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Abstract

In this study the noise sensitivity of various anisotropy indices has been investigated by Monte-Carlo computer simulations and magnetic
resonance imaging (MRI) measurements in a phantom and 5 healthy volunteers. Particularly, we compared the noise performance of indices
defined solely in terms of eigenvalues and those based on both the eigenvalues and eigenvectors. It is found that anisotropy indices based
on both eigenvalues and eigenvectors are less sensitive to noise, and spatial averaging with neighboring pixels can further reduce the
standard deviation. To reduce the partial volume effect caused by the spatial averaging with neighboring voxels, an averaging method in
the time domain based on the orientation coherence of eigenvectors in repeated experiments has been proposed. © 2000 Elsevier Science
Inc. All rights reserved.
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1. Introduction

The self-diffusion anisotropy phenomenon has been used
to obtain microstructure and physiological information of
living tissues. For example, MRI measurement of diffusion
anisotropy of water in the brain can map the orientations of the
white matter fiber tracts [1–6] and disease induced abnormal-
ities [7–10]. Other clinical applications include studying the
ordered structure of muscle fibers [11] and the medulla of the
kidney [12]. Different definitions of diffusion anisotropy indi-
ces have been introduced in the literature [13–19]. The anisot-
ropy index determined from the ratio of the apparent diffusion
coefficients (ADC) along the axes of the laboratory frame (x, y,
andz) is rotationally variant and underestimates the diffusion
anisotropy when the axes of the laboratory frame do not co-
incide with the principle directions of the diffusion tensor (D).
The diffusion tensor and its eigenvalues can be determined by
diffusion-weighted MRI with the diffusion weighted gradients
applied in at least six non-collinear directions. Anisotropy
indices based on eigenvalues and eigenvectors are rotationally
invariant and can be compared between different regions, sub-
jects, and physiological states.

Diffusion-weighted MRI has limited signal-to-noise ratio
(SNR). For accurate assessment of the diffusion anisotropy,
it is, therefore, important to optimize the experimental con-
ditions and use an anisotropy measure that is robust to
experimental noise. Previous studies have shown that dif-
fusion anisotropy indices differ significantly in accuracy
and noise sensitivity [16,20–22]. The results from a recent
study by Papadakis et al. [20] indicate that noise sensitivity,
contrast, and resolution are distinctive even for the same
class of rotationally invariant anisotropy indices. Different
approaches have been taken to reduce the noise sensitivities
of anisotropy indices. Ulug and van Zijl [18] proposed a set
of rotationally invariant indices determined directly from
the orientation-dependent diffusion tensor elements without
matrix diagonalization. Martin et al. [21] used orientation
coherence of eigenvectors to reduce sorting bias. Based on
simulation and phantom results, Bastin et al. [22] suggested
that rotationally variant indices are always more favorable
than rotationally invariant counterparts at low SNR. How-
ever, Pierpaoli and Basser [16] have shown previously that
rotationally variant indices could severely underestimate the
degree of diffusion anisotropy in vivo where diffusion ten-
sor orientations are different in various regions. They have
also proposed using spatial averages of inner products be-
tween diffusion tensors in neighboring voxels to derive an
intervoxel lattice index that is a more robust rotationally
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invariant index. In the present study, we have further inves-
tigated the noise sensitivities of different anisotropy indices
with focus on comparing noise performances between indi-
ces based solely on eigenvalues (referred to as eigenvalue
indices) and those defined both in terms of eigenvalues and
eigenvectors (referred to as eigenvector indices). We have
also proposed a time domain averaging method which takes
advantage of the orientation coherence of eigenvectors in
repeated experiments to reduce the possible partial volume
effect caused by spatial averaging.

2. Theory

2.1. Background

A list of diffusion anisotropy indices proposed in the
literature is compiled in Table 1, which includes definitions,

literature resources, and dynamic ranges. Sorted by their
dynamic value ranges, diffusion anisotropy indices can be
divided into IVR (infinite value range) and DVR (definite
value range) groups.Axyz is based on the ratio of ADCk (k 5
x, y, z) measured along the axis of the laboratory frame and
is a rotationally variant index. The rotationally invariant
indices can be further classified into indices defined solely
in terms of the eigenvalues (l1, l2, l3) and indices based on
both the eigenvalues and eigenvectors («̂1, «̂2 and«̂3) of the
diffusion tensor (D). The lattice index,LI, based on both
eigenvalues and eigenvectors of the diffusion tensor is in-
tervoxel in nature. It was introduced by Basser and Pierpaoli
[16] to improve the accuracy of anisotropy estimates by
taking the advantage of the orientational coherence of dif-
fusion tensors in neighboring voxels. It has been demon-
strated that the lattice index is less sensitive to noise than

Table 1
A list of anisotropy indices with definitions, literature sources, and value ranges

Index Definition Ref. Value Range

Axyz max$ADCx,ADCyADCz%

min$ADCx,ADCy,ADCz%

1,2 [1,̀ ]

Aratio l1/l3 13 [1,̀ ]

Aratio,m2 l1

~l2 1 l3!/2

13 [1,̀ ]

Amajor l1 2 ~l2 1 l3!/2

3l#
, l# 5 ~l1 1 l2 1 l3!/3

14 {0,1]

As 1

Î6l# Î O
i5x,y,z

~Dii 2 l# ! 1 2~Dxy
2 1 Dxz

2 1 Dyz
2 !

14 [0,1]

RA

1

Î3

Î O
i51,2,3

~li 2 l# !2

l#

17 [0,=2]

FA Î3

2

O
i51,2,3

~li 2 l2!2

O
i -1,2,3

li
2

17 [0,1]

VR l1l2l3/l#3 16 [1,0]

Add
Add 5

Dref : Dn

Dref : Dn

Dref : Dn 5 O
k51

3 O
s51

3

lref,s ln,k~«ref,s
T «n,k!

2

Dref : Dn 5 Dref : Dn 2
1

3
Trace~Dref!Trace~Dn!

16,23 F0,
2

3
G

LI

LI 5

O
n51

8

anLIn

O
n51

8

an

LIn 5 Î3

8

ÎDref : Dn

ÎDref :Dnrlx
1

3

4

Dref : Dn

ÎDref : Dref ÎDn : Dn

16,23 [0,1]
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other indices. However, it is not clear whether this is simply
due to spatial averaging between the neighboring voxels (8
adjacent voxels) or the intrinsic characteristics associated
with the inclusion of eigenvectors. To separate the spatial
averaging effect from the intrinsic noise sensitivity, we
consider the basic element,D:D’ /D:D’ , of the lattice index
as an independent anisotropy measure,Add. Its definition is
specified in Table 1 and references [16,23]. Similar to the
definition of LI, its corresponding spatially averaged ver-
sion,Add

8 , is defined as

Add
8 5

O
i-1

8

ai Add

O
i51

8

ai

(1)

where ai 5 =2 for diagonally located neighbors and 1
otherwise. To compare the noise performances betweenAdd

andAdd
8 , both indices were simulated separately.

2.2. Time-domain anisotropy index

The lattice indices,LI andAdd
8 , are weighted means of all

adjacent neighbors and the corresponding anisotropy index
maps are inevitably spatially low-pass filtered. To reduce
partial volume effect induced by spatial averaging, eigen-
vector coherence in the time domain can be used instead.
Similar to the orientation coherence of the diffusion tensors
in the neighboring voxels, the direction estimates of the
diffusion ellipsoid in a particular voxel measured at differ-
ent time points would be correlated with each other, if the
voxel is located in a region of anisotropy. On the other hand,
in a voxel where the diffusion process is isotropic and
differences in the measured eigenvalues result solely from
random noise, we would expect that the eigenvectors mea-
sured at different time points are uncorrelated. To improve
the estimate of diffusion anisotropy in a certain voxel with-
out compromising the spatial resolution, we propose time
domain averaging that incorporates coherence of the eigen-
vectors from repeated measurements. This requires at least
two repeated measurements. LetDref and Dref represent,
respectively, the diffusion tensor and its deviatoric mea-
sured at a reference time point, andDt and Dt be the
diffusion tensor and its corresponding deviatoric estimated
in a replicate experiment for the same voxel. A time domain
lattice index,Addt, can be similarly defined as the intervoxel
lattice index. The index is

Addt 5
Dref : Dt

Dref : Dt
(2)

If N repeated experiments are performed, an average time
domain lattice index,Addt

N , can be defined as

Addt
N 5

OAddt

N
(3)

If the noise inAddt can be approximated as Gaussian dis-
tributed, the SNR forAddt

N is expected to be improved by a
factor of =N.

3. Materials and methods

3.1. Simulations

The influence of noise on the estimates of anisotropy
indices was studied by Monte Carlo computer simulation at
different degrees of anisotropy and orientations (specified
by the rotation anglesc, f and u) for the “rice” shaped
diffusion tensor ellipsoid (Fig. 1). Due to the axial symme-
try of the “rice” shaped diffusion ellipsoid, the rotation
angle,c, was set to zero in the simulations. The following
orientations were simulated:c/f/u 5 0°/0°/0°, 0°/30°/15°,
0°/170°/60°, and 0°/60°/0°. For each orientation, the ratio
l1/l2 was varied from 1 to 10 with an increment of 1, while
keeping the ratio atl2/l3 5 1. The average eigenvaluel# 5
(l1 1 l2 1 l3)/3 was kept to a constant value of 1.03
1029m2/s for all the simulations.l# was chosen to be in
agreement with typical values of the experimental measure-
ment for normal cerebral tissue. A simulation started by
assigning the eigenvalues of the diffusion tensor and in-
volved recalculation of the eigenvalues and eigenvectors
after introducing various levels of random noise to the
diffusion-weighted images.

Fig. 1. The “rice”-shaped diffusion ellipsoid and its rotation coordinates
with respect to the laboratory frame.
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For each degree of anisotropy and orientation the fol-
lowing simulation procedures have been performed. [1] The
diffusion tensor in the principal coordinate was defined by
assigning the eigenvalues to the diagonal elements of a 33
3 diagonal matrix (Ddiag). Its representation,D, in the lab-
oratory frame was obtained by applying the rotation matrix
associated with the orientation to the diagonal matrix. [2]
The six ADC values along the directions defined by the
diffusion tensor imaging scheme were determined from the
tensor components,Dij,, in the laboratory frame and the
diffusion weighted signal intensities, S0 and Sb, correspond-
ing to 2 differentb values (0 and 900 s/mm2) were com-
puted from the known ADC andb values. [3] Gaussian
distributed random noise between 1 and 10% (relative to the
signal intensity atS0 at b 5 0) were added to the real and
imaginary parts of the signal. Four different noise levels (1,
3, 5, and 10% of S0) were simulated with corresponding
SNR of 70.7, 23.6, 14.1 and 7.1 for S0, respectively. Noise
perturbed signal intensities were used to recalculate the
noise affected ADC values. [4] The diffusion tensor com-
ponents,Dij, eigenvalues and eigenvectors were recalculated
from the noise affected ADC values. [5] Anisotropy indices
listed in Table 1 and Eqs. 1–3 were estimated according to
their respective definitions using the noise perturbed param-
eters (eigenvalues and eigenvectors) of the diffusion tensor.
The related mathematical details of the above procedures
are given in the Appendix. At each noise level 105 replicate
simulations were performed and statistical analysis of the
data included evaluations of the probability of obtaining
negative eigenvalues, the distribution of the eigenvalues,
and average bias and standard deviation (SD) of each an-
isotropy index. To facilitate comparison among DVR indi-
ces,RA, Add, Add

8 , Addt andAddt
N were rescaled appropriately

so that these indices also have the dynamic range from 0 to
1. Although it is desirable to compare the noise sensitivity
in terms of relative bias (bias/anisotropy), it is difficulty
in practice to evaluate the relative bias of the DVR

indices in the near isotropy and week anisotropy range.
Any finite bias can produce a value of infinity for the
relative bias.

3.2. Phantom study

The purpose of the phantom study was to examine the
false positive anisotropy effect in the case of isotropy at an
SNR close to the in vivo situation. The various anisotropy
indices of a water phantom were measured experimentally
using diffusion weighted MRI and the deviations from the
true isotropy were used to evaluate the noise sensitivity of
these indices. A spherical water phantom (with a radius of
9 cm) doped with CuSO4 (ADC 5 2.23 1023 mm2/s) was
measured on a 1.5T GE Signa Echo-speed MRI scanner
(Milwaukee, WI, USA). A single-shot diffusion-weighted
spin-echo echo-planar imaging (SE-EPI) pulse sequence
was implemented for the self-diffusion measurements. For
the diffusion tensor imaging, a set of gradient combinations
including the tetrahedral set [14,15] and two other gradient
directions (gx, gy, 0) and (gx, 0, gz) were used. Diffusion-
weighted images were acquired at two differentb values (0
and 500 s/mm2) using TE/TR5 90/1000 ms. A single slice
was acquired across the center of the phantom using a FOV
of 22 cm, matrix size of 1283 128 and slice thickness of 4
mm. In order to perform time domain averaging and esti-
mate the time-domain lattice indices,Addt andAddt

N , 8 rep-
licate measurements were also performed (N 5 8). The
standard deviation of the signal intensity atb 5 0 was
approximately 5%.

3.3. Human study

Maps of the various anisotropy indices in the human
brain were measured experimentally and the quality differ-
ences of these anisotropy index maps should provide a
qualitative in vivo validation of the results from the simu-
lations and phantom studies. Five healthy volunteers (4
male, 1 female, aged 27–46) were measured. For each
subject 5–10 axial slices covering the corpus callosum were
imaged using the SE-EPI pulse sequence on a 3T LX med-
ical MRI scanner (General Electric, Milwaukee, WI, USA).
The essential data acquisition parameters used wereb
value5 1000 s/mm2, TE/TR 5 81/6000 ms, matrix size of
128 3 128, FOV of 22 cm, slice thickness of 5 mm. The
diffusion tensor mapping scheme was the same as that used
for the phantom measurements and simulations. 4–8 repli-
cate scans were performed to allow the estimate of the
time-domain lattice index,Addt

N . To reduce the possible
motion artifacts between different measurements image reg-
istrations were also performed. The auxiliary program,im-
reg, included in the functional MRI software AFNI [24–26]
was used for image registration, which minimizes the mean
squared error between the selected reference image and the
images to be registered.

Fig. 2. The probability of obtaining negative eigenvalues for the ‘rice’
shaped diffusion tensor as a function ofl1/l3 at different noise levels
(1–5% of S0).
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4. Results

4.1. Simulations

In Fig. 2 the probability of obtaining negative eigenval-
ues is shown as a function ofl1/l3 at different noise levels
(1–5%). The probability of obtaining negative eigenvalues
increases with the degree of diffusion anisotropy and the
noise level. Fig. 3 shows the eigenvalue distributions at a
noise level of 5% for isotropic (l1/l2/l3 5 1, Fig. 3, a and
b) and anisotropic (l1/l2/l3 5 2/1/1, Fig. 3, c and d)
diffusion tensors. For isotropic diffusion, coordinate rota-
tion has no effect on the distribution of the eigenvalues, and
the distributions of the magnitude sorted eigenvalues are
identical for different orientations (Fig. 3, a and b). Corre-
sponding data for the anisotropic diffusion (Fig. 3, c and d)
demonstrate that the distributions of the eigenvalues are
dependent on the relative tensor orientation in the laboratory
frame. In the presence of noise, the eigenvalue distributions
for anisotropy diffusion tensors start to deviate from the
intrinsic rotational invariance. Fig. 3 also shows that sorting
the eigenvalues in descending order (l1 . l2 . l3) gives rise
to significant overestimation ofl1 and underestimation ofl3.

Fig. 4 shows the bias (Fig. 4, a-c) and SD (Fig. 4, d-f) of
various anisotropy indices for the “rice”-shaped diffusion

tensor as a function ofl1/l3 at the noise level of 3% and the
orientation angles ofc/f/u 5 0°/30°/15°. At the same noise
level, the bias and SD are significantly different for the
various indices indicating different degrees of sensitivity to
noise. In the IVR index group (Figs. 4a and d), the rota-
tionally variant index Axyz has the lowest bias and variance,
whereas the rotationally invariant index, Aratio, is most sus-
ceptible to noise (Fig. 4, a and d). In the DVR group, the
indices based on both eigenvalues and eigenvectors (Fig. 4,
c and f) are generally more robust than the eigenvalue
indices (Fig. 4, b and e).Addt

1 andAddt
8 have the lowest bias

in the low anisotropy range (l1/l3,2), while the lattice
indices,LIn and LI, perform best in the higher anisotropy
range (l1/l3.2). The standard deviations forLI and Addt

8

are lower than those of the corresponding non-averaged
elementsLIn andAddt

1 (Fig. 4f). It is evident that the eigen-
vector indices have the intrinsic characteristics of low bias
and that spatial averaging with neighboring voxels can fur-
ther reduce their standard deviations. Among the eigenvalue
based indices,Amajor has the lowest bias in the entire an-
isotropy range.FA has the highest bias and SD in the low
anisotropy range. The noise performance ofRA is interme-
diate in the low anisotropy range but worst in the high
anisotropy range. Unlike the other DVR indices both the

Fig. 3. Distribution histograms of eigenvalues as a function of anisotropy and tensor orientation. (a) isotropic diffusion (l1/l2/l3 5 1) at collinearc/u/f 5
0°/0°/0° orientation, (b) isotropic diffusion at non-collinearc/u/f 5 0°/30°/15° orientation, (c) anisotropy diffusion tensor (l1/l2/l3 5 2:1:1) at collinear
c/u/f 5 0°/0°/0°, and (d) anisotropy diffusion tensor at non-collinearc/u/f 5 0°/30°/15°. The simulated noise level was 5% of S0. The eigenvalue
distributions are rotational invariant in the isotropic case (a and b). The invariance is not always valid for anisotropy diffusion (b and c).
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bias and SD of the “1-VR” index increase with the degree of
anisotropy.

4.2. Experimental verification

Fig. 5 shows the phantom data for various indices. The
average values6 SD were obtained from a region of inter-
est (ROI) chosen in the center of the phantom image con-
taining approximately 5000 pixels. The experimental results
for the isotropic water phantom agree very well with the
simulation data. As shown in Fig. 5a,Axyz is the best IVR
measure for the isotropic medium, whereasAratio produces
highest false positive anisotropy and variance. Among the
eigenvalue indices, FA has the highest bias and VR has the
highest SD (Fig. 5b). As shown in Fig. 5c, the eigenvector
indices have the lowest false positive anisotropy for an
isotropic medium. Both spatial and time domain averaging
can reduce variances of anisotropy indices.

The results from all volunteers showed the same trend
and a representative set of anisotropy index maps from the
human study is shown in Fig. 6. Nine different index maps
calculated from the same experimental data set are shown.
The quality of these index maps are directly related to their

noise sensitivity. For fair comparison, all the maps were
based on average results of 4 repeated measurements. It is
clear thatAratio has the worst quality in the IVR index group
(top row). The noise level of theAxyz map is low, but it
depicts very little anisotropy. Among the DVR index maps,
the eigenvector indices,LI andAdd

8 , have the highest qual-
ity. Compared with these spatially averaged indices, the
time domain averaged index,Addt

4 , has somewhat higher
noise lever and is less smooth. Like the eigenvalue indices
(middle row), more local variations are observable inAddt

4 .
Furthermore, it detects some small regions of very high
anisotropy that are only partially observable in the eigen-
values index maps but are completely absent in theLI and
Add

8 index maps. For example, in theAddt
4 map there are the

two bright circular regions located close to the genu of the
internal capsule next to the midline that are very likely to be
the fornix columns. In the eigenvalue index maps,FA de-
picts comparatively high anisotropy in the more isotropic
regions of the brain and has the poor contrast. VR is prone
to more noise but shows higher contrast between isotropic
and anisotropic regions. The RA map has intermediate con-
trast and noise level.

Fig. 4. The bias (a-c) and SD (d-f) as a function ofl1/l3. The results for the “rice” shaped diffusion ellipsoid with orientationc/u/f 5 0°/30°/15° are shown.
The biases were the mean value difference of anisotropy indices between the noise levels of 0 and 3%. The results were sorted into IVR (a,d) and DVR (b,
c, e, f) groups. The DVR group was further separated into eigenvalue (c, d) and eigenvector indices (e, f). The eigenvalue indices are only dependent onthe
eigenvalues of the diffusion tensor. The eigenvector indices are defined both in terms of eigenvalues and eigenvectors of the diffusion tensor.
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5. Discussion

5.1. Negative eigenvalues and sorting bias

Results from the computer simulations indicate that the
probability of obtaining negative eigenvalues increases as
the noise level and the degree of anisotropy increase. Neg-

ative eigenvalues give rise to erroneous anisotropy measure.
If negative eigenvalues are inappropriately filtered, biased
diffusion anisotropy will be obtained. Isotropic structures
can appear anisotropic and structures with low anisotropy
depict higher degree of anisotropy. In practical anisotropy
mapping it is, therefore, desirable to optimize SNR and
diminish the probability of having negative eigenvalues.
Besides hardware improvements, it is preferable to use
diffusion tensor imaging schemes that are less sensitive to
error propagation.

It is well known that system noise introduces sorting bias
into anisotropy indices when eigenvalues of the diffusion
tensor are ordered according to their magnitude [16,20,21].
Sorting bias artificially increases the difference between the
minimum and maximum eigenvalues and results in elevated
anisotropy of isotropic and weakly anisotropic media. The
simulation results from the present study also demonstrate
that the sorting bias is profound both for isotropic and
anisotropic media. For the worst case scenario of an isotro-
pic medium, the sorted eigenvalue distributions are signif-
icantly different from each other, although the true values
should be the same (see Fig. 3, a, b, e, f, i, and j). The
undesirable effect of sorting on the anisotropy index,Aratio

5 l1/l3, is also experimentally evident. As shown in the
phantom data (Fig. 5a), at the noise level of 5%,Aratio was
overestimated by a factor of more than 3. Systematic errors
of such an extend greatly limit the use of the indices which
depend on eigenvalue sorting. A polynomial sorting method
taking advantage of local fiber directional coherence has
recently been proposed by Martin et al. [21] to reduce
sorting bias in weakly anisotropy media.

5.2. Deviations from rotational invariance

In principle, anisotropy indices based on the eigenvalues
of the tensor are rotationally invariant for all diffusion
ellipsoid shapes, orientations and degrees of anisotropy. In
the noise free situation, the determination of eigenvalues is
independent of the relative orientation between the principle
axis of the diffusion tensor and the directions of the diffu-
sion weighted gradients. The diagonalization of the diffu-
sion tensor should always produce the same set of eigen-
values irrespective to the orientation of the tensor in the
laboratory frame. As demonstrated by differences in eigen-
value distributions for the same diffusion tensor at two
different orientations (Fig. 3, c, d, g, h, k, and l), at limited
SNR the evaluated eigenvalues for anisotropy diffusion may
deviate from the rotational invariance. In the absence of
noise, the tensor presentation in the laboratory frame is
directly related to the eigenvalues by the rotation matrix,
and the column vectors of the rotation matrix are the eig-
envectors. Different orientations simply give rise to differ-
ent rotation matrices and eigenvectors. In the presence of
noise, the diagonalization of the error perturbed data cannot
be completed with the original rotation matrix. A complete
re-factorization of the error-superimposed matrix will result

Fig. 5. Experimentally measured (gray bars) anisotropy indices6 SD for
an isotropic water phantom. The results for a ROI of approximately 5000
pixels are grouped into IVR indices (a), DVR indices based on eigenvalues
(b), and DVR indices defined by eigenvalues and eigenvectors (c). To
facilitate comparison the corresponding simulation results (black bars) are
also shown. The SD of the MRI signal intensity of S0 was approximately
5%, which matched the noise level used for the simulations.
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in a new set of eigenvalues and eigenvectors that are some-
what different from the true values. It is expected that the
choice of diffusion tensor imaging schemes will influence
the rotational invariance of an anisotropy index. A tensor

imaging scheme consists of a finite number of diffusion-
weighted gradient directions. The limited number of data
sampling along a few non-uniformly distributed directions
can result in orientation dependent noise propagation.

Fig. 6. A representative set of anisotropy index maps measured in a normal subject using a spatial resolution of 1.73 1.73 5 mm3, TE/TR 5 81/6000, two
b values (0 and 900 s/mm2) and 4 replicates. Three IVR (top row) indices, DVR eigenvalue indices (middle row) and DVR eigenvector indices (bottom row)
are shown.
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5.3. Eigenvalue indices

The results for the noise performance of IVR indices
from the simulations and experimental investigations of the
phantom and human brains are very consistent.Aratio is the
most susceptible to noise (high bias and SD) apparently due
to the sorting bias discussed above. The variance ofAxyz is
low and its bias for isotropy is also small, but theAxyz map
of the human brain shows very little contrast between gray
and white matter.Axyz is directly calculated from the ADC
ratios and any diffusion tensor that is not collinearly ori-
ented with the diffusion-weighted gradient is inevitably
underestimated. Previous studies [16,22] based on other
diffusion tensor imaging schemes had similar findings. The
rotational variance ofAxyz precludes its use for any quan-
titative measurement of diffusion anisotropy in the brain.

In a recent study by Papadakis et al. [20], it was reported
that noise performances of the same class eigenvalues indi-
ces,FA, RA,andVR,are significantly different. The results
from the present study also support such a notion, although
different diffusion tensor imaging schemes and simulation
approaches were used. For most of the DVR eigenvalue
indices (Amajor, RA,andFA) both the bias and SD decrease
with the degree of anisotropy, whereas the volume index,
VR,shows the opposite trend. This observed behavior ofVR
index is somewhat contrary to the findings of previous
studies [16,22]. According its definition [16], theVR index
should be insensitive to the orientation of the tensor and is
not affected by sorting of the eigenvalues. However, it
involves a product term,l1l2l3, which makes it extremely
sensitive to negative eigenvalues. We found that the bias
and SD of theVR index behaved similarly as the other DVR
eigenvalue indices after filtering the negative eigenvalue
values.

5.4. Eigenvector indices and time domain averaging

Before the introduction of the intervoxel lattice index,LI,
by Pierpaoli and Basser [16], diffusion anisotropy was es-
sentially measured in terms of eigenvalues and the orienta-
tion information of the diffusion tensor was not incorpo-
rated into the anisotropy indices. As demonstrated by the
present and previous [16] studies, eigenvector indices are
generally more robust than the eigenvalue indices. From the
comparison of the noise performances betweenLIn andLI,
Add andAdd

8 , it is clear that the robustness ofLI andAdd
8 is

intrinsically associated with inclusion of eigenvector in the
definitions. Spatial averaging ofLIn andAdd with adjacent
voxels merely reduces SD but not the bias (Figs. 4c and f).
A similar low-pass filtering of eigenvalue indices, such as
RAandFA, can also reduce the SD and obtain more smooth
anisotropy index maps. Further insights into intrinsic prop-
erties of the eigenvector anisotropy indices can be acquired
by comparing the noise performances betweenLIn andAdd.

LIn is approximately a square root version ofAdd but it has
much higher false positive anisotropy in the near isotropy

range (Fig. 5c). A meaningfulLIn index value requires a
non-negativeAdd. Selective filtering of the negative input
values for the square root argument inLIn inevitably over-
estimates the true anisotropy. In terms of low systematic
bias,Add is the most robust index. As shown in Fig. 4c,Addt

and Addt
8 have very negligible bias in the near isotropy

range. The experimental results from the isotropic phantom
(Fig. 5c) further confirmed this. It should be pointed out in
the case of isotropy, the results forAdd andAdd

8 are exactly
the same as those forAddt andAddt, respectively.

One of the potential advantages of using time domain
averaging over spatial averaging as used in LI is that the
assumption of local homogeneity of tensor direction field is
not required. With time domain averaging, the loss of the
eigenvector coherence is only the consequence of the ran-
dom noise. Direction change on the spatial scale of voxel
size due to anatomic structure changes has no impact on
time domain averaging and smaller structures will not be
filtered away. However, the various averaging strategies in
the time domain, such as multib values versus singleb
values with multi replicates, need to be further investigated
in detail.

6. Conclusions

This study has demonstrated that in the assessment of
diffusion anisotropy by MRI the choice of a robust anisot-
ropy measure is of crucial importance. For quantitative
comparison, a robust anisotropy index should be rotation-
ally invariant. The rotational invariance of eigenvalue indi-
ces may not always be valid in the presence of noise. The
indices based on both eigenvalues and eigenvectors, such as
LIn and Add, are more robust than the eigenvalue indices.
Spatial averaging ofLIn andAdd with adjacent voxels can
further reduce their variances at the cost of increased partial
volume effect. This can be remedied by using time-domain
averaging.
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Appendix: the simulation procedure

To study the effects of noise level on the accuracy of
various diffusion anisotropy indices, we used Monte-Carlo
simulation. The procedure and related mathematical details
are given below.

(1) Defining a diagonal matrix,Ddiag, by assigning the
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eigenvalues,li, to its diagonal elements, where the anisot-
ropy major axis was chosen to be thez- axis.

Ddiag 5 Flx-

0
0

0
ly-

0

0
0

lz-

G (4)

In this paper the eigenvalues are denotedl1, l2 andl3, with
l1 5 l2-,l2 5 ly-,l3 5 lx-.

The diffusion tensor representation in the laboratory
frame,D, is related toDdiagby the rotation matrix,R, which
is defined by the rotation angles,u, f, andc. This is

D 5 RTDdiagR (5)

R 5 F cosc
2sinc

0

sinc
cosc

0

0
0
1
GFcosu

0
sinu

0
1
0

2 sinu
0

cosu
G

z F cosf
2sinf

0

sinf
cosf

0

0
0
1
G (6)

Due to the symmetry of the diffusion tensor, only six of the
nine elements,Dij, need to be calculated. These areDxx, Dyy,

Dzz, Dxy, Dxz, andDyz.

(2) The diffusion tensor imaging scheme to be simulated
is defined by the following six gradient vectors,q̂i

q̂1 5
1

Î3
F1

1
1
G , q̂2 5

1

Î3
F 2 1

2 1
1

G , q̂3 5
1

Î3
F 1

2 1
2 1

G ,

q̂4 5
1

Î3
F 2 1

1
2 1

G , q̂5 5
1

Î2
F1

1
0
G , q̂6 5

1

Î2
F1

0
1
G (7)

TheADCi (i 5 1,2. . . 6) value “sampled” in each direction
is related toD by

ADCi 5 q̂i
T Dq̂i (8)

From eq. 10, it is trivial to show that the measured ADC
data,Dm 5 ADC1, ADC2, ADC3, ADC4, ADC5, ADC6]

T and
the elements of the diffusion tensorDelem 5

Dxx, Dyy, Dzz, Dxy, Dxz, Dyz]
T are related by the transfor-

mation matrix,A

Dm 5 A Delem (9)

where

A 5
1

3 3
1
1
1
1

3/ 2
3/ 2

1
1
1
1

3/ 2
0

1
1
1
1
0

3/ 2

2
2

2 2
2 2
1
0

2
2 2
2 2
2
0
1

2
2 2
2

2 2
0
0

4 (10)

Once the ADC is determined, the signal intensities of the
diffusion weighted images,Sb, at differentb values can be
calculated according to the Stejskal-Tanner [27] equation:

Sb 5 S0e
2ng2d2G2~D2d/3! ADC 5 S0e

2b ADC (11)

wheren is the number of simultaneously applied diffusion
encoding gradients; G,d, andD are the amplitude, duration,
and time offset of the diffusion encoding gradients, respec-
tively. g is the gyromagnetic constant for1H.

(3) Gaussian distributed noise was superimposed on the
real and imaginary part ofSb and the noise perturbed ADC
values are evaluated by non-linear curve fitting of Eq. [13]
to Sb at two differentb values.

(4) The noise affected diffusion tensor elements,Delem,

are calculated by reversing step 2.

Delem5 A21 Dm (12)

The simulated eigenvalues and eigenvectors,li and «̂I, are
obtained by numerically diagonalizing the noise perturbed
diffusion tensor matrix,D.

(5) Various anisotropy indices given in Table 1 and eqs.
1–3 are evaluated from theADC, eigenvalues, and eigen-
vectors according to their definitions.
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