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Abstract. In this paper, we propose three metrics to quantify the diffees
between the results of diffusion tensor magnetic resonaneging (DT-MRI)
fiber tracking algorithms: the area between correspondbeydiof each bundle,
the Earth Mover’s Distance (EMD) between two fiber bundleuvads, and the
current distance between two fiber bundle volumes. We alstuds an interac-
tive fiber track comparison visualization toolkit we havereleped based on the
three proposed fiber difference metrics and have testedxomidely-used fiber
tracking algorithms. To show the effectiveness and rolasstiof our metrics and
visualization toolkit, we present results on both synthdtita and high resolution
monkey brain DT-MRI data. Our toolkit can be used for testimg noise effects
on fiber tracking analysis and visualization and to quarkié/difference between
any pair of DT-MRI techniques, compare single subjectsiwiém image atlas.

1 Introduction

After the invention of Diffusion Tensor magnetic resonaimaging (DT-MRI) [1], a
number of fiber tractography algorithms [2—7] have been psep over the last decade.
The issues of noise, motion effects or imaging artifactatere certainty degree of
uncertainty for fiber algorithms and may produce misleattiagking results. However,
quantifying and effectively visualizing the accuracy ane tincertainty between results
of different fiber tracking algorithms remains a significelnallenge. For quantification,
many fiber bundle difference metrics have been proposed,[&8st of which use
a Euclidean distance measure based upon predefined cardesmes. One problem
with the distance metrics is that it is easily disturbed lyghedefined correspondences,
with being overestimated or underestimated, as shown itid®e8. In addition, most
difference metrics do not take into account the local fiberational information and the
local fiber probability information, i.e. the fraction of &bs that pass through that voxel.
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This will overweight the peripheral or tail voxels and igadhe directional information
of the local diffusion profile. Recently, Wassermann et Hd] [put forward a Bayesian
framework based on Gaussian Processes, which takes imargqorior information
about the fiber structure. Unfortunately, this method assuthe distribution of the
fiber point position is Gaussian, which may not always to be.tin this paper we
proposed three similarity metrics: the area between cporeding fiber bundles, the
Earth Mover’s Distance between two fiber bundle volumes, thedcurrent distance
between two fiber bundle volume that can help better quadiifgrences between fiber
bundles and better understand uncertainty associatedibéthtracking algorithms.

Visualization of error and uncertainty is a growing areawiihportant applications
in science, engineering and medicine [11]. However, thexerary few works address-
ing the visualization of uncertainty or the accuracy of terfelds and specifically of
fiber tracking algorithms. A recent paper by Brecheisen gflal], studies how to ef-
fectively visualize how the stopping criteria of FACT algbm(Fiber Assignment by
Continuous Tracking), can influence the fiber tracking rtsstdowever, this study pri-
marily illustrates the quantification of the differencengsi single algorithm and does
not provide methods for inter-algorithm comparisons. kemnore, Brecheisen et. al.
use a technique in which seed points were placed manuallysreusers. Such man-
ual placement can influence the outcome of the fiber tracKiggrighm and is some-
what time consuming. In this paper we describe an interactincertainty visualization
toolkit. Users can choose different fiber tracking algarigh change the tracking crite-
ria, change how seed points are distributed. Furthermareoolkit provides the ability
to track uncertainties within different anatomical regpaasily observe areas of high
uncertainty and interactively explore such high uncetyaiegions locally.

2 MATERIALS AND METHODS

2.1 Data

Synthetic data: The synthetic data used in this paper was simulated by Neaiéfiber
Generator (NFG) [13]. One BO imagé £ 0s.mn¥) and twenty diffusion weighted
images b = 3000.mn?) were obtained. The image resolution id®m x 0.1mm x
0.1mmand the image matrix size is 2020 x 20 voxels.

High resolution monkey brain data: The monkey brain used in this study is the
right hemisphere of a whole brain. Imaging experiments wereucted on a Bruker
Biospec 7-T horizontal-bore system (Bruker Inc, Billerit#A). For data acquisition,
a standard 3D diffusion-weighted spin-echo sequence wed (IR 375 ms, TE 26
ms, field of view 70x 51 x 51mm, Matrix 233x 170x 170 which yielded an isotropic
resolution of 300 microns, b-value is 2,000 s/A)m

Adding noise: To test the robustness of our toolkit, different levels difiaial Ri-
cian noise were added to the synthetic and the monkey biffiisidin weighted images.
Six signal-to-noise (SNR) ratio levels of noise are 96,2838,19 and 16, which cor-
responds to about 2%, 4%, 6%, 8%, 10% and 12% measured by ige2mean and
divided by the signal mean. To guarantee the distributioadafed noise is Rician, we
proceed as follows: take the Fourier transform of the diffusveighted image, add



Gaussian noise in both the real and imaginary part of, takenfgnitude of the Gaus-
sian noise disturbed complex image, and implement the $evEourier transform of
the magnitude image to obtain the noisy image. The same guoeavas used for both
synthetic data and monkey brain data. One issue that nedmsgpecified is that the
smoothed monkey brain data was treated as the ground tndhdiéerent levels of

noise were added directly to it. This is because there is nargt truth available for

real brain data and the main focus of this paper is on how tatifyaand visualize the

uncertainties rather than the noise issue itself.

2.2 Fiber Tracking Algorithms and Tracking Parameters

In this study, we implement six algorithms, five determikisines: the Streamline,
Tensorline, Tensor Deflection (Tend), Guided and Fast Magchlgorithm, and one
probabilistic algorithm: Stochastic Tractography.

The Streamline algorithm starts from seed points and iategralong the the major
eigenvector direction to form the fiber tracts. The Tenserlilgorithm integrates along
the following outgoing vector directiongyt = fey + (1 — f)((1—g)vjy +9D - Vip),
which is the weighted sum of the major eigenvector direabitthe current voxet; and
the previous voxel;,, and the deflection term - v;,,. Weinstein et al. [3] used a linear
anisotropy measure & and named the technique the Tensorline algorithm. Lazar et
al. [4] extended this idea to sétandg to any user defined number between 0 and 1, this
is the Tend algorithm. It is worth noting that whénr= 1, both the Tensorline algorithm
and the Tensor Deflection algorithms are exactly the sameeaStteamline algorithm.
The Guided tracking algorithm integrates along the majgemvector direction while
being guided bya priori information, which can be anatomical knowledge or fiber
tracking results from some other algorithms. The Fast Marcclalgorithm is based
on a fast marching level set method where a front interfacpayates in directions
normal to itself with a non-negative speed function. Froims #8peed function, three-
dimensional time of arrival maps generated, which prodbe&bnnection paths among
brain regions. The Stochastic fiber tracking algorithm @lales the probabilities of
connections based on a Bayesian framework. To facilitatectimparisons, we use
the same start and end region for all of the six algorithms.udé linear anisotropy
(CL) rather than fractional anisotropy (FA) as the anigoyroalue for tracking. The
reason for this choice is that the tensor shape with high BAJisks, do not necessarily
have a clear contrast between the major and secondary algenin which case major
eigenvector direction may easily change by 90 degrees lmaedrily on noise effects.
The step size was chosen to be 0.05 mm for the synthetic deda).45 mm for the
monkey brain data, while the stopping criteria was CL=0rlbfath synthetic data and
monkey brain data. For all of the six algorithms, only fibexcts starting from the seed
region and ending in the end region are selected for congraris

3 Fiber Similarity Metrics

In this section we define three distance measures betweengidibersA andB, as
well as between fiber bundle$ = {A1,As,...} andB = {By1,By,...}. Each fiber is



described by a sequence of points, that is fiber (a1, ay,...). We can also represent
a fiberA by a piecewise-linear curve defined by segmesds, 1 between consecutive
fiber points. More conveniently, we can just denote a set akMothat a fiber goes
through. For a fibeA, denote this set of voxels &s= {a;,a, ...} and for a fiber bundle
Aitis denotedd = {aj,a,...}. Given a fiber bundlel, for each voxehy,, we can then
determine the fraction of fibers that pass through that v{tkel probability), denoted
as P5,. Additionally, we can calculate the average tangent dwacdf the fibers that
pass through a voxek, denoted a3g,. These quantities will be useful in the distance
measures we define for comparing fibers and fiber bundles.

Before we introduce the new measures, we first comment on coiyrased dis-
tance measures in the literature. Given two fibkendB, let thepointwise-order dis-
tance of the common area be defin@po(A,B) = Ji_1 [|ai —bif|. Let B, denote the
point on the piecewise-linear curve of fibRma distance from the start by arclength,
and let’a(a) be the distance from the start of fib&to a pointa € A. Then let thecorre-
sponding arc-length distance be defined51(A,B) = Yi_1]/ai — By, | + 3 j=1lIbj —
AeB(bj>||- Let gs(a) be the closest fiber point i to pointa. Then let thecorrespond-
ing closest point distance be definedDcep(AB) = Yi—1llai — @s(@)|| + Y j-1 /b —
@n(bj)||. These measures are illustrated in Figure 1 of two fidessid B. Although,
these distances may be easy to compute, they typically teksum or the average of
distances between points, which are overestimates or estiteates of the true dis-
tances. This is due either to poor predefined correspondepoer discretization or a
complex local configuration of the fibers or fiber bundles.

For the crossing point of Fiber A and Fiber B in Figure 1, thealalifference value
assigned to this point for any Euclidean distance measutéwvizero. Although the
spatial locations of the crossing point are the same, thedibections at this point are
different for Fiber A and Fiber B. As such, the local diffecervalue at this point should
not be zero. The area difference metric defined in Sectiosd@ves this dilemma. This
local area difference metric can help to visualize the Iditedr difference in a more
robust way based on the spatial information. For the EarthdvioDistance and the cur-
rent distance, the predefined correspondences are notchdduefore the problem of
poor predefined correspondences, poor discretization omglex local configuration
of the fibers or fiber bundles can be successfully avoidedhBtmore, when the local
fiber probability or the local fiber directional informati@ne taken into account, this
will further reduce the bias by only considering the spdtiahtion. Thus, these two
global metrics are more applicable for purpose of quamtg\distances accurately.

Fiber A Fiber A Fiber A

Fiber B Fiber B Fiber B

Fig. 1. Different distances: (IefPpo (A, B), (middle)D4(A,B), (right) Deep (A, B).



3.1 The Area Between Corresponding Fibers or Correspondingoints

We propose a distance measlig,, (A B) that measures the distance between two
fibersAandB by the area between them. LAstea(a, b, c) describe the area of the trian-
gle between pointa, b, andc. Let ig(a) andya(b;j) describe the mappings to points
in fiber B andA, respectively, defined by the discrete Frechet corresprocel[14]; the
closest distance from each point to the other fiber that alsegpves the ordering along
the fibers. Formally

Darea(AB) = zi Area(ai.bj.bi1)+ 3y 5 Area(bjaiai).
i=1bj.bj,1€uB(a) 1=1a 3 1€Wa (b))

We can also assign a local distance measure at eachgpaiit as

1.1 _
Darea(@.B) = 5 - [FArea(a-1.a.yg (@) + 5 Area(a,bj.bj1)
bj.bj1€yB(a)
1
+35Area(a a1, g (@),
where Y5 (a) (resp.yjg (a)) is the min (resp. max) index point ig(a;). We use
multiple terms for each point and divide by two so the locatalice is symmetric (from
AtoBorBtoA) and the sum or the average of local distances is the globirdie.

3.2 The Earth Mover’s Distance

The Earth Mover’s Distance, also called Kantorovich-Westsén distance, can be vi-
sualized as finding the optimal way to move piles of “earthtot to fill a series of
holes, minimizing the total “work” or mass times distancé][Based on the voxelsize
representatiost andB of fiber bundlesA andB, the Earth Mover’s Distance between
two fiber bundles is defined as
EMD(AB) - YieAZienGifii _ YieaienGifii 1)
YicaXijes fij Yjes b

whereg;; is the cost to move a unit of supply frone Ato j€ B, and fij is the flow
that minimizes the overall cost
> > cifij, 2)

icAjeB
subject the following constraints:
fij >0ieA, jeB; ZfiJZb_jjéf: Zfijﬁa_iiéfi )
iceA jeB
whereag; is the total supply of supplidrandti is the total capacity of consumgrin
this case, they both are the probability values afitheoxel of fiber bundled and jth

voxel of fiber bundleB. The cost functiortjj, which can be any predefined distance
measure in any dimension, is the Euclidean distance bettirefiber voxels of two



fiber bundles in this paper. Therefore, the Earth Mover'ddbise between two fiber
bundles is the minimum effort to redistribute the probapibf one fiber bundle to
match the other. This measure not only takes into accourtinidean distance but
also considers the fiber probability difference as well.

3.3 The Current Distance

The current distance was proposed by Glanués and Vaill&ijts a measure to com-
pare a broad class of shapes (including point sets, curnéssafaces) by how they
interact with each other. Recently, Durrleman et. al. [h¥Estigated medical applica-
tion in more depth and showed that the current distance is@sing with decreasing
signal-to-noise ratio of the image. The measure can bepragrd as implicitly lift-
ing each shape to a single point in a high (often infinite) disienal Euclidean space,
specifically, a reproducing kernel Hilbert space, wheresih@larity can be measured
as the Euclidean distance. As such, fiber bundles can bgiated as a set of curves,
and the high dimensional vectors corresponding to eacleaaw be summed to create
a single point representing a fiber bundle. This providestarabdistance to compare
fiber bundles. Furthermore, Joshi et al. [18] showed thatameapproximate the cur-
rent distance between shapes arbitrarily well by a fine ehaliggretization. Thus, for
computational reasons, we approximate each f#foby the set of voxeld\ it passes
through. Then the similarity between two fibers can be writie

K(AB) =Y 3 K(ai.b)(Ta Ty ). (4)
T ]

whereK (a, b) is a kernel function (we use the Gaussian kernel with the wattd h the
same as the voxel size) ant(: ng) is the dot product between two tangent vectors.
Now the current distance is defined as

CD(A,B) = k(A A) + K (B,B) — 2k(A,B). (5)

When using a fiber bundld = {Aq,Ay,...,Aq} instead of a single fibef;, we can
compute the similarity between two fiber bundles as

AB) = K(ai,bi)(Ts - T- ). 6
K(A,B) Ngfla&;th%’Bbngh (@,0)(Ts - Ty)) (6)

Because the similarity functior is a summation over terms, we can accumulate the
total number of fibers that pass through each voxel and taeaherage tangent vector
in each voxel, and then we can treat each (now weighted) \asxalsingle point of the
fiber bundle. The self-similarity of a fiber(A,A) or of a fiber bundle<(A,A) can be
viewed as a norm of that fiber or fiber bundle, denoting howdadhgt shape is in the
high-dimensional vector space. Alternatively, the curdistance between two fibers
(or fiber bundles) can be seen as the difference in how thesfdmron the underlying
space, measured by how they act on each other. This actieseided by its local
influence in the space by the kernel functibrand in the direction it flows through the



tangent vector. Thus the current distance measures tteeatitfe in how two fibers (or
fiber bundles) flow through a given space.

4 RESULTS AND DISCUSSION

4.1 Fiber Track Difference Quantification

Figure 2 shows the tracking results of the Streamline, Fasthing, Guided and the
Stochastic tracking algorithm on synthetic data and on thekay brain data. Since the
Tensorline and the Tend method yield similar results to ttiea®line algorithm, we

only show the Streamline algorithm result. The Stochasgicking result is embedded
in each of the other three results as a semi-transparerswyrfage. The colormap shows
the local fractional anisotropy (FA) value. The start seeidts are shown by the smaller
spheres while the ending region points are shown by therlapeeres. Figure 3 shows

Fig. 2. The results for synthetic data (top) and monkey brain (lo}tof four tracking
algorithm, Streamline (left), Fast Marching, (middle),i@ed tracking (right), Stochas-
tic tracking (embedded as isosurface), the larger sphéms #e end points, and the
smaller spheres show the starting points.

the average closest distanc®¢cp ) and average area between corresponding fibers
of noise free volume and each level of noisy volume using &gorithm: Streamline,
Tensorline, Guided and Tend algorithm, whose corresparedestween fibers or points
are easily defined. For the synthetic data, the trackindteeBom each algorithms are
compared with the ground truth, and for the monkey brain,dhtatracking results of
each algorithms under different noise levels are compaitidits own tracking result

on the smoothed data without artificial Rician noise. Oneseanthat either the average
distance or the average area difference increases witmtneasing noise level. The



performance of these four algorithms are very similar, pktee Guided tracking algo-
rithm yields slightly different results from the other termethods. The fiber difference
quantification using the current distance and the Earth Me®Bistance for both syn-
thetic and monkey brain data are shown in Figure 4. The fiaek&rgenerated using all
of the six tracking algorithms are compared with the grownthtor smoothed monkey
brain data. We can see that the Stochastic tracking algoighvery stable at different
noise levels and produces the smallest difference for betsores on both data sets,
while the performance of Fast Marching Method is not stabtetands to produce quite
different results from the the ground truth or smoothed negrikrain data. These com-
parisons suggest that the Stochastic tracking algoritHess sensitive to noise, since
the noise effects are already accounted for during fibekimmggrocess. Furthermore,
this suggests that the Stochastic fiber tracking algorittay be good at finding the ma-
jor structure of the data set, even at a very low signal toea@sio. The Earth Mover’s
Distance and current distance can effectively captureawe bf uncertainty for most
of the algorithms, and the distances tend to increase wheendise level increase.
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Fig. 3. The average distance (top) and average area (bottom) befiibes tracking
results of the noise free volume and each level of the noidyme for synthetic data
(left) and monkey brain data (right).

Although further detailed validation is required, the #hmetrics put forward in
this study show the potential for quantifying the differertmetween fibers. The area
difference is good at local uncertainty visualization awn@mfification, which we will
address in the next subsection, however it needs predeforeespondence. Both the
Earth Mover’s Distance and the current distance are glolealsures, but do not need
any correspondences. Therefore, the combination of thesgosican help to quantify
the uncertainty or accuracy both locally and globally.



- - Fast Marching Guided —+—Tend —+— Streamline —— Stochastic - Tensorline ‘

IN

w

N

Between Tracking
Result and Ground Truth
o
=

[,

Result and Ground Truth

The Current Distance

The Earth Mover's Distance
Between Tracking

o
o

0.02 0.04 0.06 0.08 0.1 0.12 0.02 0.04 0.06 0.08 0.1 0.12
Noise Level Noise Level

o
©
IS

w

I
N
N

The Current Distance
Between Tracking Results of Clean

Volume and Noisy Volume
o o
~ o
—

Volume and Noisy Volume

The Earth Mover’s Distance
Between Tracking Results of Clean

= —
0.02 0.04 0.06 0.08 0.1 0.12
Noise Level

[,

o

0.02 0.04 0.06 0.08 0.1 0.12
Noise Level

Fig. 4. The fiber difference quantification using Earth Mover's Biste (left) and cur-
rent distance (right) on synthetic data(top) and monkeinhiata (bottom).

4.2 DT-MRI Uncertainty Visualization Toolkit

The interactive uncertainty visualization toolkit we dgstd to visualize the differences
between different fiber tracking algorithms, noise levalsd fiber difference metrics
was created using the SCIRun problem solving environmetyg:(fwww.sci.utah.edu/
software.html). After choosing two DT-MRI volumes to be quemed, a user can select
fiber tracking algorithms, tracking parameters such as tibygping criteria, the inter-
polation method and the integration method, etc. The aMailmacking algorithms are
the six algorithms discussed previously. We note that dustoputational costs, the
Fast Marching and Stochastic algorithms cannot be cuyres#d in interactive mode.
The interpolation methods in the toolkit are nearest nesgHimear, B-spline, Catmull-
Rom, and Gaussian interpolation. An Euler method, as wédrdis-order Runge-Kutta
integration methods are used to generate the fiber tracksstdpping criteria includes,
the threshold for the length of the fiber, the local anisotreglue, the local curvature,
and the number of integration steps. The user can move a wiitgide the DT-MRI
volume, the position of the seed points will be linearly ipated along the widget,
and the local area difference between two preselected \eswwil be interactively vi-
sualized. Furthermore, the length of the widget, the shdjeowidget and the seed
points density can also be changed interactively. Therespondence of fibers between
any two volume is defined by whether the fibers come from theessend points. Fig-
ure 5 illustrates the global and local visualization windowhe left hand side shows
the interactive uncertainty visualization of the syntbetéta, the middle column shows
the interactive uncertainty visualization of the monkegibrdata and the right column
shows the zoom in view of the monkey brain data. The fiber sak generated us-
ing the Streamline algorithm. The global and local differemistograms are shown
through an attached Ul interface, and the local differens®gram (in red) is updated



interactively. Through this interactive Ul, the user casilyacompare the uncertainty or
accuracy of the current fiber track with fiber tracks from eliéint anatomical regions,
which helps quickly locate areas with high uncertainty.

In general, the end points of the fibers have a larger unogytdue to the accu-
mulated tracking error. As shown in Figure 5, these areasigitdighted and easily
located by the average area metric rather than averagesekis#istance metric, espe-
cially within the monkey brain data. One can also notice thatarea with high uncer-
tainty is located to the right and towards the end of the iraxkor the monkey brain.
While this area is visible in the distance difference vigatlon, it is more clearly high-
lighted through the local area difference visualizationmploser inspection at the right
column. Taken together, a user can interactively explarantfy, and visualize uncer-
tainties within DTI-MR data using the our uncertainty vikzation toolkit. We note
that noise is only one of many potential DTMRI uncertaintyges. Imaging artifacts,
partial voluming or even different ber tracking parametams also produce uncertain-
ties. Although we only focus on the uncertainty associatithl different levels of noise,
the toolbox we developed in this study can be used as a toalaotify and visualize
any kind of uncertainty.

5 CONCLUSION AND FUTURE WORK

In this paper, we put forward three metrics to quantify tHféedénce between two fiber
bundles. The quantification results on synthetic data aedrtbnkey brain data show
that the area between corresponding fibers can effectieglyice the local or global un-
certainty. The Earth Mover’s Distance, which considerddical fiber probability, also
shows good quantification of the fiber difference. The curdéstance metric, which
considers the local fiber probability, the local fiber directl information illustrates

i
i
!
i

Fig. 5. The interactive visualization of local closest distandéedénce (top) and local
area difference (bottom) of the synthetic data (left), meynlrain data (middle) and the
zoom in view of the monkey brain data (right)



the power of quantifying the global uncertainty. Based dofahese metrics, we illus-

trated an interactive uncertainty visualization toolkithin the SCIRun environment
that includes six fiber tracking algorithms were implemdrded associated tracking
parameter and noise level options. The location and theitgesfdthe seed points can
be changed interactively, and most importantly, the uadsiies can be visualized in-
teractively and quantitatively compared with the fiber lesain different anatomical

regions. Thus our toolkit facilitates DT-MRI tracking akithm comparison, the impact
of noise or other artifacts, and visual uncertainty loclian.

Currently, we are working on the analysis of the fiber differes between subjects
from different age groups within a human brain atlas, whidh gquantify the vari-
abilities of the fiber tracking results for different age gps. In future, we will apply
the metrics defined in this study to fiber clustering and segati®n, which may po-
tentially improve fiber clustering and segmentation accur&iber bundle difference
quantification can be cast as a registration problem, toezefll of the other metrics
already used in image registration, such as mutual infaomatay be useful for fiber
bundle difference quantification. Furthermore, since tledrits we presented here are
easily extended, we plan to compare g-ball and other higldardiber tracking algo-
rithms. We are also working with a group of neurologists téagbanatomical axon
tracks within the monkey brain as to compare histologicalugd truth of the brain
connections with the tracking results of different algumits. Finally, our interactive
guantification and visualization toolkit may potentiallg bsed as a tool for surgical
planning aiding the further improvement of validation offDsion Tensor imaging.
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