in ways that
depend on orientation and signal levels. This paper presents a strat-
egy for filtering diffusion tensor magnetic resonance images that ad-
dresses these issues. The method is a maximum a posteriori estima-
tion technique that operates directly on the diffusion weighted images
and accounts for the biases introduced by Rician noise. We account for
Rician noise through a data likelihood term that is combined with a
spatial smoothing prior. The method compares favorably with several
other approaches from the literature, including methods that filter dif-
fusion weighted imagery and those that operate directly on the diffusion
tensors.

1 Introduction

The quality of DT-MRI images is limited by the relatively long acquisition times
necessary to obtain data at high spatial resolutions. Because acquisition time is
restricted by issues of patient comfort and system demand, the signal-to-noise
ratio(SNR) in DT-MRI is often low. Thus, post processing techniques to remove
noise in the acquired data are important. The diffusion weighted images (DWIs),
from which the tensors are derived, are corrupted by Rician noise, which intro-
duces a positive bias in those measurements. These signal-dependent biases are
not so detrimental to structural imaging, because they typically do not inter-
fere with diagnostic decisions or tissue classification. However, DT-MRI mea-
surements are being used extensively for quantitative comparisons, and several
studies [1,2,3] have shown that bias can affect tensor properties such as trace
and fractional anisotropy (FA).

Previous DT-MRI filtering methods fall into two categories: filters that op-
erate on the DWIs and those that operate directly on the tensors. For instance
Parker et al. [4] use Perona & Malik (P&M) [5] anisotropic diffusion to filter
DWIs, and show that it produces less distortion in FA than filtering images of
FA. Wang et al. [6] formulate a variational approach to regularize DWIs while
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constraining the estimated tensors to remain positive definite. Martin et al. [7]
develop a Gaussian Markov Random Field model to regularize the estimated
diffusion tensor images. Pennec et al. [8] describe a framework for performing
anisotropic diffusion on tensors which preserves the property of tensors being
symmetric and positive definite. Their filter is based on the idea that the space
of all positive definite symmetric matrices forms a Riemannian manifold with
each point representing a diffusion tensor. None of these techniques explicitly
account for the effects of bias in the original DWI measurements. After sub-
mission of this work, we became aware of the work by Fillard et al. [9] that
adds a Rician noise model to smoothing of tensor images in a Log-Euclidean
framework.

In this paper we show Monte Carlo simulations that add new insights into
the effects of Rician bias on tensor measurements. These results demonstrate
the need for realistic noise models in DT-MRI filtering. We describe a filter-
ing strategy that explicitly models the Rician noise as a data likelihood term
in a maximum a posteriori framework. To assess the performance of our tech-
nique, we propose a new method for producing low noise DWIs using a max-
imum likelihood estimate (MLE) from repeated scans of a healthy volunteer.
We present a comparison of filtering performance for tensor based methods
and methods that smooth the DWIs. Our results show that filtering on the
original DW images gives better results than filtering on tensor images, and
that our method using an explicit model of Rician noise gives the best overall
results.

2 Rician Noise and Its Effects on Diffusion Tensors

It is well known that MR magnitude images are corrupted by Rician noise, which
arises from complex Gaussian noise in the original frequency domain (k-space)
measurements. The Rician probability density function for the corrupted image
intensity x is given by

p(x) =
x

σ2 exp
(

−x2 + A2

2σ2

)
I0

(
xA

σ2

)
, (1)

where A is the underlying true intensity, σ is the standard deviation of the noise,
and I0 is the modified zeroth-order Bessel function of the first kind.

Previous studies on the effect of noise on diffusion tensor measurements have
shown that as noise increases, the tensor trace decreases [1] and FA increases
[1,2,3]. Here we show that these effects can actually be quite different depending
on the orientation of the diffusion tensor with respect to the measurement gradi-
ents. Using power series analysis, Anderson [2] shows that the major eigenvalue
increases with higher noise, causing FA to increase. This analysis assumes the
major eigenvalue is a combination of several diffusion weighted measurements,
which happens when the major eigenvector lies in between several gradient di-
rections. However, consider the special case of six gradient directions where the
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Fig. 1. Results of Monte Carlo simulations for trace (left) and FA (right). As an ex-
ample, the SNR from the real data in section 4.2 is plotted as a vertical line.

major eigenvector is aligned with one gradient direction. Here the major eigen-
value will be completely determined from the diffusion weighted measurement
in that direction. In this case, the Stejskal-Tanner equation for the ith diffusion
weighted value reduces to Ai = A0 exp(−bλ1‖gi‖), where λ1 is the major eigen-
value, A0 is the baseline T2 value, and gi is the gradient direction with which
the major axis is aligned. Since λ1 is large, the value Ai will be much lower than
the baseline A0, and will thus be more susceptible to Rician bias. This positive
bias will tend to underestimate the diffusion in the major eigendirection. We
can thus expect two things: the underestimation effect of the tensor trace will
be greater and FA will actually go down.

To test the hypothesis that tensor orientation changes the effects of noise
on diffusion tensors, we performed Monte Carlo simulations of diffusion tensors
characteristic of those found in brain white matter. These tensors had constant
trace of 2.1 × 10−3 mm2/s and four levels of fractional anisotropy, with eigen-
values λ1 > λ2 ≈ λ3. We used a b-value of 2000 s mm−2 and a commonly
used sampling scheme of six gradient directions [10]. We repeated the tests for
two tensor orientations: one with major axis (1, 0, 0), equally splitting the sur-
rounding gradient directions, and one with the major axis aligned with a gradi-
ent direction. We varied the 1/SNR from 0 to 0.2 and used 10,000 tensors per
trial.

Figure 1 shows the average trace and FA of the simulated tensors as a func-
tion of the noise level. Beyond what has previously been reported, our results
show that the amount of bias in the trace increases when the tensor has higher
anisotropy or when the tensor is aligned with a gradient direction. Our results
show that tensors that are not aligned with gradient directions tend to have in-
creased FA, while those aligned with a gradient direction tend to have decreased
FA for moderate levels of noise. However, for lower b-values (e.g., b = 1000) these
effects are less pronounced. The fact that FA can be overestimated or underesti-
mated depending on the orientation of the fiber tract in the scanner has serious
consequences for clinical studies using DT-MRI.
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3 Rician Bias Correction Filter

Our Rician bias correction filter is based on a maximum a posteriori (MAP)
approach to the image reconstruction problem. Given an initial noisy image u0,
we construct the filtered image u that maximizes the log-posterior probability

log p(u|u0) ∝ log p(u0|u) + log p(u), (2)

where p(u0|u) is the likelihood term, or noise model, and p(u) is the prior.
For DWIs we consider u to be a vector-valued image, each gradient direction
(including b = 0) representing a vector component. The formulation in this
section would also be valid for structural MRI.

3.1 The Rician Likelihood Term

The formulation of the filtering problem as maximization of a posterior p(u|u0)
is useful as it allows us to incorporate the Rician bias correction as a data attach-
ment term which can be added to the prior model. Using the Rician distribution
(1) as the likelihood term and assuming independent noise, the pointwise log-
likelihood becomes

log p(u0|u) = log
u0

σ2 − u2
0 + u2

2σ2 + log I0

(u0u

σ2

)
. (3)

The derivative of (3) with respect to u, gives Rician data attachment term

B = − u

σ2 +
[
I1

(u0u

σ2

)
/I0

(u0u

σ2

)] u0

σ2 . (4)

3.2 Combining the Rician Model with a Prior

The data likelihood term can be combined with any image prior model. In this
paper we use a Gibb’s prior model based on a P&M energy functional, given by

p(u) =
1
z

exp(−E(u)), E(u) = λ

∫
U

c
(
‖∇u‖2) dx dy, (5)

where z is a suitable normalization, U is the image domain and c is the conduc-
tance given by c(‖∇u‖2) = exp(−‖∇u‖2/2k2), k is the conductance parameter
and λ is a constant weighting term.

By adding the Rician likelihood term (4) with the variational of the P&M
energy functional we form the update equation for the filtered image,

∂u

∂t
= B + λdiv

(
c
(
‖∇u‖2) ∇u

)
. (6)
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4 Results

The performance comparisons were made on four different filtering methods:
Euclidean tensor filtering, Riemannian tensor filtering [8] and vector anisotropic
diffusion on DWIs with and without the Rician likelihood term as described
in section 3.1. Here Euclidean filtering refers to vector anisotropic diffusion on
the tensor components. To compare these methods, we used both synthetic and
real datasets. We used three different error metrics - root mean squared (RMS)
error in the tensor, trace and fractional anisotropy. The error between tensors
is computed using the Frobenius norm. The parameters for each method were
optimized for the RMS error on the tensor components. Both synthetic and real
datasets use seven images for each slice, one without diffusion gradient (b=0) and
the remaining six with b=1000s/mm2 and diffusion gradients along the standard
six orientations [10].

4.1 Synthetic Data

We used a 10×10×4 volume of tensors oriented in two directions so as to have a
tensor discontinuity. One group of tensors have major axes that split the gradient
directions, while the others are aligned with a gradient. Figure 2 shows the clean
and noisy synthetic tensors with SNR=15.

Clean Data Euclidean Riemannian

Noisy Data (SNR=15) Vector Aniso-DWI Rician -DWI

Fig. 2. Synthetic Data Filter Results
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Fig. 3. Plots of error metrics for the various filters on synthetic data

Fig. 4. Plots of error metrics for the various filters on real data

4.2 Real Data

DTI Ground Truth Generation: A key challenge in quantitatively evaluat-
ing filtering methods on real diffusion tensor data is the lack of a ground truth.
While realistic simulated brain datasets exists for structural MRI, no such nor-
malized data is available for DT-MRI. For this paper we develop a new approach
for generating high SNR diffusion weighted image data. This technique builds
a ground truth image as a maximum likelihood (ML) estimate from a set of
repeated scans of the same subject. If {xi} is the set of intensities from the same
voxel in N repeated scans, then the ML estimate of the true intensity A is found
by maximizing the log-likelihood, log L =

∑N
i=1 log p(xi|A), where p(xi|A) is the

Rician pdf as given in (1). The properties of the ML estimate are investigated
by Sijbers et al. [11]. This ML estimate is superior to a simple averaging of the
intensities as it incorporates a priori knowledge of the noise statistics. Also, it
is well known that in the limit the ML estimate is most precise.

About the data: We generated our ground truth ML images from a set of five
scans of a healthy volunteer on a Siemens head-only 3T scanner (Allegra). For
each sequence, a single shot echo planar (EPI) diffusion tensor sequence with
total scan time of approximately 12 minutes was used. The imaging parameters
were: TR=5400ms, TR=73ms, isotropic voxels with 2mm slice distance and in-
plane resolution = 2 × 2mm, 20 averages. We added known Rician noise to the
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Clean Data Noisy Data (SNR=15)

Euclidean Riemannian

Vector Aniso-DWI Rician -DWI

Fig. 5. Real Data Filtering Results

ML estimated DWIs at SNR levels of 10, 15 and 20 with respect to the average
white matter signal level in the b = 0 image. A slice from the ground truth and
SNR=15 tensor images is shown in Figure 5.
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4.3 Performance

The resulting error metrics for the various filtering methods on the synthetic
and real data are shown in Figures 3 and 4. The original, noisy and filtered
images for SNR=15 are shown with superquadric glyphs [12] in Figures 2 and
5. The results demonstrate that the Rician filter with the bias correction term
gives better RMS error on tensor components. On both the real and synthetic
data the Rician filter is superior to all the other filtering techniques.The data
also shows that for most of the error metrics the filtering methods on the DWI’s
yields better results than smoothing on the tensor space. The Riemannian filter
requires all tensors to be positive definite and is thus disadvantaged by the
process of adjusting for negative eigenvalues.

5 Conclusions

We presented a new method for denoising diffusion tensor images that includes
a Rician noise model as part of MAP estimation framework. To the best of our
knowledge, this is the first work to explicitly model and remove the bias effects
of Rician noise in DT-MRI. We presented Monte Carlo simulations that show
that noise can distort tensors in a manner that is dependent on the orientation
and anisotropy of the underlying tensor. Our filtering results demonstrated that
filtering on the original DWIs yields superior results to filtering methods that
operate on the estimated tensors. Filtering on the DWIs with our Rician noise
model gave the best overall results.
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