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Abstract. Fundamental to high angular resolution diffusion imaging
(HARDI), is the estimation of a positive-semidefinite orientation distri-
bution function (ODF) and extracting the diffusion properties (e.g., fiber
directions). In this work we show that these two goals can be achieved
efficiently by using homogeneous polynomials to represent the ODF in
the spherical deconvolution approach, as was proposed in the Cartesian
Tensor-ODF (CT-ODF) formulation. Based on this formulation we first
suggest an estimation method for positive-semidefinite ODF by solving a
linear programming problem that does not require special parametriza-
tion of the ODF. We also propose a rank-k tensor decomposition, known
as CP decomposition, to extract the fibers information from the esti-
mated ODF. We show that this decomposition is superior to the fiber
direction estimation via ODF maxima detection as it enables one to
reach the full fiber separation resolution of the estimation technique. We
assess the accuracy of this new framework by applying it to synthetic
and experimentally obtained HARDI data.

1 Introduction

The imaging technique known as Diffusion Tensor MRI (DT-MRI) measures the
Brownian motion of water molecules in a tissue and enables one to reveal its
diffusion properties. It is primarily used to infer the white matter connectivity
of the brain. The signal attenuation model in DT-MRI is given by the Stejskal-
Tanner equation

S(g) = S0 exp(−bD(g)), (1)

where D(g) is the apparent diffusion coefficient (ADC) in the direction g. In
traditional DTI the ADC is modeled by a quadratic form gTDg, where D is a
second-order tensor known as diffusion tensor. Since D(g) is a quadratic form,
the modeled ADC is elliptic and thus cannot model complex structures such
as crossing fibers. To overcome the limitations of DTI, High Angular Resolu-
tion Diffusion Imaging (HARDI) is used. Different modalities and estimation
techniques associated with HARDI have been proposed over the years. These
methods include the multi-compartment model [25], Q-ball imaging (QBI) [24,
10], spherical deconvolution [22, 2], Diffusion Orientation Transform (DOT) [17],
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OPDF [23] and methods that describe the ADC profile using high-order ten-
sors [4, 6]. These latter methods represent D(g) as an even-order homogeneous
polynomial whose coefficients are identified with the entries of a high-order ten-
sor. The resulting function can describe multiple maxima and can be used to
model complex fiber structures. Unfortunately, in contrast to the diffusion tensor
model, the maxima of the ADC profile described by a high-order homogeneous
polynomial, do not correspond to the underlying fiber directions. This is solved
by computing the diffusion propagator and locating the fiber directions at its
local maxima. This computation involves a non-trivial Fourier transform step
that adds complexity to the estimation process. To solve this problem, it was
proposed in [26] to combine the high-order tensor formulation with the spherical
deconvolution technique. This strategy enables one to estimate a positive-definite
ODF, dubbed Cartesian Tensor-ODF (CT-ODF), whose maxima correspond to
the orientations of the fibers.

Although finding all the local maxima’s of high order spherical functions is
not trivial, only a handful of papers have been devoted to this important is-
sue [7, 1, 19]. It turns out that since each maximum has a finite width, maxima
tend to interfere below a certain fiber separation angle. Therefore, using maxima
finding, the maximal fiber separation resolution enabled by the data acquisition
technique cannot be reached. An interesting solution to this problem was pro-
posed in [19]. The ODFs in that case were estimated using the Q-Ball imaging
technique and then were converted to high-order tensors using a linear transfor-
mation. Then, a heuristic rank-k tensor approximation was applied to the ten-
sors to extract the fiber directions beyond the resolution limit determined by the
maxima. This method was later used to initialize the ball-and-stick model [20].
Although the proposed method was applied successfully to synthetic and real
data, it has some inherent limitations: To calculate the different rank-1 tensors
that contribute to the rank-k approximation, rank-1 tensor subtractions were
used. It is known that rank-1 tensor subtractions can potentially increase the
tensor rank [21] and hence the convergence of the algorithm is not guaranteed.
Furthermore, although the initial ODF is non-negative, the residuals obtained
by these subtractions do not have this property. In this paper we address these
problems and in addition to a new ODF estimation technique, we propose an
alternative way to decompose the tensors.

The paper is organized as follows: We first develop the estimation technique
for positive-semidefinite ODFs of any order. This estimation method is based on
the CT-ODF formulation for high-order tensors proposed by Angelos et. al. [26].
Then, we formulate the estimation problem as a linear programming problem
with linear constraints that enforce non-negativity of the ODF. For extracting
the individual fiber properties we apply a rank-k tensor decomposition, known as
the CP decomposition, to the ODF. In addition to providing the fiber directions,
the decomposition also enables us to estimate the fiber fractions. Finally, we
demonstrate our proposed technique on synthetic and real HARDI data and
show that the proposed algorithm provides accurate results and can reliably
resolve two crossing fibers with much higher fidelity than by maxima detection.
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We confirm the accuracy of the algorithm on both synthetic, phantom and real
HARDI data.

2 Spherical deconvolution

Following the work by Tournier et al. [22], the Diffusion-Weighted MR signal can
be modeled by a spherical convolution of an orientation distribution function
(ODF) with an axially symmetric kernel, K:

S(g, b) = S0

∫

S2

F (v)K(g,v, b)dv, (2)

where g is the gradient direction. The function F is associated with the ODF (or
fiber-ODF in Tournier’s original work), and it is composed of a sum of k delta
functions, each is oriented along one fiber direction and weighted according to
the corresponding fiber fraction. The kernel K can be chosen in various ways
depending on the dataset and the region in the brain (e.g., [5, 2]). A very common
choice is the single fiber response which is described by the bipolar Watson
function

K(g · v, b) = e−c(gT
v)2 , (3)

where the concentration parameter, c, is a function of the b value and the dif-
fusivity. Given the measured DW-signal and a kernel, which is known a priori,
the ODF is computed by performing spherical deconvolution of K from S(g, b).
Technically, this may be solved using least-squares where the solution is given
by a simple pseudo-inverse operation [22].

In [26] it was proposed to represent F as a spherical, even-order and positive-
definite homogeneous polynomial induced by a high-order tensor. In that work
it was suggested to use the single fiber response kernel described in Eq. (3). The
concentration parameter was chosen to be large enough to describe a diffusion
process which is highly restricted perpendicular to the orientation v. We use the
same ideas here.

2.1 Estimation of positive-semidefinite ODF using spherical

deconvolution

Any ODF estimated from the data has to be non-negative. In [26] a special
parametrization was used to yield a positive-definite ODF. In this section we
show that the same goal can be achieved by minimizing an objective function
subject to linear constraints that enforce the positivity on the ODF. That is,
given measurements in n gradient directions, we aim to solve the following prob-
lem:

min
F

1

2

n∑

i=1

∥
∥
∥
∥
S(gi, b)− S0

∫

S2

F (v)K(gi,v, b)dv

∥
∥
∥
∥

2

(4)

subject to

F (gi) ≥ 0, g1, . . . ,gn ∈ S2.
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The solution to this problem guarantees positive-semidefiniteness in the discrete
sense, that is, in the directions which were used to acquire the signal. We believe
that under certain conditions the estimated ODF will be positive-semidefinite in
every direction on the sphere. However, since this is an open problem, we leave
the complete mathematical study as future work.

We now formulate the problem explicitly. This formulation holds for tensors
of any order, however, in this paper we only consider fourth-order tensors that
are also supersymmetric. Here we will refer to a supersymmetric tensor by using
the term symmetric. The coefficients of a symmetric fourth-order tensor are
invariant under any permutation of the indices. Thus, a symmetric fourth-order
tensor has 15 unique coefficients associated with a homogeneous polynomial:

F (g) =
4∑

a=0

4−a∑

b=0

cabg
a

1g
b

2g
4−a−b

3 , (5)

where cab denote the unique tensor coefficients and g1, g2 and g3 are the compo-
nents of the gradient direction g.

Substituting F into the integral (2), we have a sum of integrals, each related
to a different monomial:

S(g, b) =

4∑

a=0

4−a∑

b=0

cab

∫

v∈S2

va1v
b

2v
4−a−b

3 K(g,v, b)dv. (6)

Solving these integrals analytically is intractable, hence, we approximate each
one of them according to the centroid rule for integration of functions on the
sphere [3]. Given a sphere triangulation with N faces, for a spherical function,
f(v), the centroid rule is given by

∫

S2

f(v)dv ≈

N∑

i=1

f(vi)A(∆i) (7)

where vi is the centroid of the i’th face and A(∆i) is the area of the face. This
scheme is very accurate for specific sphere triangulations. Here we choose the
third-order icosahedron triangulation which results in 1280 faces (642 nodes).
The evaluation of each integral according to this scheme is very fast as the
centroids and the areas of the faces are computed only once.

Following these calculations we can define a matrix, C, whose entries corre-
spond to the numerical approximation of (7) for each monomial, in each direc-
tion gi. The size of this matrix is then n×m where n is the number of gradient
directions and m is the number of unique tensor coefficients.

The linear constraints that impose the positivity on F are defined by using a
n×m matrix A. Each row of A corresponds to a different gradient direction, and
each column corresponds to a different monomial. The multiplication Ax results
in a n-dimensional vector, each element of it corresponds to F (gi), where F is
defined by Eq. (5). Thus, we obtain a set of n linear constraints, each constraint
is applied to a different gradient direction.
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Finally, with respect to the matrices defined above, for each voxel we solve
the following linear programming problem:

argmin
x

1

2
‖S− C · x‖

2
subject to −Ax ≤ b, (8)

where S is a vector of the n DW measurements, and b is a n-dimensional vector
which defines the boundary of the convex polytope on which we minimize the
objective function. Setting the values of b to be zero results in estimation of a
positive-semidefinite ODF.

To solve this problem, the number of gradient directions has to be larger
than the number of the tensor coefficients. Since, typically, in HARDI scans n >
60, this condition holds as a fourth-order homogeneous polynomial defined by
m = 15 unique coefficients. This problem may be solved efficiently using MatLab
optimization toolbox or through open source packages for convex optimization
such as CVX [11]. Given the optimal vector of coefficients, x⋆, the ODF is
computed by F = Ax⋆. The unique tensor coefficients are then arranged in a
fourth-order tensor using the symmetry and the appropriate monomial factors.

Once the ODF has been estimated we proceed to extracting the fiber direc-
tions and fractions. As an ODF is associated with a finite-order expansion of
spherical harmonics, its maxima has a finite width. Thus, the ODF’s maxima
interfere and do not correspond to the correct fiber directions below a certain
separation angle. In the following section we solve this problem by using a rank-k
tensor decomposition known as the CP decomposition. We show that while a
rank-1 decomposition corresponds to finding the maxima of F , a decomposition
with k > 1 corresponds to finding the different components (fibers) that con-
tribute to F which, in turn, significantly increases the ability to separate crossing
fibers.

3 High-order tensor decompositions

To discuss HOT decompositions we have to first define the notion of a tensor-

rank. Tensor rank, denoted here as R = rank(D), is defined as the minimal
number of terms such that the following equality holds

D =

R∑

r=1

v1
r ⊗ v2

r ⊗ · · · ⊗ vn

r , (9)

where v are first-order tensors (vectors). The order of the tensor, n, is defined
by the number of its indices and it determines the number of tensor products in
Eq. (9). A cubic tensor, is a tensor whose different modes have the same size,
i.e., D ∈ R

d×d×···×d. The decompositions that we discuss in this section hold for
a general n’th-order tensor which is not necessarily cubic or symmetric. In our
case D is cubic and symmetric where n = 4 and d = 3.

Unlike the matrix case (n = 2), the rank of a given HOT is not known. In
fact, the problem of determining the rank of a given tensor is NP-complete [12].
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However, in this work we are interested in low-rank tensor approximation. For
a given tensor rank k < R, the low-rank approximation is defined by:

D ≈

k∑

r=1

λr(v
1
r ⊗ v2

r ⊗ · · · ⊗ vn

r ), (10)

where ||vr|| = 1, and for a symmetric tensor, v1
r = v2

r = · · · = vn
r . A low-rank

tensor approximation is known as rank-k decomposition and it is applied to
various branches of science and engineering. It is also known in the mathemat-
ical literature as the CANDECOMP\PARAFAC (CP) decomposition [13]. The
vectors vr represents here the fiber directions, and the fiber weights are simply
wr = λr/

∑k

r=1 λr. The rank of the tensor corresponds here to the number of
crossing fibers within a voxel. Since we do not expect to detect reliably more
than two crossing fibers using a fourth-order tensor, we restrict ourselves to the
k = 2 case.

The fiber model is determined in this work according to the ratio between
the singular eigenvalues, λr. That is, the weakest fiber term is rejected whenever
λstrong/λweak > t, where the threshold was set to t = 4. An alternative model
selection approach is the core consistency diagnostic (CORCONDIA) [8]. How-
ever, it is not within the scope of this paper.

To compute the CP decomposition for a given tensor, D, and a given rank,
k, one has to solve the least-squares problem

min
D̃

||D − D̃||2 (11)

where D̃ =
∑k

r=1 λr(v
1
r ⊗v2

r ⊗ · · ·⊗vn
r ). Due to its simplicity and efficiency, the

most popular technique to compute a rank-k tensor approximation is the Alter-
nating Least Squares (ALS) [9, 14]. The principal of the ALS is straightforward.
In each iteration it solves a least-squares problem for the set of vectors {vi

r}
k
r=1,

i = m, while keeping the vectors with i 6= m fixed.
A particular case with k = 1 is the rank-1 decomposition. Given a symmetric

tensor D, its best rank-1 approximation is computed by solving the problem
(11) where D̃ = λv ⊗ v ⊗ · · · ⊗ v

︸ ︷︷ ︸

n times

. This problem is equivalent to the nonlinear

optimization problem [16]

max
v

|D(v)| subject to ||v|| = 1, (12)

where D(v) is the homogeneous polynomial induced by the tensor and identified
here with the ODF. The best rank-1 decomposition for symmetric tensors can be
efficiently computed by solving the ALS for k = 1 or by using a high-order power
method (HOPM) (e.g., [15]). This problem may have multiple non-antipodal
solutions and the different solutions are found by multiple initializations. Upon
converges, for each initialization the algorithm produces an eigenpair (vi,λi).
For each eigenpair the unit-norm vector vi specifies a global maximum location
where λi = D(vi). As in our case D(v) corresponds to the ODF, as long as the



Detection of crossing white matter fibers 7

maxima are distinguished, the resulting vectors will point in the directions of the
underlying fibers. As we will show in the next section, at these cases as well, the
CP decomposition is superior to maxima finding.

4 Experiments

4.1 Synthetic data simulations

To assess the accuracy of our new algorithm, we applied it to synthetic, as well
as measured experimental HARDI data. First, we generated synthetic data by
simulating two crossing fibers according to the multi-compartment model

S(g, b) = S0

k=2∑

i=1

wie
−bgDig

T

. (13)

For both tensors we assume a prolate tensor model with eigenvalues λ1 =
1.7 · 10−3mm2/s, λ2 = λ3 = 3 · 10−4mm2/s and a b-value of 1500 s/mm2. The
baseline signal was set to S0 = 1. One fiber direction was created randomly and
the second one was obtained by rotating the corresponding tensor to get the
desired separation angle between the fibers. The weights were set equally. For
the convolution kernel we have used Eq. (3) with a concentration parameter of
c = 200.

The algorithm was tested on noisy data at three levels of SNR0
1: 50, 25 and

12.5, where the signal was corrupted by Rician distributed noise. For each noise
level, the separation angle was varied from 30 to 90 in 5 degree steps. The signal
was measured using 81 gradient directions which were computed using a second-
order icosahedron sphere tessellation. For each separation angle and noise level,
we performed 100 experiments where fourth-order tensors were estimated using
the linear programming approach and a rank-2 decomposition was applied to
extract the fiber directions and fractions. The mean and the standard deviation
of the separation angle, the fiber direction deviation and the weights estimation
were calculated for each case.

The CP decompositions were performed using the ALS algorithm [9]. Al-
though the ALS algorithm produces non-symmetric intermediate results for sym-
metric tensors, we have found that eventually it converges to a symmetric tensor
solution. We have implemented a symmetric version of the ALS according to [9].
Although it produces symmetric intermediate solutions, it has not obtained more
accurate solutions than the non-symmetric version. For a MatLab implementa-
tion of the ALS2 it takes 20ms on a Linux workstation with a 2.4MHz quad core
CPU and 6GB to produce a rank-2 decomposition for a given tensor.

There are only rare cases where the ALS will not converge to a stationary
point. However, it may converge to local minima. While local minima solutions
cannot be entirely avoided, we have found that they can be adequately treated

1 Measured as the baseline signal, S0, divided by the noise standard deviation, σ.
2 Available at: http://csmr.ca.sandia.gov/∼tgkolda/TensorToolbox/
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by initializing the ALS using the singular eigenvectors of the unfolded tensor [16].
Random initialization gave less accurate results as the algorithm produced local
minima solutions more often, especially in low SNR simulations and for small
separation angles. The results are summarized in Fig. 1 and Fig. 2. In Fig. 1 we
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Fig. 1. The minimal fiber direction deviation (top) and separation angle deviation
(bottom). The SNR decreases from left to right.

present the minimal fiber direction deviations of the estimated directions from
the true directions, as well as the separation angle deviations. For SNR ratios of
50 and 25 it is shown that the algorithm can reliably resolve the fiber directions,
especially above a separation angle of 35 degrees. When the SNR drops down
to 12.5, which is a value found in real scans, below an angle of 45 degrees, we
observed large biases and high standard deviations at one fiber direction. Hence,
the separation angle deviation is not shown for these cases. The performance of
the algorithm in this SNR level improves significantly above a separation angle
of 50 degrees where both fiber directions could be resolved reliably. As shown
in Fig. 2 the fiber fractions could be estimated accurately above 45 degrees for
SNR levels of 50 and 25 whereas at the lowest SNR level 60 degrees is the point
where the accuracy improves significantly. In Fig. 3 we show that the rank-2 CP
decomposition has an advantage over maxima finding even at large separation
angles where the ODF has distinct maxima. While at a fiber separation angle
of 80 degrees the rank-2 decomposition has a slight advantage only at low SNR
levels (left image), at 70 degrees it outperforms the rank-1 decomposition at
all noise levels (right image). Below 70 degrees the maxima merge and maxima
finding is no more reliable. In the middle image, an ODF that represents crossing
fibers at 45 degrees is presented. In that case the correct fiber orientations can
be estimated by using the rank-2 decomposition only. Maxima directions in this
experiment were calculated using the SS-HOPM algorithm [15].
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Fig. 2. The estimation of fiber fraction for one fiber using the rank-2 decomposition.
The SNR ratio decreases from 50 to 12.5, from left to right.

Fig. 3. Rank-2 decomposition vs. maxima finding with rank-1 decomposition. These
results present the minimal fiber direction deviation for a separation angle of 80 degrees
(left) and 70 degrees (right). The middle image demonstrate the differences between
the approaches when the separation angle is 45 deg. The green and the blue lines
show the true and the estimated fiber directions, respectively. The red line shows the
direction of the maximum obtained by a rank-1 tensor decomposition. The mean and
the standard deviation were calculated from 100 experiments for each noise level.

4.2 Phantom data

To test our algorithm on experimentally obtained HARDI data where the ground
truth fibers are known, we first apply our decomposition algorithm to the pub-
licly available phantom data used in the MICCAI 2009 Fiber Cup contest [18].
The data was scanned at three b-values: 650,1500 and 2650 s/mm2. We used the
dataset with a b-value of 2650s/mm2 in this study. The top row of Fig. 4 shows
the reconstructed fourth-order tensor field, the rank-1 decomposition and the
rank-2 decomposition results. The two right hand side images in this row illus-
trate the comparison between the rank-1 and the rank-2 decomposition where
the differences between the decompositions are highlighted by ellipses. The fiber
directions are presented as thin cylinders at each voxel, where the length of the
cylinder is determined by the fiber weight. We have integrated the ground truth
fibers as a reference.

As shown, the decomposed directions clearly delineate the hidden fiber orien-
tations. However, by using the rank-2 decomposition, our algorithm could detect
more crossing fibers which are oriented along the ground truth fibers.
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4.3 Cat brain data

To test the algorithm on real data we used a HARDI scan of a cat brain. The data
was acquired using a standard 3D diffusion-weighted spin-echo sequence with
TR=500 ms, TE=39.8 ms, field of view 70×40×32mm, matrix size 175×100×80,
zero padded to 200×100×80, yielding an isotropic resolution of 400 microns and
a b-value of 6000 s/mm2. Four images without diffusion weighting (b0 image)
and 96 diffusion weighted images were acquired. The diffusion gradients were
uniformly spaced over a unit sphere. The two left images of the bottom row in
Fig. 4 show the b0 image and the reconstructed fourth-order tensor field for the
two specified ROIs. The two right images in this row compare between maxima
finding with the rank-1 decomposition and the rank-2 decomposition. These
results show that some of the crossing fibers, which are not detectable using
maxima finding, could be detected using the rank-2 decomposition. Although
further validation needs to be done on more datasets, promising results are
already demonstrated qualitatively on this cat brain data.

Fig. 4. The decomposition results of the ODF field of the phantom (top row) and cat
brain (bottom row) show the following: b0 image (left), fourth-order tensor field of
region 1 and region 2 (middle left), rank-1 decomposition (right middle) and rank-2
decomposition (right). The results of region 1 are presented at the top and the results
of region 2 are at the bottom. For the phantom, the ground truth fibers are shown
both in the b0 image and in the detailed views of the decomposition results.
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5 Conclusions

In this paper we propose a novel framework that combines an ODF estimation
method with a parameter extraction technique for estimation of fiber directions
and fiber fractions. For the estimation method we have used a specific form
of spherical deconvolution where the ODF is represented by a homogeneous
polynomial induced by a high-order tensor. The ODF was constrained to be
non-negative by adding a set of linear constraints to the objective function that
represents the spherical deconvolution. Then, we show that fiber directions and
fiber fractions are accurately extracted by applying a rank-2 CP decomposition
to the ODF. As the ODF in this case is associated with a high-order tensor we
can apply the decomposition directly to the tensor without using the conversion
step which was necessary in [19]. The CP decomposition optimizes the sum of the
different rank-1 terms and no tensor subtractions are being used. Consequently,
the problems of rank increasing and non-positive residuals do not exist here.

Experiments were performed on synthetic data, phantom and real data show
that this method can resolve two crossing fibers reliably, even at low SNR, and
at far better resolution than the maxima detection approach.

As future work we plan to make the algorithm more efficient, accurate and
more robust to noise both at the spherical deconvolution and the tensor decom-
position levels. Tensors of order greater than four will be considered as well.
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